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We present the results of calculations defining global, three-dimensional representations of the complex-
valued potential-energy surfaces of the 2B1, 2A1, and 2B2 metastable states of the water anion that underlie the
physical process of dissociative electron attachment to water. The real part of the resonance energies is
obtained from configuration-interaction calculations performed in a restricted Hilbert space, while the imagi-
nary part of the energies �the widths� is derived from complex Kohn scattering calculations. A diabatization is
performed on the 2A1 and 2B2 surfaces, due to the presence of a conical intersection between them. We discuss
the implications that the shapes of the constructed potential-energy surfaces will have on the nuclear dynamics
of dissociative electron attachment to H2O.
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I. INTRODUCTION

Dissociative electron attachment �DEA� to the water mol-
ecule proceeds through a number of channels, each with a
different energetic threshold,

H2O + e− →�
H + OH−, 3.27 eV

H2 + O−, 3.56 eV

H− + OH�X2�� , 4.35 eV

H + H + O−, 8.04 eV

H− + OH*�2�� , 8.38 eV

H− + H + O, 8.75 eV.

�1�

The production of these species occurs via three metastable
Born-Oppenheimer electronic states of the H2O− system,
whose vertical transition energies therefore determine the in-
cident energies at which DEA occurs. Those electronic states
of the anion are the 2B1, 2A1, and 2B2 Feshbach resonances,
and they are responsible for the three distinct peaks in the
DEA cross section. Their potential-energy surfaces contain
asymptotes corresponding to the product channels listed in
Eq. �1�, with the exception of the H+OH− channel; this prod-
uct is a result of nonadiabatic effects.

Here we report the construction of the complex-valued
adiabatic potential-energy surfaces associated with these
resonance states, which will be used within the local com-
plex potential �LCP� model �1–5� to calculate the nuclear
dynamics leading to dissociation. The present study is fol-
lowed by a second paper �6�, to which we will refer as paper
II, in which we present the results of nuclear dynamics cal-
culations under the LCP model using the calculated surfaces.

Dissociative electron attachment to water was studied as
early as 1930, in the experiment of Lozier �7�, and as re-
cently as 2006, in the study by Fedor et al. �8�. These two

experiments, along with the rest of the prior theoretical and
experimental work on this subject �9–21�, have succeeded in
characterizing each of the product channels of Eq. �1� and
the three Feshbach resonances involved in their production.
However, prior to our recent theoretical study of DEA to
water via the lowest-energy 2B1 resonance �22,23�, there had
been no complete theoretical treatments of this process, nor,
in fact, any ab initio treatment of dissociative attachment to
any molecule, involving more than one nuclear degree of
freedom. We will give a more complete summary of the prior
theoretical and experimental results concerning the dynamics
of this process in paper II.

The present treatment supersedes our previous study of
DEA via the lowest-energy 2B1 state. We have also studied
the angular dependence of DEA to H2O and H2S via the 2B1
state of either anion �24�. Additionally, we previously pre-
sented a qualitative study of the topology of the potential-
energy surfaces of these three electronic states �25�, includ-
ing the many intersections that these surfaces exhibit. That
qualitative study informs the present study, in which we con-
struct quantitative surfaces.

Two of the most significant features of these surfaces can
be seen in Fig. 1, reproduced here from Ref. �25�. This figure
depicts the behavior of the resonance energies with respect to
the H-O-H bending angle �HOH, fixing the OH bond lengths
at r1=r2=1.81a0. The 2B1 and 2A1 resonances are degenerate
at linear geometry; this degeneracy will lead to Renner-Teller
coupling between the two states. In addition, there is a coni-
cal intersection between the 2A1 and 2B2 surface located at
approximately �HOH=73°. This conical intersection plays a
crucial role for the nuclear dynamics of DEA via the upper-
most 2B2 resonance state.

The presence of a conical intersection between the adia-
batic 2A1 and 2B2 states means that the nuclear dynamics
calculations that employ these potential-energy surfaces must
either explicitly include the singular derivative coupling be-
tween them, or be performed in a diabatic basis with a
smooth coupling term. We perform an approximate
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diabatization of the calculated adiabatic 2A1 and 2B2 �1 and 2
2A�� states to produce diabatic 2A1 and 2B2 surfaces. This
diabatization is based on the diagonalization of a particular
symmetry operation described in Sec. V C, not the explicit
minimization of derivative matrix elements.

A resonance state may be characterized by a width, �, and
an energy, ER, which are functions of the internuclear geom-
etry q� . These quantities define a complex potential surface
V�q��,

V�q�� = ER�q�� − i
��q��

2
. �2�

The width � is related to the lifetime as �=1/� �we use
atomic units throughout�. For a triatomic, the internal coor-
dinates q� may be the set of bond-angle coordinates �r1 ,r2 ,��.

We use separate techniques to define the two components
of the potential-energy surfaces, ER�q�� and ��q��. We employ
the complex Kohn variational method �26–35� to perform
scattering calculations that include the effect of the electronic
continuum on the anion state. These calculations yield both
ER and �, but we discard the value of ER obtained from
them. In its place, we use bound-state configuration-
interaction �CI� calculations to obtain ER.

In the asymptotic regions, the resonances become bound
electronic states, and therefore the use of bound-state meth-
ods is entirely appropriate in those regions of nuclear geom-
etry. Near the Franck-Condon region where these states are
resonances, our CI treatment restricts the included configu-
ration space to eliminate the ground-state electronic con-
tinuum from the calculation. Thus our CI calculations ne-
glect the shift in ER due to coupling with that continuum, a
well-known effect explained by the Feshbach resonance for-
malism �36�. Since the shift in ER by this coupling is gener-
ally of the same order as the width, �, this is an excellent
approximation in regions where the resonance is narrow. The
three resonance states we treat here have as their dominant
configuration an electron attached to a singly excited con-
figuration of the neutral target �Feshbach resonances�, and
thus tend to have small widths. However, there are some

geometries where the width of one or the other of the two
upper resonances is of the order of a few tenths of an eV, and
in those regions the errors in our calculated values of ER for
that resonance are larger.

We also define a ground-state neutral H2O potential sur-
face. The resulting energetics of the anion surfaces relative to
the ground state appear to reproduce the vertical transition
energies and all but one of the two-body asymptotes of these
resonances very well, without a relative vertical adjustment
between the neutral and anion calculations. However, as we
will describe in detail, the CI calculations fail to produce one
of the two-body breakup asymptotes on one resonance sur-
face, and we are forced to employ an ad hoc patching pro-
cedure with another CI to correct the unphysical behavior. A
similar patching procedure was necessary to correctly de-
scribe the three-body breakup asymptotes, but dynamics
leading to them is not part of the study we will present in
paper II.

The data points calculated at a large set of nuclear geom-
etries are assembled into global representations of the
potential-energy surfaces. We construct the global represen-
tations of the real part, ER, and the width, �, separately. The
global representations of the real parts of the adiabatic 2B1
and the diabatic 2A1 and 2B2 surfaces are defined by a sum of
an analytic fit and a spline of the residual error of this fit. We
also define a global representation of the off-diagonal cou-
pling between the diabatic states. The global representations
of ER for the adiabatic 2A1 and 2B2 states are obtained as the
eigenvalues of the 2�2 Hamiltonian matrix defined by the
fitted diabatic surfaces. The adiabatic-to-diabatic transforma-
tion angle is applied to the constructed width surfaces to
obtain diabatic widths. The final result is a complete set of
complex potential surfaces for the full dynamics calculations
we report in paper II.

The outline of this paper is as follows. We begin in Sec. II
with a description of the electronic structure of the resonance
states and the basic features of their potential-energy sur-
faces, reviewing the results on the topology of those surfaces
of Ref. �25�. In Sec. III we discuss the complex Kohn scat-
tering calculations from which we obtain ��q��, present the
results of these calculations, and describe the construction of
the global potential-energy surfaces from the individual data
points. In Sec. V, we do the same for the configuration-
interaction calculations defining ER�q��. In Sec. VI, we
present the constructed potential-energy surfaces and discuss
their features.

II. ELECTRONIC STRUCTURE OF THE RESONANCE
STATES

The electronic states that are primarily involved in disso-
ciative electron attachment to H2O are the 2B1, 2A1, and 2B2
Feshbach resonances �7–25�. At the equilibrium geometry of
neutral H2O, r1=r2=1.81a0, �=104.5°, where a0 is the Bohr
radius 0.529 189 379�10−10 m, these states are character-
ized by their dominant electronic configurations,
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FIG. 1. Real parts of resonance energies, in units of hartrees, for
OH bond distance�1.81a0 in C2v geometry, plotted with respect to
bending angle, in degrees. 1a0=0.529�10−8 cm.
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2B1: 1a1
22a1

21b2
23a1

21b1
14a1

2,

2A1: 1a1
22a1

21b2
23a1

11b1
24a1

2,

2B2: 1a1
22a1

21b2
13a1

21b1
24a1

2,

such that each is described as �H2O�−14a1
2. The parent state

of each corresponds to the analogous configuration
�H2O�−14a1

1, which may be a singlet or a triplet. Since the
resonance states are doublets, both the singlet and triplet
states of the neutral may be considered the parent state to
which the incident electron is attached.

The peaks in the DEA cross section occur at approxi-
mately 6.5, 8.4, and 11.8 eV, respectively, at the equilibrium
geometry of the neutral; these values approximate the verti-
cal transition energies of the resonances. The ionization en-
ergy of H2O is 12.621 eV. The vertical transition energy to
excite the 2B2 resonance is close to this value and we cannot
eliminate the possibility that it is physically above the ion-
ization energy. It is possible, therefore, that the parent state
of the 2B2 resonance is an autoionizing excited state of neu-
tral H2O—at least at some geometries.

From the equilibrium geometry of the neutral, the reso-
nance states may be followed adiabatically toward the two-
body breakup arrangements in which the electron is attached
to one of the fragments H-OH or O-H2. We identified the
proper asymptotes in these two arrangements previously
�25�. In the first of these arrangements, the 2B1 and 2A1 states
correlate with H−+OH �2��, while the 2B2 state correlates
with H−+OH �2��, leaving the OH fragment excited. In the
second, the 2B1 state correlates with ground-state H2+O−.
The 2A1 state is found at a much higher energy, as H2 �triplet
1�g1�u� + O−, and does not have a bound two-body asymp-
tote in this arrangement.

An additional complication is that the 2B2 surface is in-
herently double-valued. As described in Ref. �25�, its lower
asymptote is ground-state H2+O−, while the upper asymp-
tote of this surface in this arrangement is not electronically
bound, and corresponds to O �1D� plus a resonant state of
H2

−. In our previous study �25�, we did not determine which
resonant state of H2

− is involved. The double-valuedness of
the 2B2 surface presents a problem for our treatment because
we are unable to fully characterize both sheets of this surface
for all geometries. We instead define a single surface that
interpolates between the two sheets within the three-body
breakup region. We will attempt to identify any discrepancies
between the results here and the experimental ones that we
might ascribe to this omission. However, it is likely that this
feature of the adiabatic manifold only plays a significant role
for three-body breakup, a channel that we will not consider
in paper II.

We do, however, include the 2A1-2B2 conical intersection
in the current treatment, because it is critical for a description
of the dynamics of dissociative electron attachment via the
2B2 state. This conical intersection is a consequence of the
crossing of the 1b2 and 3a1 orbital energies as the bond angle
is varied, and has analogs in both the singlet and triplet A1
and B2 states of the neutral, which exhibit conical intersec-
tions near the present one.

The symmetry labels 2B1, 2A1, and 2B2 are appropriate
when the H2O molecule has C2v symmetry, i.e., when the
OH bond lengths are equal. When the OH bond lengths are
unequal, the molecule belongs to the Cs point group. The
appropriate symmetry labels in those geometries are 2A�, 1
2A�, and 2 2A�. Due to the conical intersection, the lower �1�
and upper �2� 2A� states may each correspond to either 2A1 or
2B2, depending on the bond angle. A complete discussion of
the topology of the anion surfaces is given in Ref. �25�.

III. FIXED-NUCLEI ELECTRON SCATTERING
CALCULATIONS

The resonance positions and widths are extracted from the
results of fixed-nuclei scattering calculations carried out at
physical �real� energies. The scattering calculations yield an
S matrix, whose energy dependence is analyzed to determine
the location of the pole of the S matrix in the complex energy
plane that corresponds to the resonance, as a function of
nuclear geometry. These calculations are fully ab initio. We
use the complex Kohn variational method �26–35�, which
provides a stationary principle for the S matrix. Since de-
tailed descriptions of the method have been given elsewhere
�34,35�, we will limit ourselves here to a brief summary to
establish the terminology we will use to describe our numeri-
cal calculations.

The �N+1�-electron scattering wave function is repre-
sented explicitly in this calculation, using the standard meth-
ods of quantum chemistry: one-electron molecular orbitals
are assembled as sums of multicenter contracted Cartesian
Gaussian functions, products of which define N-electron con-
figuration state functions used to construct the target states.
This basis, augmented with additional Gaussian functions
and numerical continuum functions to describe the scattered
waves, is also used to expand the �N+1�-electron wave func-
tion.

Thus, key components of this calculation include the ap-
propriate choice of one-electron orbital and multielectron
configuration bases defining the target states and the reso-
nance state. Not only must the resonance state be accurately
represented, but also the target states into which it decays.
This requirement becomes more difficult with increasing
resonance energy, as more target states become energetically
accessible as decay channels.

A. Representation of the wave function and matrix elements

In our implementation of the complex Kohn variational
method, the �N+1�-electron scattering wave function is ex-
panded as

	�0

�+� = A��
�


��r1, . . . ,rN�F��0

�+� �rN+1�

+ �
�

d�
�0���r1, . . . ,rN+1�� . �3�

The first sum in Eq. �3� is over target states 
��r1 , . . . ,rN�
explicitly included in a close-coupling expansion, which may
be energetically open or closed. The antisymmetrizer is de-
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noted by A, and the scattered wave associated with channel
� is further expanded as

F��0

�+� �r� = �
i

ci
��0i�r� + ���0�

lm
�Jlm�k�r��ll0

�mm0

+ Tll0mm0

��0 Glm
�+��k�,r��/k�

1/2r �4�

for incoming boundary conditions in the target channel �0
with initial l0m0 quantum numbers for the incident electron.
The functions i�r� in Eq. �4�, which we denote as “scatter-
ing orbitals,” are Gaussian molecular orbitals that are or-
thogonal to the “target orbitals” used to construct the target
states 
�. Thus, one of the first steps in the complex Kohn
calculation is the partitioning of the one-electron Hilbert
space into the sets of target and scattering orbitals. The func-
tions Jlm and Glm

�+� in Eq. �4� are constructed from products of
radial functions �jl and gl

�+�� times angular functions that are
real-valued combinations of spherical harmonics Ylm consis-
tent with the spatial symmetry of the anion. These functions
are then Schmidt orthogonalized to the target and scattering
molecular orbitals. The function jl is the regular Ricatti-
Bessel function, while gl

�+� is a numerically generated con-
tinuum function that is regular at the origin and behaves
asymptotically like the outgoing Riccatti-Hankel function,

g�lm
�+� �k�r� 	

r→�
hl

�+��k�r� . �5�

It is obtained by solving the driven radial equation,


k�
2 −

�2

�r2 +
l�l + 1�

r2 �g�l
�+��k�r� = rjl�k�r�exp�− �r2� , �6�

subject to the stated boundary conditions. For all calculations
presented here, we use �=0.04.

For energetically closed channels, only the scattering or-
bitals i�r� are included in the sum in Eq. �4�; the continuum
functions jlm and g�lm

�+� are not included. Thus, the calculation
can give S matrices, which are discontinuous across channel
thresholds. To minimize this problem, we include additional
diffuse Gaussian functions in the scattering orbital basis to
represent the wave function in barely bound channels. In any
case, the resonance energies can be formally discontinuous
across channel thresholds; their discontinuities are not due to
errors in the calculation, but instead are properties of the true
resonance states �37�.

The second sum in Eq. �3� is over square-integrable �N
+1�-electron configurations �� constructed exclusively from
target orbitals. For convenience we refer to the
�N+1�-electron configurations as the “Q-space” and to the
close-coupling part of the expansion of the wave function as
the “P space” of the calculation. The P space may be further
divided into the bound component—built from
�N+1�-electron configurations incorporating only Gaussian
orbitals—and the “free” component, corresponding to the
target states times continuum functions.

Two approximations are made in calculating the matrix
elements of the electronic Hamiltonian with respect to the
antisymmetrized basis functions of Eq. �3�. The exchange
portion of all matrix elements within P space that involve

“free” components, as well as the matrix elements between
Q space and the free components of P space, are assumed to
be zero. These approximations follow from the orthogonal-
ization of the free functions to the bound molecular orbitals
and the assumed completeness of the combined sets of target
+ scattering orbitals over the restricted region of space
spanned by the target orbitals. Errors associated with these
approximations are minimized by keeping the target orbitals
compact and by augmenting the set of scattering orbitals
with functions that extend beyond the target orbitals so that
the orthogonalized continuum functions are separated from
the target orbitals by a large region of space. Further details
concerning these approximations can be found in Refs.
�34,35�.

B. Target states and basis

The description of a complex Kohn calculation requires
the specification of the target states 
�, the Q-space configu-
rations ��, and, for the expansion of the channel eigenfunc-
tions, the scattering orbitals i and the lm pairs included in
the asymptotic partial wave expansion. We first turn our at-
tention to the target orbitals and states.

The one-electron orbital basis was constructed entirely
from SCF orbitals. We began with the following primitive
Gaussian basis. On the oxygen, we used Dunning’s triple-�
basis �39� plus polarization �d� and Rydberg �s, p, and d�
functions, augmented with an s function with exponent
0.0955 and a p function with exponent 0.774. On the hydro-
gen, we modified the double-� plus diffuse basis of Chipman
�40�. Chipman’s basis consists of four contracted s functions
and one p function. The most diffuse s function has exponent
0.0483. We replaced the single p function with two p func-
tions with exponents 0.55 and 0.13, which were chosen to
minimize the energy of the H− anion given by full CI in this
basis, which was −0.521 90 hartrees, corresponding to a hy-
drogen electron affinity of 0.59591 eV, which recovers most
of the experimental value of 0.75419 eV. The total size of
the contracted target basis was 54.

Using this basis, we first performed a two-shell, general-
ized SCF calculation corresponding to the average of a ten-
electron �neutral H2O� and nine-electron �cation H2O+� SCF
calculation. The purpose of such a calculation is to obtain a
basis that can describe both the neutral and Feshbach reso-
nance wave functions, recalling from the previous section
that the Feshbach resonances may be approximately de-
scribed as two 4a1 electrons bound to different states of the
cation core. Further details about the generalized SCF calcu-
lation can be found in the EPAPS archive �52�.

The set of target orbitals used to construct the neutral
states 
� included a total of eleven orbitals—the five SCF
orbitals plus six of the virtual orbitals: three a1, labeled
4a1–6a1; the 1a2; the 2b1; and the 2b2. The target states were
obtained from a restricted configuration-interaction calcula-
tion within this 11-orbital space, in which the 1a1 and 2a1
orbitals were constrained to be doubly occupied, and all
single and double excitations from the 1b2, 3a1, and 1b1
orbitals into the set of six virtual orbitals were included. This
“all singles and doubles” calculation is designed to account
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for the single excitations describing the dominant configura-
tions of the excited states, plus relaxation of the remaining
orbitals to first order; it also can describe correlation in the
target, particularly in the ground state.

Near the equilibrium geometry of the neutral, this descrip-
tion of the target states puts the excited states slightly lower
in energy, relative to the ground state, than appropriate, but
otherwise represents key features of their potential-energy
surfaces well. In Table I, we list the energies of the low-lying
target states at the equilibrium geometry of the neutral, along
with the results of van Harrevelt and van Hemert �38�.

For the close-coupling expansion of the scattering wave
functions, we selected sets of target states 
� based on spin
and spatial symmetry. At higher energies, a larger number of
target states was required to converge the complex Kohn
calculation, and therefore we used a different number of tar-
get states for calculations on the 2A� �2B1�, the 1 2A� �2A1-
2B2�, and the 2 2B� �2B2-2A1� states. For calculations on the
2A� resonance, we included 15 target states, which near equi-
librium geometry are the 15 lowest energy states listed in
Table I. For the 1 2A� state calculation, we added 14 addi-
tional states of A� symmetry, for a total of 29 states. For the
2 2A� calculation, we added an additional eight A� states, for
a total of 37 states. The calculations are all converged with
respect to the target state expansion at the equilibrium geom-
etry of the neutral, but there are some geometries at which
the calculations are not fully converged.

The �N+1�-electron configurations �� are constructed
from the target orbitals and describe correlation, relaxation,
and the penetration of the incident electron into the target.
For the present calculation, they include the dominant con-
figurations that contribute to the resonant states. This set of
configurations was again obtained by keeping the 1a1 and

2a1 orbitals doubly occupied and distributing the other seven
electrons over the remaining target orbitals, including at least
one but no more than three electrons in the �4a1, 5a1, 6a1,
1a2, 2b1, 2b2� virtual space.

C. Scattering orbitals and insertion basis

Of the original 54 molecular orbitals, 11 were used for the
description of the target and the remaining 43 orbitals were
included in the set of scattering orbitals i. To these 43 or-
bitals we added an additional set of contracted Gaussian
functions, all centered on the oxygen. This “insertion basis”
is included to improve the two approximations mentioned
above associated with the neglect of certain bound-free and
free-free matrix elements.

The insertion basis was constructed from even-tempered
sets of eight p- and d-type primitive Gaussian functions, �i.
�To avoid linear dependence, we do not include s-type Gaus-
sians separately, but rather include all Cartesian components
of the d-type functions.� The exponents started at 0.07 for the
p-wave set and 0.075 for the d-wave set, and in both cases
the ratio of consecutive exponents was 0.8. From these sets
of primitive functions, we constructed a set of six p- and six
d-type contracted, orthogonal functions that were designed to
have the minimum overlap with the most diffuse functions in
the target basis. To this end, we constructed a matrix repre-
sentation, in the primitive insertion basis, of the operator P
which projects onto the space spanned by the most diffuse
functions included in the target basis, i.e.,

Pij = �
k

��i�k���k� j� , �7�

where the �k are the most diffuse target functions of the
target basis, Schmidt-orthogonalized. These functions com-

TABLE I. Fifteen lowest H2O target states for Kohn calculation: energies at the equilibrium geometry
r1=r2=1.8a0, �=104.5°, and the coefficient of dominant configuration in the CI expansion, compared to
energies from van Harrevelt and van Hemert �38� and from our previous complex Kohn study �22�.

State
Energy �hartree�

Current Excitation energy �eV� Dominant config.

Current Prev. �22� Ref. �38� Config. Coef.

1A1 −76.0417104 0.0 0.0 0.0 0.9883
3B1 −75.8042082 6.463 1b1→4a1 0.9944
1B1 −75.7907517 6.829 7.932 7.63 1b1→4a1 0.9960
3A2 −75.7294891 8.496 9.511 1b1→2b2 0.9966
1A2 −75.7268244 8.568 9.611 9.60 1b1→2b2 0.9963
3A1 −75.7196285 8.764 9.926 3a1→4a1 0.9588
3A1 −75.7114283 8.987 1b1→2b1 0.9593
1A1 −75.7100565 9.025 10.534 9.95 1b1→2b1 0.7224
3B1 −75.7072318 9.101 1b1→5a1 0.9959
1B1 −75.7060192 9.134 1b1→5a1 0.9946
1A1 −75.6876243 9.635 3a1→4a1 0.7012
3B1 −75.6863850 9.669 1b1→6a1 0.9936
1B1 −75.6826701 9.770 1b1→6a1 0.9951
3B2 −75.6691870 10.137 1b1→1a2 0.9952
1B2 −75.6688136 10.147 1b1→1a2 0.9940
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prised the two s-, two p-, and one d-type target functions
with the smallest exponents.

Diagonalization of P gave two p- and two d-type vectors
with eigenvalues close to unity, which were discarded. The
other six p- and six d-type functions 	n were retained as the
insertion basis, giving a total of 6� �3+6�=54 additional
Cartesian Gaussian functions and a total �target plus aug-
mented scattering� set of 108 functions. The exponents and
contraction coefficients of the insertion basis are listed in the
EPAPS archive �52�.

We should remark that the insertion basis we use is very
similar to the exterior basis used by Nestmann and others
�41� for use in R-matrix calculations. In the R-matrix
method, the Gaussian basis must represent the outgoing
wave within the finite R-matrix box. Nestmann’s basis is
designed for a 20-bohr box and represents the continuum
functions well for energies up to about 12 eV. In the current
work, the exponents were chosen to provide as complete a
basis as possible within approximately 20 atomic units from
the oxygen center.

A pictorial representation of the basis set used in the Kohn
calculations, which demonstrates the extent of the diffuse
target, insertion, and continuum basis functions, is shown in
Fig. 2. In this figure, the squared modulus of various mem-
bers of the diffuse and continuum basis for l=1 �p waves� is
plotted with respect to the radial distance from the oxygen
nucleus. The most diffuse basis function used in the target
calculations, with exponent 0.028, is plotted along with the
sum of the squared moduli of the insertion basis, �n	n

2, and
that of the l=1 Bessel function, orthogonalized to the inser-
tion basis.

D. Extracting resonance parameters

The complex Kohn calculation was performed at 10 to 20
energies around the resonance location, and the S matrices
produced were fitted to a Breit-Wigner form,

Snlm,n�l�m��E� = Snlm,n�l�m�
bg �E� +

�nlm�n�l�m�

E − ER + i
�

2

, �8�

where the background Sbg is either linear or quadratic in E, to
obtain the resonance energy ER and the width � at each
geometry, as well as the partial amplitudes �nlm, labeled by
the decay channel index nlm, where n is the electronic target
state and lm label the angular momentum of the emitted elec-
tron. The modulus squared of the partial amplitudes corre-
sponds to partial widths, and in particular, the partial width
with respect to decay into the electronic channel n is

�n = �
lm

�nlm2. �9�

Unitarity of the S matrix implies �n�n=�.
Dissociative electron attachment to water occurs at inci-

dent electron energies sufficient to excite multiple states of
the neutral H2O target. The definition of the resonance loca-
tion and width in terms of the pole in the S matrix, as per Eq.
�8�, poses a problem near target state thresholds. In our Born-
Oppenheimer treatment of this process, we examine the be-
havior of the fixed-nuclei resonance width and location as
the nuclear geometry is varied. At some nuclear geometries,
the resonance location may cross an excited-state threshold.

According to analytic S-matrix theory as described by
Newton �37�, in such a situation it is generally not the same
pole of the S matrix that is responsible for the resonance
feature in the cross section both above and below a channel
threshold. In such a case, in accordance with the formal
theory, we observe that one pole quickly replaces another as
the geometry is varied, so that the location of the pole iden-
tified with the resonance is effectively discontinuous near
such a threshold. In contrast, the description of dissociative
electron attachment under the local complex potential model
�1–5� requires continuous potential-energy surfaces. As a re-
sult, we construct a global representation of the resonance
width that smoothly interpolates through such discontinui-
ties.

IV. RESULTS OF SCATTERING CALCULATIONS

At the equilibrium geometry of the neutral, the resonance
positions of the 2B1, 2A1, and 2B2 states were calculated to be
6.09, 8.41, and 11.97 eV, respectively, with widths of 10.31,
28.8, and 193 meV and partial widths with respect to decay
to the ground state of 10.31, 10.30, and 9.135 meV. At equi-
librium target geometry, each resonance lies below its parent
state. The 2B1 lies 370 meV below its 3B1 parent. The 2A1
lies 351 meV below its triplet parent, which in turn is only
223 meV below the next 3A1 state �1b1

−12b1
1�. �These two 3A1

states are in fact on the edge of an avoided crossing, at the
equilibrium geometry of the neutral, and thus the binding
energy of the A1 resonance versus its parent is slightly re-
duced by this avoided crossing.� The 2B2 resonance lies
1.831 eV above the first 3B2 state, which has a dominant
configuration 3a1

−12b2
1, and 471 meV below its triplet

1b2
−14a1

1 parent. The latter state is the 26th root of the target

 0  5  10  15  20  25  30  35  40

|ψ
|2

radius from oxygen center (units of a0)

Insertion basis Σn ψn
2

Dunning Rydberg
Bessel k=0.5

FIG. 2. Modulus squared of diffuse basis functions for l=1 �p
waves� used in the Kohn calculations, centered on oxygen nucleus:
sum of insertion basis �dashed line�, Rydberg p function with ex-
ponent 0.028 �thick solid line�, and orthogonalized Bessel function
j1�kr� �thin solid line�. The Bessel function has k=0.5a0

−1 and arbi-
trary normalization. See text for further explanation.
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CI, and has a vertical energy of 12.438 eV; this value is near
the ionization potential of water, 12.621 eV, which calls into
question whether the 3B2 parent is a true bound electronic
state of the target at all, at the equilibrium geometry of the
neutral. If not, it is likely that it exists instead as a low-lying
Feshbach resonance in e−+H2O+ Coulomb scattering.

We performed scattering calculations along 13 distinct
one-dimensional cuts within nuclear configuration space. A
dense set of points was chosen along each of these cuts to
give an accurate and descriptive picture of the behavior of
the resonances. The upper 2 2A� resonance was examined
along nine of the 13 cuts. Six of the 13 total cuts lie in C2v
geometry: symmetric stretch �r1=r2� for �HOH=75°, 105°,
and 150°; bend for r1=r2=1.81a0 and 2.41a0; and versus the
Jacobi coordinate R for constant HH bond length rHH
=1.40a0. The remaining cuts are bend at r1=1.81a0, r1
=2.41a0, and single-bond stretch at the six combinations of
r1= �1.81a0 ,2.41a0� and �HOH= �75° ,105° ,150° �. For the 2
2A� surface we did not calculate the three cuts at 150°, nor
the bending cut at �r1=1.81a0, r2=2.41a0�.

We present results for the three cuts that pass through the
equilibrium geometry of the neutral: as a function of bending
angle � for r1=r2=1.81a0; as a function of r2 for r1
=1.81a0 and �=105°; and as a function of the equal bond
lengths for symmetric stretch at �=105°. Also we present
data for the cut in Jacobi coordinates at rHH=1.4a0, C2v sym-
metry ��=� /2�, which does not intersect the target equilib-
rium geometry.

These calculations test the limits of our implementation of
the complex Kohn method, and therefore it is useful to have
a measure of the performance of the calculation. One such
measure is the modulus of the S matrices produced. The
physical S matrix is unitary, with eigenphases having modu-
lus 1. At the equilibrium geometry of the neutral, at the cen-
ter of the 2B1 resonance, the modulus of the most nonunitary
calculated S-matrix eigenphase was 1.005.

The 2A1 calculation performed even better, yielding a
value of 1.004 for the modulus of most nonunitary eigen-
phase. The corresponding value for the 2B2 calculation, at
higher energy with 24 open electronic states of the target and
a 46�46 S matrix, was 1.2. When in Cs symmetry the on-
resonance 2B2 calculation obtains a largest size of 120
�120 channels at r1=1.61a0, r2=1.81a0, �HOH=105°, at
which point the S matrix is also significantly nonunitary. We
note in passing that in all cases, the unitarity of the calcula-
tion is much improved for energies off-resonance.

A. Bend, r1=r2=1.81a0

Plots of the resonance positions and target state energies
included in the Kohn calculation for this cut are shown in
Fig. 3. The resonance energies are lines, and the target ener-
gies are connected dots. The large-dotted lines are those tar-
get states included in all calculations; the small-dotted lines
are not included in the 2B1 calculation �small dotted A�
states� or not included in both the 2B1 and 1 2A� calculation
�small dotted A� states�. Dots are filled for A1 and A2 sym-
metries, and open for B1 and B2 symmetries.

Within this cut, the target state curves compare well with
the high-quality CI results of Harrevelt and van Hemert �38�.

As previously mentioned and shown in Table I, at the equi-
librium geometry of the neutral the Kohn target states are
about 1 eV below their proper location. However, aside from
this shift, the shapes of these bending potentials are quite
comparable to those of Ref. �38�. The 1 1B1 curves from both
calculations are quite similar. Both calculations show an
avoided crossing between the 2 1A1 and 3 1A1 states �near
�HOH=105° in our calculations�, where they change character
between 1b1

−12b1
1 and 3a1

−14a1
1, although the crossing is

broader in our calculations. The 1 1B2 state undergoes sev-
eral changes in character as it passes several avoided cross-
ings, but it seems that the Kohn target curve is again simply
shifted by about 1 eV lower versus the results of Ref. �38�.
The 11B2 state is predominantly 3a1

−12b2
1 at �HOH=180° and

changes character to 1b1
−12a2

1 at the sharp avoided crossing
near 120°. The 1 1A2 state nearly parallels the 1 1B1 state,
slightly less than 2 eV above it, for both calculations.

Along the cut shown in Fig. 3, the 2B1 Feshbach reso-
nance stays below its 3B1 parent, except at very small bend-
ing angles �HOH, and therefore is below all target states ex-
cept the ground electronic state. The 2A1 state follows its
triplet parent, 3A1 �H2O�3a1

−14a1
1 configuration. At most

angles this configuration describes well one of the target
states, except where there are avoided crossings. There are
two avoided crossings involving this state: the one with the
�H2O�1b1

−12b1
1, around �HOH=100° and 9.5 eV, and also one

with the �H2O�1b2
−12b2

1 state near �HOH=55° and 13.5 eV.
Near both of these crossings, there are discontinuities as the
resonances cross the avoided state threshold. For the former
avoided crossing, the discontinuity in the resonance position
is not visible on the scale plotted in Fig. 3, but there is a
significant discontinuity in the 2A1 width at �HOH=95°; for
the latter crossing, the discontinuity in position near �HOH
=50° is apparent as well. The 2A2 resonance also follows its
triplet parent configuration and parent state through avoided
crossings with the �H2O�1a1

−12b2
1 state �avoided crossing at

�HOH=92°; discontinuity at �HOH=96°� and �H2O�1b1
−11a2

1

state �avoided crossing at �HOH=79°; small discontinuity at
�HOH=83°�. The former discontinuity is quite large
�	0.25 eV�.

The widths for the 2B1 and 1 2A� �2A2 or 2A1� states along
this cut are shown in Fig. 4. Both the raw Kohn results
�dotted lines� and an interpolated version �plain lines, defined
later, in Sec. IV E� are plotted. The width of the 2B1 state is
relatively constant. The 2A1 state attains a relatively large
width around �=95° as it crosses multiple target states, but
then the width decreases before the 2A1 state intersects the
2B2 state between �HOH=70° and 75°. At this geometry the
widths of the 2A1 and 2B2 Feshbach resonances happen to be
nearly equal, and so there is only a small discontinuity as the
1 2A� resonance changes symmetry from 2A1 to 2B2 as the
bond angle is decreased. In Fig. 4, adjacent data points are
connected by line segments only if no target states are
crossed as the geometry is varied between them. Therefore,
one can see that at most crossings on the 1 2A� surface the
discontinuity in the resonance energy is in fact small.

The width of the 2 2A� �2A1-2B2� resonance is plotted in
Fig. 5. The 2B2 state attains a large width �0.25 eV, �
=2.5 fs� as it becomes the 2 2A� resonance, and in particular

DISSOCIATIVE…. I. COMPLEX-VALUED… PHYSICAL REVIEW A 75, 012710 �2007�

012710-7



as it rises above the B2 target states near �HOH=82° and 95°,
at which points there are significant discontinuities in the
location of the physical resonance pole. In particular, at 95°
there is a large discontinuity in the real part of the resonance
location: the real parts of the energies of the two poles avoid
each other by approximately 0.3 eV, whereas the widths
avoid by only 0.025 eV. In Fig. 5, adjacent data points have
been connected if the resonance does not cross a target state
of the same spatial symmetry, or otherwise exhibit a large
discontinuity. For the 2B2 Feshbach resonance, there are
large discontinuities for non-B2 crossings at the 2 1A1 cross-
ing near �HOH=84°, and at the crossing of both the 5 3B1 and
5 1B1 near �HOH=108°.

The calculation supports a different Feshbach resonance
of 2A1 symmetry for �HOH�80° along this cut, whose parent
is the �H2O�1b1

−12b1
1 3A1 target state, and which would have

the dominant configuration �H2O�1b1
−12b1

14a1
1. The location

of this Feshbach resonance is also plotted in Fig. 3. For these
geometries it is impossible to say whether this is an artifact
of the calculation or a physical state, since along this cut, this
Feshbach resonance is extremely narrow and is not bound by
more than 25 meV. A small upward perturbation of the cal-
culated resonance location would lead to its disappearance
above its parent. This state is only present when the
�H2O�1b1

−12b1
1 configuration is the lowest-energy 3A1 target

configuration, for then it cannot decay to the triplet or singlet
B1 ��H2O�1b1

−14a1
1� target states. This is the case when the

bond lengths are modest and the bond angle is small. The
Jacobi coordinate cut, which we present in Sec. IV D, gives a
better view of the interaction between this Feshbach reso-

FIG. 3. Location of resonances �bold curves� and target states �dotted curves�, in units of eV, at r1=r2=1.81 �units of a0�, as a function
of bending angle �HOH, in degrees. �a�: resonances and A� singlets; �c�: resonances and A� triplets; �b�: resonances and A� singlets; �d�:
resonances and A� triplets. Filled dots, A1 and A2 target states; empty dots, B1 and B2 target states. The dotted curves, marked by an asterisk,
refer to a second 2A1 resonance discussed in the text.
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nance and the other 2A1 resonance and demonstrates that in
fact this �H2O�1b1

−12b1
14a1

1 Feshbach resonance may exist as
an asymptote of the �H2O�3a1

−14a1
2 Feshbach resonance, due

to branching of the adiabatic PES.

B. Symmetric stretch, r1=r2 ,�=105°

The target energies and resonance positions along this cut
are shown in Fig. 6, with the same conventions as Fig. 3. The
�undotted� curves near the top right part of each panel corre-
spond to the first target state of each symmetry, which is not
included in any of the Kohn calculations. The 1 1B1 curve is
very similar to that of Ref. �38�, except that the minimum is
at 1.95a0, not 2.1a0. The 1 1A2 asymptote of the Kohn target
curve is too high by 	1 eV. The 2 1A1 and 1 1B2 state curves
are similar to those of Ref. �38�, but shifted down 	0.75 eV,
and in fact duplicate the apparent change of character of the
1 1B2 state at about r1=r2=2.1a0.

As the symmetric stretch coordinate r1=r2 is increased
from the equilibrium geometry at 1.81a0, the 2B1 and 2A1 �1
2A�� resonances approach the bound O+H+H− asymptote of
the three-body system and both become bound at approxi-
mately r1=r2=3.5a0. The 2B2 �2 2A�� resonance exhibits

large discontinuities, due to both target state crossings and
the interaction with the 2B2 shape resonance as discussed in
Ref. �25�. At r1=r2�2.4a0, the lower-energy branch of the
2B2 shape or Feshbach system is uncovered beneath the 1
3A2 state of the target that correlates to O+H+H.

The widths for these cuts are shown in Figs. 7 and 8, with
the same conventions as in Figs. 4 and 5. For the 2 2A� state,
the final branch of the 2B2 state was not included in the
global fit, and thus the interpolated value levels off near
0.2 eV, corresponding to the width of the penultimate branch
at r1=r2=2.6a0.

C. Single bond stretch, r1=1.81a0 ,�=105°

The resonance locations and Kohn target state energies
along this cut are shown in Fig. 9. Along this cut toward
increasing r2, the 1 3A�, 1 1A�, and 1 3A� Kohn target states,
which correspond to the 1 3B1, 1 1B1, and 1 3A1 states at the
equilibrium geometry of the neutral, move downward in en-
ergy as they approach the ground-state H+OH asymptote of
the fragments. The 2 1A� �2 1A1� state surface is repelled by
the ground state and is essentially constant, starting at 9 eV,
with a gentle maximum at 9.25 eV at r2=2.5a0, and ap-
proaching 8 eV at the OH�2��+H asymptote. The difference
between this asymptote and the OH�2��+H ground state of
the fragments is 4 eV for the Kohn states; this may be com-
pared with an earlier calculated value �42� of 5.27 eV at r1
=1.80a0. The results for the excited-state singlets are consis-
tently 	1 eV below the results of Ref. �38�. Thus, the
ground X 1A1 Kohn target state curve dissociation energy is
underestimated by about 1 eV along this cut.

Moving toward increasing r2 along this cut, the 2A� and
1 2A� Feshbach resonances fall in energy and become bound
as H−+OH �X 2�� near r2=4.5a0. The 2 2A� state correlates
to the H−+OH �2�� asymptote, which lies above the ground
state of the neutral, H+OH�X2��; its width therefore goes to
zero only asymptotically. The 2 2A� state has two large dis-
continuities along this cut. The first, near r2=2.15a0, is asso-
ciated with an avoided crossing between the 3A� parent state
and another state that becomes the new parent, correlating to
OH�2��+H, triplet coupled. As r2 is increased further, the
binding energy of the Feshbach resonance with respect to
this state decreases to zero at r2=3.0a0, and it disappears for
r2�3.0a0, but by this time a distinct resonance pole that
follows the corresponding singlet state �correlating to
OH�2��+H, singlet coupled� has already appeared to take its
place.

Along this cut, the binding energies of the Feshbach reso-
nances �which are plotted in the EPAPS archive� with respect
to their parents all reach a minimum around r2=3.25a0. This
is also the geometry at which the middle 2 2A� branch dis-
appears. It is interesting that this is the case not only for the
electronically similar 2A� �2B1� and 1 2A� �2A1� states but
also for the final branch of the 2 2A� state. In each case this
minimum is approximately 50 meV, which for the 1 and
2 2A� states is only twice their width, ��25 meV. We cer-
tainly cannot be confident that our treatment of the N- and
�N+1�-electron systems is balanced at the 50 meV level.
This value is an order of magnitude smaller than the binding
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energies at the equilibrium geometry of the neutral, and calls
into question whether the physical states in fact may rise
above their parents near r2=3.25a0.

The widths for these cuts are shown in Figs. 10 and 11,
with the same conventions as in Figs. 4 and 5. The width of

the 2A� state goes smoothly to zero as the resonance becomes
bound. In contrast, the 1 2A� state achieves a large width as
r2 increases, as high as 0.18 eV at r2=4.55a0. It may do so
because it is connected to the ground state by an s-wave
matrix element; we suspect that it does do so because at
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intermediate geometries, the electronic structure is highly
correlated, and the orbital description of the resonance is
likely to be different from that of the target states, muddling
the distinction between Feshbach and shape resonances. In
other words, as the 1 2A� Feshbach resonance dissociates, it
takes on an increasing degree of shape resonance character,

leading to an increase in width. We discuss this issue further
in paper II.

D. Jacobi coordinates, rHH=1.4a0 ,�=90°

One may define a Jacobi coordinate system for H2O in
which rHH is the H–H bond length, R is the distance between
the oxygen and the H2 center of mass, and � is the angle
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between the two corresponding vectors. Here we present data
along the cut rHH=1.40a0, �=90° �C2v geometry�, plotted as
a function of R. This cut traces the resonances from a
squeezed geometry �small �HOH� toward the O+H2 arrange-
ment in C2v symmetry. It is uninteresting except for the in-
teraction between the 2A1 �2 2A�� Feshbach resonance with
configuration�H2O�3a1

−14a1
2 and the second 2A1 Feshbach

resonance mentioned above, with configuration
�H2O�1b1

−12b1
14a1

1.
In Fig. 12, we show complex Kohn S-matrix elements and

fitted resonance locations along this cut. This figure requires
some explanation. The target state energies are plotted as
dots, and the resonance location is plotted as a single, thick
solid line. At 15 of the plotted values of R we have also
plotted the real part of the s→s S-matrix element calculated
using the complex Kohn method but with ordinate and ab-
scissa reversed. The scale and origin in the horizontal �ordi-
nate� direction are arbitrary for these S-matrix elements.

The leftmost data in this figure are calculated at R
=1.67a0, a geometry that in bond-angle coordinates is ap-
proximately �r1=r2=1.81a0, �HOH=45°�. At this geometry,
both the �H2O�3a1

−14a1
2 Feshbach resonance, at 	14.9 eV,

and the �H2O�1b1
−12b1

14a1
1 Feshbach resonance, at

	12.75 eV, are present and their Breit-Wigner profiles may
be seen in the behavior of the S-matrix element. As the co-
ordinate R is increased beyond 1.87a0, however, the main
�H2O�3a1

−14a1
2 resonance is lost within a web of avoided and

actual target state crossings around 14 eV. The lower
�H2O�1b1

−12b1
14a1

1 Feshbach resonance is still present, how-
ever, and is bound by 0.5 eV with respect to its
�H2O�1b1

−12b1
1 3A1 parent state at R=1.97a0. This large bind-

ing energy brings up the possibility that this resonance is in
fact physical, at least at this geometry, and not simply an
artifact of the calculation supported by recorrelation of the
target. This Feshbach resonance follows the energy of its 3A1
parent through an avoided crossing near 2.1a0 and through

actual crossings with two 1A1 states at approximately 2.45
and 2.55a0.

At approximately R=2.67a0 there is an actual crossing
between the 3A1 parent and the 1A1 state, which is a parent of
the familiar �H2O�3a1

−14a1
2 Feshbach resonance, and at this

point, the �H2O�1b1
−12b1

14a1
1 resonance appears to change

character to that of the more familiar resonance, as there is a
kink in the resonance trajectory, and the resonance pole then
follows the 1A1 parent as it dissociates toward H2�1�g1�u�
+O �3P�.

Thus, it appears that the 2A1 Feshbach resonance may
undergo an interaction with a different Feshbach resonance
of a sort similar to that which occurs �25� within the B2
manifold between the �H2O�1b2

−14a1
2 2B2 Feshbach resonance

and a 2B2 shape resonance. The difference would be that in
the current case, the topology is supported by the disappear-
ance and appearance of different branches of the adiabatic
manifold due to the crossing of N-electron target states,
whereas in the 2B2 case, it is supported by the underlying
�N+1�-electron Hamiltonian. Another difference is that the
topological complications that may occur on the 2A1
potential-energy surface seem to do so at geometries not
sampled by the propagating DEA wave packet, making them
irrelevant to the physical problem, although we did not at-
tempt a comprehensive analysis of this issue. Along this cut,
the 2B1 and 2B2 �1 2A�� states quickly become bound as O−

+H2, and we present the widths of these states in Fig. 13.

E. Global representation of the widths

For the purpose of performing nuclear dynamics calcula-
tions, a global representation of the width � is required. Glo-
bal representations were constructed separately for the 2A�,
1 2A�, and 2 2A� states.

The first step in constructing each of these global repre-
sentations was to define a continuous representation along
each of the 13 one-dimensional cuts listed above, which was
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FIG. 12. Location of 2A1 resonances and raw complex Kohn
data at rHH=1.4a0, C2v symmetry ��=90° � as functions of Jacobi
coordinate R. Solid thick line: resonance location. Filled dots: A1

target states. Empty dots: other target states. Thin lines: real part of
s→s S-matrix element, on an arbitrary scale, as a function of en-
ergy at various R, plotted with ordinate and abscissa reversed.
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FIG. 13. Width of the 2B1 and 2B2 �1 2A�� resonances �dots�, in
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obtained via cubic splines in the coordinates r1, r2, and
cos��HOH�. Along these lines but beyond the last data points
of the cuts in the r1, r2, or symmetric stretch directions, the
width was either set to the terminal value, or to zero in the
case of the large-r region for the asymptotically bound 1 2A�
or 2B1 resonances.

The global representation of the fit was obtained as fol-
lows. Each one-dimensional cut is represented by a curve in
the three-dimensional space of coordinates q� = �r1 ,r2 ,��. For
a desired geometry q�0, we first calculate for each cut �by
interpolation, as explained above� the width at the point that
is closest to q�0. We then take an average of the values at
these 13 points, each inversely weighted according to its dis-
tance from q�0. Examples of the interpolated width surface are
shown in the EPAPS archive.

V. CI CALCULATIONS FOR THE REAL PART OF
RESONANCE SURFACES AND THE NEUTRAL SURFACE

We construct the real part of the resonance energy ER as a
function of the internal nuclear geometry of H2O using
bound-state configuration-interaction calculations. Our task
in doing so is to accurately reproduce real-valued component
of the physical potential-energy surfaces, taking into account
the numerous features of these surfaces that were described
in Ref. �25�, and, in particular, the conical intersection be-
tween the 2B2 and 1A1 surfaces, for which we require a dia-
batization.

The main configuration-interaction calculations on the
resonance states and the ground state of the neutral described
below in Secs. V B and V D reproduce the vertical transition
energies and all but one of the two-body breakup asymptotes
correctly. However, the three-body asymptotes of the main
configuration-interaction calculation are all too high in en-
ergy �by as much as more than 1 eV�, and the asymptote of
the diabatic 2A1 state is far below its proper O−+H2 ��g

1�u
1�

3�u asymptote, instead being degenerate with the other reso-
nances as O−+H2 ��g

2�. For this reason, we must patch the ab
initio surfaces produced from the main CI calculation.

We construct global representations of the adiabatic 2B1
and the diabatic 2A1 and 2B2 states, as well as the coupling,
by fitting the data points produced from the main CI calcu-
lation at each nuclear geometry. The global representation of
the adiabatic 1 2A� surface is then defined as the lower ei-
genvalue obtained by diagonalizing the 2�2 Hamiltonian
matrix of the global representations of the diabatic surfaces
and coupling. The 12A� surface will be used for calculations
on DEA via the 2A1 �12A�� Feshbach resonance, because in
that case the conical intersection is not expected to play a
large role in the dynamics, and therefore the adiabatic basis
is sufficient. �The corresponding vector potential is not in-
cluded.� The diabatic surfaces and coupling are used to cal-
culate cross sections for DEA via the higher-energy 2B2
�2 2A��state.

The constructed global representations of the diabatic 2A1
and 2B2 and the adiabatic 2B1 and 12A� surfaces include the
errors that we have already mentioned: the three-body as-
ymptotes are too high, and the two-body asymptote of the
diabatic 2A1 surface in the H2+O− arrangement is too low. In

order to fix these errors, we combined these global represen-
tations with other global surfaces designed to reproduce the
correct behavior in the region in question. In each case a
single patching surface is combined with a single CI surface
such that the final surface reflects the correct behavior. The
surfaces are combined by taking either the higher-energy of
the two surfaces �for the 2A1 patching� or the lower-energy of
the two surfaces �for the three-body patching�, and smooth-
ing the resulting cusps with a simple algebraic formula.

The patching surface for the 2A1 diabatic state must cor-
relate to the proper H2 ��g

1�u
1�+O− asymptote of this state.

We perform another CI calculation that correlates to this as-
ymptote, and construct a global patching surface from the
results, using the combined analytic fit +spline technique we
employed for the resonance surfaces. The patching surfaces
for the three-body asymptotes of the adiabatic 2B1 and 12A�
surfaces, as well as that of the diabatic 2B2 surface, take the
form of a simple analytic potential.

The diabatization of the 1 and 2 2A� adiabatic CI roots is
a requirement dictated by the nuclear dynamics calculations.
In the adiabatic basis, there are singular derivative couplings
near the conical intersection between the 1 and 22A� sur-
faces. We have not calculated these couplings from our CI
wave functions, and in preparation for dynamics calculations
on the coupled surfaces, we therefore perform a diabatization
upon the 1 and 22A� CI roots to produce the set of diabatic
2A1 and 2B2 curves and the accompanying coupling potential.

In Ref. �25�, we described how a full characterization of
the manifold of Feshbach resonances must also include a 2B2
shape resonance whose potential-energy curve intersects that
of the 2B2 Feshbach resonance in branch-point fashion. We
do not include the 2B2 shape or Feshbach intersection, and
instead define a single surface that interpolates between the
two sheets within the three-body breakup region. Therefore,
the nuclear dynamics on this surface is unlikely to accurately
represent the dynamics leading to three-body breakup. The
results that we will present in paper II indicate that three-
body breakup probably comprises a large component of the
cross section for dissociative attachment via the 2B2 state.

A. Orbital basis

We constructed a single orbital basis for all the CI calcu-
lations on the resonances. We began by augmenting the con-
tracted Gaussian basis of Gil et al. �19� with the following
additional Gaussian functions: on the hydrogens, two s func-
tions with exponents 0.08 and 0.0333, and two p functions
with exponents 0.2 and 0.05; on the oxygen, one s function
with exponent 0.0316, and one p function with exponent
0.254. The basis comprised 77 contracted Gaussians total.

We first obtained an orbital basis by performing a
symmetry-restricted SCF calculation on the 2B1 resonance,
which yielded the 1a1, 2a1, 1b2, 3a1, 1b1, and 4a1 orbitals,
labeled 1a�, 2a�, 3a�, 4a�, 1a�, and 5a� in Cs symmetries.
This SCF calculation is bound, i.e., it cannot decay to H2O
+e− by a symmetry-conserving rotation among the orbitals,
because the 1b1 orbital is restricted to be singly occupied.
The same statement is not true of the other resonances,
which are described by a hole in an a� orbital and therefore
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we were forced to use this SCF orbital basis for CI calcula-
tions on all three resonances, not just 2B1.

These SCF orbitals have avoided crossings �see the graph
in the EPAPS archive�. When the resonance is fully dissoci-
ated, i.e., in the arrangement O−+H+H, the 4a1 �5a�� SCF
orbital is best described as �1/2�	Ha1s+	Hb1s�, i.e., the
bonding combination of the two hydrogen 1s orbitals. These
1s orbitals are more similar to the hydride 1s orbital than to
the hydrogen 1s orbital. As the hydrogens are brought closer,
the energy of this orbital decreases and eventually crosses
the 3a1 �4a�� and 2b2 �3a�� orbitals. At finite O−+H2 sepa-
ration, these crossings are avoided. There are avoided cross-
ings between the 3a� and 4a� �3a1 and 4a1� orbitals near
�HOH=48°, and between the 4a� and 5a� �4a1 and 2b2� or-
bitals near �HOH=61°. In C2v geometries �e.g., r1=r2=7.0a0�,
the crossing between the 4a1 and 2b2 orbital is an actual
crossing.

In the definition of the multielectron configuration space
which we use for the CI calculation, we treat the 4a1 �5a��
orbital differently from the 3a1 or 2b2 orbitals. Thus, it was
useful to define a “diabatic” 4a1 orbital whose energy
smoothly crosses that of the others and is continuous in char-
acter. To this end, we performed a rotation among these three
orbitals wherein we replaced the oxygen nucleus with an
uncharged center, by obtaining the lowest eigenvalue of the
H2

+ Hamiltonian within the space of the 3a1, 4a1, and 2b2
orbitals. The ground-state eigenvector of this calculation was
defined as the diabatic 4a1 orbital, and its complement as the
diabatic 3a1 and 2b2 orbitals. The 4a1 diabatic orbital is thus
the “H2-like” orbital. Fortuitously, this rotation leaves the
4a1 orbital virtually unchanged at the equilibrium geometry
of the neutral. In the OH+H− asymptote, the 4a1 orbital is
also left unchanged as the hydride 1s. The expectation of the
Fock operator with this diabatic 4a1 orbital �plotted in the
EPAPS archive� passes smoothly through the avoided cross-
ings at �HOH=48° and 61°. We used this rotated SCF basis
for CI calculations on the three resonances, and in the de-
scription of these calculations below, the notation “4a1” re-
fers to the diabatic 4a1 orbital.

B. Main CI calculation

The main configuration-interaction �CI� calculation on the
three Feshbach resonances employs a configuration space
that is restricted to the configurations that contribute most to
the resonances under study. This space was defined by the
three resonance configurations �H2O�1b1

−14a1
2,

�H2O�3a1
−14a1

2, and �H2O�1b2
−14a1

2, plus all singles and
doubles into the virtual space, with the 1a1 orbital restricted
to be doubly occupied. Thus, we excluded from the configu-
ration space all references wherein the combined occupancy
of �1b2 3a1 1b1� was six. This restriction excludes configu-
rations of the form �H2O�n1, which correspond to discretized
continuum states of H2O+e−. The total size of this configu-
ration space is 111 792 in A� symmetry and 106 110 in A�
symmetry.

The restriction placed on the configuration space was
critical in that it produced the resonance energies as low-
lying roots of the CI. The resonances were identified by their

dominant configuration. The 2B1 �12A�� energy was found to
be always the lowest root of its CI, and the 2A1 �12A�� state
was almost always the lowest root of the CI of that symme-
try. Therefore, the energies thereby obtained for these reso-
nances were smoothly varying functions of the nuclear ge-
ometry, not suffering from avoided crossings with discretized
continuum states. The energy of the 2B2 state rises above
discretized continuum states of the type �H2O�2b1

−1n1m1 and
�H2O�3a1

−1n1m1 at certain geometries, namely small OH
bond lengths and near-linear H–O–H geometry. However,
the resulting avoided crossings were generally observed to
be very narrow. The discretized continuum states of excited
�H2O*�n1 are undercorrelated, relative to the resonance roots,
by this multireference, all-doubles treatment, and therefore
occur at a higher energy than they would otherwise.

In Fig. 14, we plot the 2A� roots of this configuration-
interaction calculation as a function of bending angle �HOH,
at the equilibrium bond lengths r1=r2=1.81a0, showing the
behavior of the CI roots near the conical intersection. Also
apparent in this figure are the discretized continuum states,
many of which lie below the 2B2 resonance root when the
bond angle is large.

The orbital and configuration basis for this CI calculation
is designed to describe well the resonances at the equilibrium
geometry of the neutral and in the two-body dissociation
channels. This calculation is not designed to reproduce the
three-body asymptotes, and makes a large error in these re-
gions. The 4a1 and 2b2 orbitals have significant hydride 1s
character on both hydrogen centers, as opposed to hydrogen
1s; since there is no relaxation of the hydride 1s orbital in-
cluded in the reference space, the double excitations into the
virtual space must play that role, and the three-body asymp-
totes are therefore undercorrelated and unphysically high in
energy. We have not attempted a precise characterization of
the CI roots in the three-body breakup region.

We performed these CI calculations at various geometries
on a grid based on H–H–O bond angle coordinates �not
H–O–H� rHH, rOH, and �HHO. We used these coordinates so
that the H2+O− exit well �along with one of the OH+H− exit
wells� would be well-represented by the spline procedure we
use. In our previous treatment �22� of the 2B1 resonance, we
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FIG. 14. 2A� roots of the main CI calculation, in units of eV, at
r1=r2=1.81a0, as a function of bending angle �, in degrees.
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used H–O–H bond-angle coordinates, which led to an un-
physically corrugated spline representation of the H2+O−

well.
For this calculation, we defined a full grid of 23 r points

between 1.0a0 and 12.0a0 and 29 � points between 1° and
175°. This 23�23�29 grid includes 15 341 points. The CI
calculations were each performed at roughly 4200 appropri-
ately chosen points on this grid.

The energies of the resonance CI roots at the equilibrium
geometry �r1=r2=1.81a0, �=105°� were −76.030 888 har-
tree �2B1�, −75.943 508 hartree �2A1 or 1 2A��, and
−75.802 877 hartree �2B2 or 2 2A��.

C. Diabatization

Because the 2A1 and 2B2 states have a conical intersection,
and since we have not calculated the derivative couplings
between them, a diabatization �43� is required for the nuclear
dynamics calculations. Our method for performing this dia-
batization is an approximate method, based not on the ex-
plicit minimization of first-derivative matrix elements
�44–48� but upon the diagonalization of a property �49� to
obtain smoothly behaved diabatic states. Our technique is
thus analogous to a diabatization via the diagonalization of
the dipole operator between states that undergo a charge-
transfer avoided crossing �50�, or the diagonalization of the lz
angular momentum operator between adiabatic states that
have a �-� conical intersection at linear nuclear geometry
�38,51�.

The property we use for our diabatization is a symmetry
operation—a reflection perpendicular to the molecular
plane—which is already diagonal in the adiabatic basis both
in C2v geometries and in the asymptotic OH+H arrangement
channel. In C2v geometries, this reflection is that defined by
the plane that contains the C2v axis, and which is perpendicu-
lar to the molecular plane. In such geometries, the 2A1 state
is an eigenfunction of this symmetry operation with a eigen-
value of +1, and the 2B2 state has a eigenvalue −1. In the
asymptotic OH+H arrangement, this reflection is defined by
the plane perpendicular to the OH axis �which again is per-
pendicular to the molecular plane� that crosses through the
oxygen nucleus. In these geometries, the matrix representa-
tion of the reflection operator in the basis of these states is
diagonal, with the 1 2A� state, which correlates to H−+OH
�2��, having a positive diagonal matrix element, and the 2
2A� state, which correlates to H−+OH �2��, having a slightly
negative diagonal matrix element.

In Fig. 15, we show the reflection plane for one C2v ge-
ometry and for one geometry approaching the H−+OH ar-
rangement. The reflection plane is that plane which contains
the vector v� and which is perpendicular to the molecular

plane. The vector v� is a weighted sum of the unit vectors �1̂

and �2̂. These vectors are defined as the unit vectors that are
perpendicular to the corresponding OH bond vectors r�1 and
r�2, and that are contained in the HOH bond angle. The ex-
pression for v� is

v� = exp�− r1/r0��2̂ + exp�− r2/r0��1̂ , �10�

where the length parameter r0 is 1 bohr. This value was
chosen on the basis of the dimensions of the current molecu-

lar system, and by inspecting the continuity of the diabatic
potential-energy surfaces produced.

D. CI calculation for the ground-state potential surface

The Born-Oppenheimer potential-energy surface for the
neutral molecule is required for the nuclear dynamics calcu-
lations, and to set the zero of energy for the dissociative
attachment cross sections thereby produced.

For the calculation of the neutral potential surface, we
followed a prescription similar to that used in generating the
resonance surfaces. An SCF calculation on the neutral was
performed, followed by a configuration-interaction �CI� cal-
culation with all singles and doubles from the SCF configu-
ration, keeping the 1a1 orbital doubly occupied. The size of
this CI calculation is 22 215 configurations in C2v symmetry.

For the neutral, we used the physical H–O–H bond angle
coordinates and a grid defined by rOH

= �1.41,1.61,1.81,2.01,2.21,2.41,2.61,3.01,3.41a0� and �
= �60,75,90,105,120,135,150,165° �. The CI calculation
was performed on each point on this grid.

r1
r2

⊥2
^ ⊥̂1

v

v

r1 r2

⊥2
^ ⊥̂1

FIG. 15. �Color online� Vectors involved in defining the reflec-
tion operator whose diagonalization provides the 2A1 and 2B2 di-
abatic states from the 1 and 2 2A� adiabatic states. Solid arrows are

r�1 and r�2; dashed arrows are �2̂ and �1̂; and the vector v� is con-
tained within the reflection plane, marked by a wide blue �gray�
line.
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The energy of the neutral CI calculation at the equilibrium
geometry �r1=r2=1.81a0, �=105°� was −76.290 096 9 har-
tree, yielding vertical excitation energies for the resonances
of 7.054, 9.431, and 13.258 eV. �No zero-point energy is
included.�

E. Global representation

To construct a global representation of these five CI
potential-energy surfaces—the 2B1, the diabatic 2A1 and 2B2,
the patching 2A1 surface, and the ground-state surface—a
reference potential was first fit to the data, then subtracted
from the computed points; the remainder was then fit with
three-dimensional cubic splines. The sum of the reference fit
plus splined remainder comprises the global fit, which coin-
cides exactly with the calculated points.

The functional forms of the reference potential Vres for the
four resonance curves and Vneut for the neutral are given in
the EPAPS archive. rms errors of each fit were on the order
of 0.1 eV.

The errors of each of the analytic fits were fit to cubic
splines. Since we did not calculate the full grid of points, a
multistep splining procedure was required. First, a series of
one-dimensional splines, in the �HHO direction and then
along the rHH and rOH directions, was performed to obtain
the splined error at the remaining grid points. Second, the
full grid of data thus constructed was fit to three-dimensional
cubic splines, and added to the analytic fit to obtain the glo-
bal representation. This procedure yields the spline surface
VS. The global representation is Vres+VS for the resonances
or Vneut+VS for the neutral.

F. Representation of the electronic coupling term and
transformation of width to diabatic basis

The electronic coupling matrix element between the 2A1
and 2B2 states was represented by a fit to a polynomial times
Gaussian expansion in the coordinates b and �. The explicit
form can be found in the EPAPS archive. The rms error of
this fit was 0.05 eV.

This global fit of the coupling matrix element has a small
remainder. Thus, while the diabatic 2A1 and 2B2 surfaces pass
exactly through the calculated points, the coupling surface,
and thus the adiabatic surfaces obtained by a diagonalization
of the electronic Hamiltonian thereby constructed, do not do
so precisely.

G. Patching of the surfaces

The potential-energy surfaces constructed from the main
CI calculation appear to reproduce the known features, and
all but one of the two-body asymptotes of the physical sys-
tem, without recourse to an overall vertical adjustment in the
relative position of the neutral an anion curves, or any other
ad hoc adjustment. However, there are two regions in which
the current configuration interaction treatment fails to repro-
duce the physical energetics: for the high-energy H2 ��g�u�
3�u+O− asymptote of the 2 2A� �2A1� surface, and in the
three-body breakup region for all three resonances.

Since the goal of the present study is to present the most
physically accurate theoretical treatment of dissociative elec-
tron attachment within the local complex potential model, we
correct these flaws in the surfaces by employing a patching
procedure. In both cases a second surface with the desired
characteristics is constructed and patched to the errant area.
This patching is performed on the global fits Vres+VS, not
upon the original data points. The patching is performed by
taking either the maximum of the original and the patching
surface �for the diabatic 2A1 surface�, or the minimum �for
the three-body asymptotes�, and smoothing the resultant
cusps with a simple mathematical formula. This formula pre-
serves the surfaces identically in the unpatched regions, and
is described below.

1. 2A1 patching surface

All three roots of the main CI calculation correlate to
H2+O− in that arrangement channel. However, the correct
asymptote of the 2 2A� state in that arrangement is H2
�1�g1�u�+O− �25�. Therefore, we performed an additional
CI calculation that correlates to this state in that arrange-
ment, and patched this surface to the diabatic 2A1 surface
produced from the main CI, thereby correcting it. The diaba-
tic 2B2 surface is left unchanged.

The Gaussian basis and orbitals for this CI were exactly
the same as those for the main CI, including the rotation of
the 4a1 orbital; the only difference was the choice of con-
figurations. We included all single and double excitations
from the configuration �H2O�4a1

1, keeping the 1a1 orbital
doubly occupied, and the 4a1 orbital never doubly occupied.
We took the lowest root of this CI. In the O+H2 arrange-
ment, the �diabatic� 4a1 orbital correlates to the H2 1�g or-
bital, and therefore the lowest root is O−+H2 �1�g1�u�. Else-
where, the lowest root corresponds to a discretized
continuum state of H2O+e−, and lies below the diabatic 2A1
surface. We performed this calculation on the same grid as
the main CI calculation. We constructed a global representa-
tion of the patching surface employing our function Vres and
a splined residual VS, just as we did for the resonance sur-
faces.

This surface and the diabatic 2A1 surface intersect, and the
upper surface contains the proper asymptotes for the physical
2A1 surface. It also contains cusps where the surfaces inter-
sect. These cusps were smoothed by the following prescrip-

tion. Given the separation �E and the average Ē of these two
surfaces,

�E = EA1
− Epatching ,

Ē = �EA1
+ Epatching�/2, �11�

and a geometry-dependent minimum separation A �in eV�
defined as

A = 0.5 + 12 exp�− 2rHH/3 + 1� , �12�

the patched 2A1 surface was obtained via

HAXTON, MCCURDY, AND RESCIGNO PHYSICAL REVIEW A 75, 012710 �2007�

012710-16



EA1
→�Ē +
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2. Three-body asymptote patching

In order to patch the three-body asymptotes of the con-
structed global representations, we defined the following two
functions of the OH bond lengths r1 and r2:

plow�x� = 8.4287 + 5.8739 exp�− 1.4838��x� − 1.81�� ,

phigh�x� = 10.7140 + 3.5886 exp�− 2.4287��x� − 1.81�� ,

x = min�r1,r2� , �14�

in eV, which functions have the same gradient as the 2B2
surface in the symmetric stretch coordinate but are 1.5 eV
above it at the equilibrium geometry of the neutral. In the
three-body breakup region, these functions approach the val-
ues of their constant terms, which are chosen to represent the
physical asymptotes of the system.

The function plow is used to patch the asymptotes of the
2B1 and the 1 2A� surfaces. The value of its constant term,
8.43 eV, is in between the asymptotes H−+H+O− at 8.75 eV
and H+H+O− at 8.04 eV. While, as discussed in Ref. �25�,
the proper asymptote of these adiabatic electronic states is
the lower of these, the higher may be reached by an excur-
sion into the OH+H− two-body breakup channel, which does
not rigorously follow the adiabatic state in becoming H−

+H+O. Therefore, we choose a compromise between these
values to represent the physical system. A more accurate
treatment would use two surfaces, but we expect the present
treatment to be sufficient for determining the two-body DEA
cross sections.

The function phigh is used to patch the diabatic 2B2 sur-
face. Its asymptote is chosen as the energy of H−+H+O
�1D�. Unlike the 2B1 and 1 2A� surfaces, the 2B2 �2 2A��
adiabatic surface is inherently double-valued within the inner
regions of nuclear configuration space, and has two proper
three-body asymptotes; H+H+O− is the other asymptote.
We have not attempted to characterize the full double-valued
2B2 surface. The patching surface phigh corrects the
2B2three-body asymptote to the higher of its two physical
values, in order to reproduce the OH �2��+H− two-body
asymptote accurately. Therefore, the repulsive wall in the
H2+O− potential well extends above its physical value. It is
hoped that this treatment does not alter the dynamics leading
to the two-body dissociation channels to a significant degree.

We combine the functions phigh and plow with the reso-
nance surfaces using the same equation, Eq. �13�, as we used
for the 2A1 patching, with a constant value of A=1.0 eV.

H. Transformation of width to diabatic basis

In order to transform the width surfaces produced from
the scattering calculations, which are constructed in the adia-
batic 1 2A� and 2 2A� basis, to the diabatic basis, the
adiabatic-to-diabatic transformation matrix was constructed
using the patched diabatic 2A1 surface and the coupling cal-
culated from the original diabatization of the unpatched sur-
face. This adiabatic-to-diabatic transformation matrix is
therefore different from the transpose of the one that diaba-
tized the adiabatic states from the main CI calculation. The
diabatic width surfaces are defined as


�2A1
�C

�C �2B2

� = UT
�1 2A� 0

0 �2 2A�
�U , �15�

with the adiabatic-to-diabatic transformation matrix U ex-
pressed in terms of the angle ��,

U =� cos
��

2
� sin
��

2
�

− sin
��

2
� cos
��

2
� � , �16�

which is defined in terms of the patched surface V2A1
as

cot���� =
V2A1

− V2B2

2C
. �17�

This angle �� is different from the original angle �, which
diagonalized the reflection operator,

cot��� =
V2A1

− V2B2

2C
, �18�

where V2A1
is the original unpatched diabatic 2A1 surface. In

particular, in the O−+H2 asymptote, the patching vastly in-
creases the difference between the 2A1 and 2B2 surfaces, and
thus the new adiabatic-to-diabatic transformation matrix is
nearly unity there.

I. Comparison with complex Kohn results

The results of the CI calculations are compared with the
resonance locations obtained from the complex Kohn calcu-
lation, along various cuts, in Fig. 16. In most cases, this
comparison is quite favorable, although some differences are
apparent. These results are presented in terms of the original,
unpatched CI surfaces.

The top three cuts, which each contain the equilibrium
geometry of the neutral, are in excellent agreement, except
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for the 2 2A� surface for the symmetric stretch cut. Along this
cut, the 2B2 resonance has branched into the two components
of the double-valued 2B2 shape or Feshbach state, as dis-
cussed in Ref. �25�.

We include the cuts at r1=2.41a0 in Fig. 16 because these
geometries are relevant to the wave-packet dynamics on the
2 2A� surface. The gradient of the real component of that
surface, as well as the behavior of the imaginary component,
takes the propagated wave packet through these cuts. The cut
at r1=2.41a0, �HOH=75° is near the conical intersection.
Along this cut, the behavior of the CI surfaces mirrors the

behavior of the Kohn resonances, though the agreement is
not as good at �HOH=105°.

VI. DESCRIPTION OF THE COMPLEX POTENTIAL
SURFACES

Several views of the diabatic surfaces can be found in the
EPAPS archive. Here we show one in the vicinity of the
conical intersection, and then focus on the adiabatic surfaces
only.
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FIG. 16. Comparison of scattering calculations and CI results along various cuts. Bold lines: results of scattering calculations; thin lines:
CI results. �a�: r1=1.81a0, �HOH=105°; �f�: r1=2.41a0, �HOH=105°; �b�: symmetric stretch, �HOH=105°; �e�: r1=2.41a0, �HOH=75°; �d�:
r1=r2=1.81a0; �f�: C2v, Jacobi coordinates, rHH=1.40a0.
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A. Views of the conical intersection

A plot of the conical intersection is shown in Fig. 17. In
this figure, the symmetric stretch coordinate is held constant
at r1+r2=3.62a0; we see one cut of the potential-energy sur-
face that intersects the conical intersection seam at a point, at
a bond angle of approximately �HOH=72°.

B. Energetics of the adiabatic surfaces

The real parts of the resonance surfaces Vres+VS with
patching are plotted in Fig. 18, fixing the bond lengths at
their equilibrium values and varying the bond angle. The
initial state starts at �HOH=104.5°, at which geometry the
resonances are 6.63, 9.01, and 12.83 eV above the ground
vibrational state of the neutral. The conical intersection is
apparent at approximately �HOH=76°, where the 2A1 and 2B2
surfaces intersect. The 1 2A� surface is plotted separately and
is lower than the diabatic surfaces near the conical intersec-
tion. This is a consequence of the three-body patching pro-
cedure and the fact that different functions phigh and plow are
used to patch the 1 2A� and 2B2 surfaces. The patching of the
2B2 surface is apparent as the slight downward kink of the
surface near 115°, at the edge of the Franck-Condon region
of the neutral. The bump in the 1 2A� and 2A1 surfaces near
140° is a localized artifact of the spline that thwarted re-
moval.

The vertical transition energy for the 2B1 state is very near
the experimental peak maximum for DEA via this resonance,
while the vertical transition energies for the 2A1 and 2B2
states exceed the experimental DEA peak positions 	0.4 and
	1 eV, respectively. We must point out, however, that the
location of the experimental peaks in the DEA cross section
does not necessarily coincide with the vertical transition en-
ergies, especially for the upper states with their shorter life-
times. As we will see in paper II, the vertical transition en-
ergies of the upper resonance states are probably closer to
their appropriate physical values than these comparisons
would suggest.

Globally, these potential-energy surfaces appear to repro-
duce the essential energetics of the underlying physical
states. Only in the case of the three-body breakup region is
this agreement the result of an ad hoc procedure; elsewhere,
the potential-energy surfaces represent the results of ab initio
calculations. In the case of the two-body asymptotes, we
have been fortunate to obtain very good agreement with the
proper energetics. The energetics of the system of three
coupled potential Feshbach resonances as calculated is sum-
marized in Fig. 19. On the left of this figure are the accepted
values for the differences in internal energy among each of
these species, obtained from Refs. �53–59�. On the right are
the results of the present calculations. The three-body as-
ymptotes listed there correspond to the unpatched values of
the configuration-interaction surfaces at the geometry
�r1 ,r2 ,��= �10.0a0 ,10.0a0 ,60° �.

C. Asymptotes of the adiabatic surfaces

The two-body asymptotes of the potential-energy surfaces
are plotted in Fig. 20 and compared with benchmark theoret-
ical calculations on the diatomic fragments. The dots in this
figure represent the values of the global representations of
the potential-energy surfaces evaluated along the cut in Ja-
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FIG. 17. Cut of conical intersection at r1+r2=3.62a0: top, adia-
batic representation; bottom, diabatized surfaces and coupling. �a�
values of 1 and 2 2A� potential surfaces as constructed from global
representations Vres+VS of diabatic 2A1 and 2B2 surfaces and cou-
pling. The potentials are plotted with respect to asymmetric stretch,
units of a0, and bending angle in degrees. The 2A1 and 2B2 surfaces
along C2v geometry �r1=r2� are marked with bold lines. �b� fitted
diabatized surfaces. The coupling is plotted as contours at bottom,
contours every 0.25 eV.
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nances at r1=r2=1.81a0, as constructed by global representation.
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cobi coordinates at R=10.0a0, �=90°. Also plotted in this
figure are the values of benchmark calculations for the di-
atomic H2 �61� and OH �X 2�� �60� fragments, which are
shifted so that their zero-point energies lie at the accepted
energy above our calculated ground vibrational state energy
of neutral H2O; the solid horizontal lines represent the ac-
cepted energy of the three-body channels, again shifted to
correspond to our ground-state H2O energy. The theoretical
calculations of Chu, Yoshimine, and Liu �60� slightly under-
estimate the true dissociation energy of OH �X 2�� and �2��.
As is clear from the comparison with these benchmark cal-
culations, the energetics of the two-body asymptotes of these
anion surfaces are reproduced extremely well by our calcu-
lations. The ground vibrational state of each agrees with the
accepted value to within 0.08 eV. The three-body asymptotes
have been adjusted by the patching procedure to correspond
with the appropriate values.

D. Complete views of the complex-valued adiabatic surfaces

Complete views of the global fits of the real and imagi-
nary components of the adiabatic potential-energy surfaces
are shown in Figs. 21–23. The real and imaginary compo-
nents are plotted together with contour lines, as a function of
bond length, for various bond angles. For the imaginary
component, the contour line nearest zero is bold, and subse-
quent contour lines depict the magnitude of the imaginary
component increasing. The contour lines for the real part,
some of which are marked on the perimeter of each panel,
correspond to the energy above the ground-state H2O energy
as calculated with our neutral H2O potential-energy surface,

with the zero-point energy included, and are therefore con-
sistent with Fig. 19.

In view of the 2B1 surface in Fig. 21, one can see the two
OH+H− channels at the bottom right and upper left of each
panel. In the bottom row of panels, which show the surface
as the bond angle �HOH is decreased, one can see the poten-
tial well, which corresponds to the H2+O− channel devel-
oped along the symmetric stretch diagonal. This channel is
the lowest energy asymptote; it reaches below 4 eV, as can
be seen in the final panel at 15°. The bottoms of the H−

+OH wells in the upper panels are above 4 eV. Although the
OH+H− well does reach below 4 eV in the panels at �HOH
=30° and 15°, it does so only at small OH-H separations, at
which geometry there is a local minimum due to the dipole-
anion interaction.

The 2B1 resonance energy is relatively flat with bending
angle near the equilibrium geometry of the neutral, and this
fact is apparent in the similar shape and value of the contour
lines at small r1 and r2 in Fig. 21 from �=150° to 75°. At
�=45° and beyond, the bending potential becomes repulsive
and the contour lines move toward larger r1 and r2. The
flatness of the bending curve will cause the dissociating
wave packet to make minimal excursions beyond the cut at

FIG. 19. Left: physical thresholds �53–59� of one- and two-body
breakup channels, relative to ground-state neutral H2O, relevant to
dissociative electron attachment to H2O. Vibrational ground states
where applicable—zero-point energies are included. Right: results
of the present configuration-interaction calculations on the anions,
relative to the calculated ground vibrational state of the neutral. The
vertical transition energies from the ground vibrational state of the
neutral to each CI surface are marked with arrows, with experimen-
tal peak maxima in parentheses for comparison. The three-body
asymptotes labeled in the right panel correspond to values of global
fits of potential-energy surfaces at �r1 ,r2 ,��= �10.0a0 ,10.0a0 ,60° �.
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�=105°, and in particular, only a very small fragment of the
dissociating wave packet will reach the O−+H2 potential
well at small �. The imaginary component of the 2B1 surface
is small and localized near the Franck-Condon region.

The entire 1 2A� surface is shown in Fig. 22. The real part
of this surface is similar to that of the 2B1 surface, having the
same asymptotes, but is everywhere higher �except at linear
�HOH=180° degrees, where they are degenerate�, and is high-
est above the 2B1 surface along the conical intersection seam,
which intersects this figure at �HOH=75° at �r1=r2=2.3a0�,
which point is marked with a dot in the figure. The conical
intersection seam is roughly parallel to the grain of the cut,
and falls within the plane r1=r2. Thus, the dot marks the

point where the 1 2A� surface meets the 2 2A� surface along
this cut. Everywhere else, it is below.

Near the Franck-Condon region of the neutral, the behav-
ior of the 1 2A� surface with respect to the bending angle is
different from the relatively flat 2B1 surface. In the cut at �
=150° these two surfaces are nearly degenerate, being ex-
actly degenerate at linear geometry. As the bending angle is
decreased, however, the 1 2A� surface rises in energy, and the
contour lines in Fig. 22 buckle outward; one such contour
line reaches a point at the conical intersection at �=75°.
From this angle, the contour lines near the Franck-Condon
region relax slightly downward going to �=45°, which be-
havior traces the small well on the 1 2A� surface apparent in
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Fig. 18 around �=55°. At smaller angles, the H2+O− poten-
tial well develops.

The imaginary component of this state is much different
from that of the 2B1 state, being in general higher within the
Franck-Condon region, and having the large �0.1 eV� peaks
in the exit wells just as the resonance becomes bound as
H−+OH. These peaks are a consequence of the A� symmetry
of the resonance, as discussed in Ref. �25�. They will lead to
a large rate of autodetachment in this channel, and an isotope
effect in the cross sections for H2O versus D2O that is dis-
proportionate to the entrance amplitude, as discussed in Ref.
�23�. They also may portend the breakdown of the LCP

model near these geometries, for they indicate that the 1 2A�
state may exist as a virtual state there. We examine this issue
more fully in paper II.

The 2 2A� surface is shown in Fig. 23 and is different
from the other surfaces in every region. Its lowest points are
along the well of the H−+OH �2�� channel where the surface
drops to 8 eV. This channel has a broader and shallower
potential-energy well than the H−+OH �2�� asymptote of
the other resonances, with a minimum at approximately
rOH=1.95a0. This surface exhibits a broad plateau in the
�r1 ,r2� plane at �HOH=75° and 10 eV. At this angle, there is
a dimple near the conical intersection at �r1=r2=2.3a0�,
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which is again marked with a dot. There is no H2+O− well
evident along the symmetric stretch direction at �HOH=15°
because in this arrangement the 2 2A� state is unbound as H2
�1�g1�u�+O−; H2 �triplet 1�g 1�u� has a dissociative
potential-energy curve. Thus, the panel at �HOH=15° shows a
cut along the top of this repulsive wall, going up past the last
contour line at 16 eV; this repulsive wall extends infinitely in
the symmetric stretch direction at ever smaller �HOH. Near
the Franck-Condon region, one can see that the real part of
the surface is high �	15 eV� at �HOH=150°, and slopes
downward going from panel to panel to �HOH=75°, as the
contour lines near r1=r2=1.81a0 go from being convex to
concave. Moving on to the panels at 45°, 30°, and 15°, the

repulsive wall of H2 �1�g1�u�+O− then quickly develops.
This surface, constructed from the CI calculation, is

single-valued, though the physical surface is not. The 2B2
shape resonance curve that intersects that of the 2B2 Fesh-
bach resonance in branch-point fashion �25� has been omit-
ted from the present treatment. The physical 2 2A� surface
contains not only the H2 �1�g1�u�+O− asymptote �overall
2A1 symmetry� at small H-H bond distances, but also the
metastable H2

− �1�g
21�u�+O �1D� asymptote �overall 2B2

symmetry� as well; the two three-body asymptotes of this
state are thus H+H−+O �1D� and H+H+O− �degenerate
with 1 2A��. We patch the three-body breakup region of the
2B2 surface to its upper physical asymptote at 10.71 eV.
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The imaginary component of the 2 2A� state takes a large
value �	0.12 eV� along the symmetric stretch direction for
�HOH=105° and 150° but otherwise is smaller; its represen-
tation is dominated by the interpolation between the large-
valued regions and the small-valued regions. In particular, in
the H−+OH �2�� exit well the imaginary component drops to
approximately 0.02 eV by �r1=1.8a0, r2=3.5a0�. The inter-
polation is physical when r1 or r2 is small. However, in the
three-body channel, we interpolate between physically dis-
tinct sheets of the 2A� manifold. Thus, the imaginary com-
ponent drops from 100 meV near the diagonal for r1�r2
�3.0a0 going from �HOH=105° to 75°, but this behavior is
unphysical, and corresponds to the interpolation between the
two sheets of 2B2 symmetry. The imaginary component re-
mains small along the diagonal going from �HOH=75° to 45°
as the conical intersection is passed and the symmetry of the
2 2A� state changes from 2B2 to 2A1.

VII. CONCLUSION

We have calculated the potential-energy surfaces neces-
sary for a description of dissociative electron attachment to
H2O. In paper II, these surfaces are used in a study of the
nuclear dynamics in the local complex potential model, and
the cross sections for dissociative electron attachment are
calculated.
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