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We investigate the quantum interference between the resonant process of nuclear excitation by electron
capture �NEEC� followed by the radiative decay of the excited nucleus, and radiative recombination �RR�. In
order to derive the interference cross section, a Feshbach projection operator formalism is used. The electro-
magnetic field is considered by means of multipole fields. The nucleus is described by a phenomenological
collective model and by making use of experimental data. The Fano profile parameters as well as the interfer-
ence cross section for electric and magnetic multipole transitions in various heavy ions are presented. We
discuss the experimental possibility of discerning NEEC from the RR background.
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I. INTRODUCTION

The process of photorecombination in highly charged
heavy ions has been the subject of many theoretical and ex-
perimental studies up to today, concerning both radiative re-
combination �RR� and dielectronic recombination �DR� �see,
e.g., Refs. �1,2�� and their interference. With the enhanced
experimental possibilities and achieved precision, the subject
of electron recombination into highly charged ions has been
expanding to include quantum electrodynamics �QED� cor-
rections �3�. The effect of interference between RR with DR
has been theoretically studied �see, e.g., Ref. �4�� and experi-
mentally concluded �2,5,6�.

In Ref. �7� a recombination process that is the nuclear
analog of DR has been theoretically proposed. Although not
yet experimentally observed, nuclear excitation by electron
capture �NEEC� has been an interesting subject after experi-
mental observations of atomic physics processes with regard
to the structure of the nucleus have been recently reported,
such as bound-state internal conversion �8� and nuclear ex-
citation by electron transition �NEET� �9�. In the resonant
process of NEEC, a free electron is recombined into a bound
state of an ion with the simultaneous excitation of the
nucleus. The excited nucleus can then decay radiatively or by
internal conversion. Several theoretical studies have been
made concerning NEEC in plasmas �7,10� or in solid targets
�11–13�. In Ref. �14� we presented relativistically correct
theoretical cross sections for NEEC followed by the radiative
decay of the nuclear excited states for highly charged heavy
ions.

If the initial and final states for NEEC and RR coincide,
quantum interference between the two processes occurs.
Such an interference effect is interesting as it involves two
very different pathways: while in RR only the recombining
electron is involved, NEEC corresponds to a quantum path in
which the nucleus is excited. In Fig. 1 the RR and NEEC
mechanisms are shown schematically. In addition to NEEC,

the strong competing process of RR is always present in an
experiment. Therefore, the magnitude of the interference ef-
fect may also play an important role for observing NEEC.

In this paper we theoretically investigate the interference
between NEEC and RR, focusing on collision systems with
suitable excitation energies that could be candidates for ex-
perimental observation. We derive the total cross section of
the recombination process with the help of a Feshbach pro-
jection operator formalism, which allows the separation of
the interference term from the NEEC and RR cross sections.
The radiation field is expanded in terms of multipoles in
order to clearly discern the NEEC transition multipolarities.
The electric and magnetic electron-nucleus interactions are
considered explicitly, and the nucleus is described with the
help of a geometrical collective model and making use of
experimental data. The dynamics of the electron is governed
by the Dirac equation. We express the interference term of
the cross section using the dimensionless Fano profile pa-
rameter for electric and magnetic transitions in Sec. II. The
numerical results of the calculation are given in Sec. III,
together with an interpretation of the results regarding the
possibility of an experimental observation of NEEC. We con-
clude with a short summary. In this work atomic units are
used unless otherwise specified.

II. THEORETICAL FORMALISM FOR INTERFERENCE
EFFECTS

In this section we derive the total cross section of the
recombination process involving NEEC followed by the ra-
diative decay of the nucleus and RR by means of a Feshbach
projection operator formalism. We consider that the electron
is captured into the bound state of a bare ion or an ion with
a closed-shell configuration. We calculate the interference
term between NEEC followed by the radiative decay of the
excited nucleus and RR in the total cross section for electric
and magnetic multipole transitions of the nucleus.

A. The interference between RR and NEEC in the total cross
section

The initial state ��i� of the system describing the nucleus
in its ground state, the free electron, and the vacuum state of
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the electromagnetic field can be written as a direct product of
the nuclear, electronic, and photonic state vectors:

��i� = �NIiMIi
,p�ms,0� � �NIiMIi

� � �p�ms� � �0� . �1�

Here, p� is the asymptotic momentum of the electron, ms its
spin projection, and �N� the nuclear ground state, denoted by
the total angular momentum Ii and its projection MIi

. In con-
sidering RR or NEEC followed by the radiative decay of the
nucleus, the final state of the recombined system �� f� con-
sists of the nucleus in its ground state, the bound electron
and the emitted photon. Rather than using the plane wave
expansion for the electromagnetic field as in Ref. �14�, it is
more convenient in this case to consider photons of a given
angular momentum and parity. The final state can be written
as

�� f� = �NIfMIf
,nf� fmf,�kLM� � �NIfMIf

� � �nf� fmf�

� ��kLM� , �2�

with nf, � f, and mf being the principal, Dirac angular mo-
mentum, and magnetic quantum numbers of the bound one-
electron state, respectively. The emitted photon has the wave
number k, the total angular momentum L and its projection
M. Furthermore, � stands for electric �e� or magnetic �m�
waves. The intermediate resonant state formed by the elec-
tron capture in the process of NEEC consists of the excited
nucleus, the bound electron, and the vacuum state of the
electromagnetic field

��d� = �N*IdMId
,nd�dmd,0� � �N*IdMId

� � �nd�dmd� � �0� .

�3�

The excited nuclear state is denoted by �N*�. In our case, the
recombined electron does not undergo further decay cas-
cades, i.e., nd=nf, �d=� f, and md=mf.

Following the formalism presented in Ref. �14�, we intro-
duce projector operators onto the individual subspaces, in
order to separate these states in the perturbative expansion of
the transition operator. We neglect corrections due to two or
more photon states �15,16� and due to the presence of the
negative electronic continuum. The Fock space is then given
by the sum of three subspaces: the subspace of the states that
contain the free electron, with its projector operator P, the
subspace of the states characterized by the presence of the
excited nucleus, together with the corresponding projector
operator Q, and finally the subspace of the states with a
photon, associated with the projector operator R. We postu-
late the completeness relation

P + Q + R = 1 , �4�

where 1 is the unity operator of the total Fock space.
The total Hamiltonian operator for the system consisting

of the nucleus �n�, the electron �e�, and the radiation field �r�
can be written as

H = Hn + He + Hr + Hen + Her + Hnr. �5�

The expressions of the first three Hamiltonians can be found
in Ref. �14�. Interactions between the three subsystems are
described by the three remaining Hamiltonians in Eq. �5�. We

adopt the Coulomb gauge for the electron-nucleus interaction
�en� because it allows the separation of the dominant Cou-
lomb attraction between the electronic and the nuclear
degrees of freedom:

Hen =� d3rn
�n�r�n�

�r�e − r�n�
. �6�

Here, �n�r�n� is the nuclear charge density and the integration
is performed over the whole nuclear volume. The static part
of the electron-nucleus interaction is contained in the Hamil-
tonian He. The interaction of the electron with the transverse
photon field quantized in the volume of a sphere of radius R
is given by

Her = − �� · A� = − 	
�kLM

�a�kLM
† �� · A� �kLM�r�� + H . c . � , �7�

with the vector potential of the quantized electromagnetic
field �17�

A� �r�� = 	
�kLM

�A� �kLM�r��a�kLM
† + A� �kLM

* �r��a�kLM� . �8�

Here, �� is the vector of the Dirac matrices and the two in-

dependent solutions of the wave equation for the A� �kLM�r��
are

A� �m�kLM�r�� =
4�ck

R
jL�kr�Y� LL

M ��,	� ,

FIG. 1. �Color online� NEEC and RR recombination mecha-
nisms of a continuum electron into the K shell of a bare ion. The
nucleus is schematically represented as undergoing the transition
from the ground state �G� to the excited state �E� and again to its
ground state.
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A� �e�kLM�r�� =
i

k

4�ck

R
�� 
 �jL�kr�Y� LL

M ��,	�� , �9�

where the wave number k is discretized by requiring the
proper boundary conditions at a perfectly conducting sphere
of radius R. In Eq. �9�, jL�kr� stands for the spherical Bessel

function. The Y� LL
M �� ,	� denote the vector spherical harmon-

ics, given by �18�

Y� LL
M ��,	� = 	

�
	

q

C�L1L;�qM�YL���,	���q, �10�

where q=0, ±1 and the spherical unit vectors ��q expressed in
terms of the Cartesian unit vectors �e�x ,e�y ,e�z� are

��+ = −
1

2

�e�x + ie�y� ,

��0 = e�z,

��− =
1

2

�e�x − ie�y� . �11�

Similarly, the interaction of the nucleus with the electro-
magnetic field is given by the Hamiltonian

Hnr = −
1

c
	

�kLM
�a�kLM

† � d3rnj�n�r�n� · A� �kLM�r�n� + H . c . � ,

�12�

where j�n�r�n� is the nuclear current.
Using the projection operators we can separate the pertur-

bation V in the total Hamiltonian

H = H0 + V , �13�

with

H0 = PHP + QHQ + RHR , �14�

V � H − H0 = PHQ + QHP + PHR + RHP + RHQ + QHR .

�15�

This way of defining H0 has the advantage that the effect of
the nuclear potential on bound and continuum electron states
is included in H0 to all orders. The individual terms in the
perturbation operator describe transitions between the differ-
ent subspaces. For example, QHP describes in the lowest
order the time-reversed process of internal conversion �IC�,
namely, NEEC, while PHR and RHP are the first-order op-
erators for photoionization and radiative recombination, re-
spectively.

The transition operator is defined as �19�

T�z� = V + VG�z�V , �16�

where G�z� is the Green operator of the total system given by

G�z� = �z − H�−1. �17�

Here, z is a complex energy variable. The total cross section
for a process can be expressed by the modulus square of the
matrix element of the transition operator, after summing over
the final states and averaging over the initial states that are
not resolved in the experiment,


i→f�E� =
2�

Fi
	

MIf
md

	
�LM

1

2�2Ii + 1� 	
MIi

ms

1

4�


� d�p lim
�→0+

�
� f�T�E + i����i��2� f , �18�

with the � f and �i as final and initial eigenstates of H0,
respectively �see Eqs. �1� and �2��. Here, Fi denotes the flux
of the incoming electrons, � f the density of the final photonic
states, and �p is the direction of the incoming free electron
characterized by the angles �p and 	p.

We use the Lippmann-Schwinger equation

G�z� = G0�z� + G0�z�VG0�z� + G0�z�VG0�z�VG0�z� + ¯

�19�

to write the perturbation series for T�z� in powers of V with
the Green function G0�z� of the unperturbed Hamiltonian H0:

T�z� = V + VG0�z�V + VG0�z�VG0�z�V + ¯ . �20�

Since the initial state of the NEEC process is by definition an
eigenstate of P, and the final state is an eigenstate of R, we
only need to consider the projection RTP of the transition
operator

RT�z�P = RVP + RVG0�z�VP + RVG0�z�VG0�z�VP

+ RVG0�z�VG0�z�VG0�z�VP + ¯ . �21�

The first term RVP accounts for the radiative recombination.
Taking into account from the infinite perturbation expansion
in Eq. �21� the terms that correspond to NEEC �14� we can
write the final expression for the transition amplitude for the
recombination process as


� f�RT�z�P��i� = 
� f�RHerP��i�

+ 	
d


� f�Hnr��d�
�d�Hen + Hmagn��i�

z − Ed +
i

2
�d

.

�22�

Here, �d denotes the total natural width of the excited state
�d�= �N*IdMId

,nd�dmd ,0�. The magnetic interaction Hamil-
tonian Hmagn accounts for the recombination of the free elec-
tron by exchanging a virtual transverse photon with the
nucleus in the unretarded approximation �14�

Hmagn = −
1

c
�� � d3rn

j�n�r�n�
�r� − r�n�

. �23�

Using the expression of the transition operator, the total cross
section can then be written as
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i→f�E� =
2�

Fi
	

MIf
md

	
�LM

1

2�2Ii + 1� 	
MIi

ms

1

4�
� d�p�
NIfMIf

,nd�dmd,�kLM�Her�NIiMIi
,p�ms,0�

+ 	
MId


NIfMIf
,nd�dmd,�kLM�Hnr�N*IdMId

,nd�dmd,0�

�E − Ed� +
i

2
�d



N*IdMId
,nd�dmd,0�Hen + Hmagn�NIiMIi

,p�ms,0��
2

� f . �24�

The first term in the modulus squared accounts for RR and the second one for NEEC. We can separate therefore the equation
above in three terms


i→f�E� = 
RR�E� + 
NEEC�E� + 
int�E� , �25�

with the RR and NEEC total cross sections given by


RR�E� =
2�

Fi
	

MIf
md

	
�LM

1

2�2Ii + 1� 	
MIi

ms

1

4�
� d�p�
NIfMIf

,nd�dmd,�kLM�Her�NIiMIi
,p�ms,0��2� f �26�

and


NEEC�E� =
2�

Fi
	

MIf
md

	
MId

	
�LM

1

2�2Ii + 1� 	
MIi

ms

1

4�
� d�p� 
NIfMIf

,nd�dmd,�kLM�Hnr�N*IdMId
,nd�dmd,0�

�E − Ed� +
i

2
�d


 
N*IdMId
,nd�dmd,0�Hen + Hmagn�NIiMIi

,p�ms,0��
2

� f . �27�

The term describing the interference between RR and NEEC can be written as


int�E� =
2�

Fi
	

MIf
md

	
MId

	
�LM

� f

2�2Ii + 1� 	
MIi

ms

1

4�
� d�p� 
NIfMIf

,nd�dmd,�kLM�Hnr�N*IdMId
,nd�dmd,0�

�E − Ed� +
i

2
�d


 
N*IdMId
,nd�dmd,0�Hen + Hmagn�NIiMIi

,p�ms,0�
NIfMIf
,nd�dmd,�kLM�Her�NIiMIi

,p�ms,0�* + H . c . � . �28�

The aim of this paper is to calculate the interference term in the total cross section. The calculation of the NEEC cross
section and predicted values for several collision systems can be found in Ref. �14�. Furthermore, the calculation of the RR
total cross section is well understood. An extensive tabulation of relativistic total cross sections for RR as a function of energy
ranging from closely above the threshold to the relativistic regime of relative electron energies is available in Ref. �20�.

If we consider the matrix element of the Hamiltonian Her connecting the radiation field and the electrons in the interference
term, the initial and the final total nuclear angular momenta as well as their projections have to coincide, as they are not
influenced by RR,


NIfMIf
,nd�dmd,�kLM�Her�NIiMIi

,p�ms,0� = �IiIf
�MIf

MIi

nd�dmd,�kLM�Her�p�ms,0� . �29�

The initial state continuum electronic wave function is given through the partial wave expansion �21�

�p�ms� = 	
�mml

ilei��Ylml

* ��p�C�l
1

2
j ;mlmsm����m� , �30�

where � is the energy of the continuum electron measured from the ionization threshold, �=
p2c2+c4−c2. The orbital angular
momentum of the partial wave is denoted by l and the corresponding magnetic quantum number by ml, while the partial wave
phases �� are chosen so that the continuum wave function fulfills the boundary conditions of an incoming plane wave and an
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outgoing spherical wave. The total angular momentum quantum number of the partial wave is j= �� �− 1
2 . The interference cross

section in the case of NEEC involving a nuclear transition with specific parity � and multipolarity L can then be written as


int =
2�

Fi
	

MId
MIi

	
Mmd

� f

2�2Ii + 1�	�m

1

4�� 
NIiMIi
,�kLM�Hnr�N*IdMId

,0�

�E − Ed� +
i

2
�d


N*IdMId
,nd�dmd�Hen + Hmagn�NIiMIi

,��m�


 
nd�dmd,�kLM�Her���m,0�* + H . c . � . �31�

We can relate the interference cross section term with the NEEC cross section, introducing the dimensionless Fano profile
parameter Qf. The expression of the NEEC cross section from Ref. �14� is


NEEC�E� =
2�2

p2

Ar
d→fYn

i→d

�d
Ld�E − Ed� , �32�

where Ar
d→f is the radiative rate defined as

Ar
d→f =

2�

2Id + 1 	
MIf

M
	
MId

�
NIfMIf
,nd�dmd,�kLM�Hnr�N*IdMId

,nd�dmd,0��2� f �33�

and Yn
i→d is the NEEC rate

Yn
i→d =

2�

2�2Ii + 1� 	
MIi

ms

	
MId

md

� d�p�
N*IdMId
,nd�dmd,0�Hen + Hmagn�NIiMIi

,p�ms,0��2�i. �34�

Furthermore, p denotes the continuum electron momentum and �i the density of the initial electronic states. The explicit energy
dependence of the interference term can be expressed with the help of the Lorentz profile Ld�E−Ed�, defined as

Ld�E − Ed� =
�d/2�

�E − Ed�2 +
1

4
�d

2

, �35�

which in turn is related to the NEEC total cross section. The interference cross section can be written in the concise form �4�


int = 
NEEC
�d

Yn
i→d

2Id + 1

2Ii + 1
�2

E − Ed

�d
Re� 1

Qf
� + Im� 1

Qf
�� , �36�

with the inverse of the dimensionless Fano profile parameter

1

Qf
= ��i 	

MId
MIi

	
Mmd

	
�m


N*IdMId
,nd�dmd�Hen + Hmagn�NIiMIi

,��m�




NIiMIi

,�kLM�Hnr�N*IdMId
,0�
nd�dmd,�kLM�Her���m,0�*

	
MIi

�M�
	
MId

�
�
NIiMIi

�,k�LM��Hnr�N*IdMId
� ,0��2

. �37�
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We have used primed indices for the summations in the ex-
pression of the nuclear radiative rate in the denominator.
With the further observation that the inverse Fano profile
parameter 1 /Qf is real for both the electric and magnetic
cases, the interference cross section yields


int = 
NEEC
2�E − Ed�

Yn
i→d

2Id + 1

2Ii + 1

1

Qf
. �38�

B. Electric transitions

In order to calculate the matrix elements in the Fano pro-
file parameter in Eq. �37�, an adequate nuclear model is
needed. Following the outline in Ref. �14�, we describe the
nucleus by means of a geometrical collective model �22�
which assumes that the excitations of the nucleus are vibra-
tions and rotations of the nuclear surface, which is param-
etrized as

R��,	,t� = R0�1 + 	
l=0

�

	
m=−l

l

�lm
* �t�Ylm��,	�� . �39�

The time-dependent deformation amplitudes �lm�t� describe
the nuclear surface with respect to a sphere of radius R0 and
serve as collective coordinates. This parametrization can be
used to calculate the matrix element corresponding to the
NEEC process for a given partial wave component and a
given multipolarity L, that yields �14�


N*IdMId
,nd�dmd�Hen�NIiMIi

,��m�

= 	
�=−L

L

�− 1�Id+MIi
+L+�+m+3jdR0

−�L+2�RL,�d,�
N*Id�QL�NIi�


 
2jd + 1
 4�

�2L + 1�3C�IiIdL;− MIi
MId

��


C�j jdL;− mmd − ��C� jdLj ;
1

2
0

1

2
� , �40�

where QLM is the electric multipole moment defined by �17�

QLM =� d3rnrn
LYLM��n,	n��n�r�n� . �41�

The electronic radial integral is given by

RL,�d,� =
1

R0
L−1�

0

R0

drrL+2� fnd�d
�r�f���r� + gnd�d

�r�g���r��

+ R0
L+2�

R0

�

drr−L+1� fnd�d
�r�f���r� + gnd�d

�r�g���r��
�42�

with g���r� and f���r� being the large and small radial com-
ponents of the relativistic continuum electron partial wave
function

���m�r�� = � g���r���
m��,	�

if���r��−�
m ��,	�

� , �43�

with the spherical spinor functions ��
m, and gnd�d

�r� and
fnd�d

�r� the radial components of the bound Dirac wave func-
tion.

For the matrix element of the interaction Hamiltonian �12�
between the nucleus and the radiation field, we follow the
outline in Ref. �23�, considering that the wavelength of the
radiation is large compared to the nuclear radius, kR0�1, so
that the spherical Bessel functions can be approximated in
the first order in kr as

jL�kr� �
�kr�L

�2L + 1� ! !
. �44�

In this case the electric solution of the wave equation can be
written as

A� �e�kLM�r�� = −
4�ck

R


�L + 1��2L + 1�
�2L + 1� ! !

�kr�L−1Y� LL−1
M ��,	� .

�45�

With the use of the continuity equation for the nuclear cur-
rent j�n we obtain for the matrix element


NIiMIi
,�e�kLM�Hnr�N*IdMId

,0� = �− 1�Id−MId
+1
4�ck

R
C�IiIdL;MIi

− MId
M� 



L + 1

L�2L + 1�

ikL

�2L + 1� ! !

NIi�QL�N*Id� .

�46�

The remaining matrix element of Her can be evaluated by writing the electric solution of the wave equation in Eq. �9� in a more
suitable form. Using the properties of the vector spherical harmonics �24� we obtain

A� �e�kLM�r�� =
4�ck

R
�
 L

2L + 1
jL+1�kr�Y� LL+1

M ��,	�� − �
 L + 1

2L + 1
jL−1�kr�Y� LL−1

M ��,	�� . �47�

The electron-radiation interaction matrix element then yields
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nd�dmd,�e�kLM�Her���m,0� = −
4�ck

R
�
 L

2L + 1

nd�dmd�jL+1�kr��� · Y� LL+1

M ��,	����m���
−
 L + 1

2L + 1

nd�dmd�jL−1�kr��� · Y� LL−1

M ��,	����m�� . �48�

The matrix elements containing the product of the spherical Bessel spherical functions, the Dirac matrix �� , and the vector
spherical harmonics can be expressed in a compact way using the properties of the spherical tensor operators �25�. The
expression in the above equation becomes


nd�dmd,�e�kLM�Her���m,0� = i�− 1� j−L+ 1
2
4�ck

R
C�jLjd;mMmd�
2j + 1

4� � jd j L

1

2
−

1

2
0 �


 �
 L + 1

L�2L + 1�
�LIL−1

− − ��d − ��IL−1
+ ��� +
 L

�L + 1��2l + 1�
��L + 1�IL+1

− + ��d − ��IL+1
+ �� ,

�49�

with the radial integrals �25�

IL
± = �

0

�

drr2jL�kr��gnd�d
�r�f���r� ± g���r�fnd�d

�r�� . �50�

Combining the formulas of the three matrix elements from Eqs. �40�, �46�, and �49� in the expression of the Fano profile
parameter Qf

�e� and using the summation properties of the Clebsch-Gordan coefficients we obtain the final formula

1

Qf
�e� = ��i�− 1�3Id+Ii+1R0

−�L+2��2jd + 1�
 L

�L + 1��2L + 1�3k−L�2L + 1� !! 	
�

RL,�d,��2j + 1�� jd j L

1

2
−

1

2
0 �

2


 �
 L + 1

L�2L + 1�
�LIL−1

− − ��d − ��IL−1
+ ��� +
 L

�L + 1��2L + 1�
��L + 1�IL+1

− + ��d − ��IL+1
+ �� . �51�

C. Magnetic transitions

The magnetic transitions in the nucleus can be easily included in the calculation by assuming that the electron does not
penetrate the nucleus, i.e., that the electronic radial coordinate re is always larger than the nuclear radial coordinate rn. This
approximation is precise enough for the studied cases �26,27�. The NEEC matrix element for the magnetic transition, involving
only the magnetic Hamiltonian Hmagn for a given partial wave and a given multipolarity can be written as �14�


N*IdMId
,nd�dmd�Hmagn�NIiMIi

,��m� = 4�i
 L + 1

L�2L + 1�3 	
�=−L

L

�− 1�Ii−MIi
+�+1C�IdIiL;MId

− MIi
��
N*Id��ML��NIi�


 
nd�dmd�r−�L+1��� · Y� LL
−���,	����m� , �52�

where the electronic matrix element can be evaluated in a similar way as the ones in Eq. �49� to yield


nd�dmd�r−�L+1��� · Y� LL
−���,	����m� = i�− 1� j−L+1/2
�2j + 1��2L + 1�

4�L�L + 1�
C�jLjd;m − �md���d + ��� jd j L

1

2
−

1

2
0 �


 �
0

�

drr−L+1�gnd�d
�r�f���r� + fnd�d

�r�g���r�� . �53�

This way of writing the electronic matrix element is equivalent to the more lengthy one presented previously in Ref. �14�.
Now let us consider the matrix element corresponding to RR. It has, up to the presence of the spherical Bessel functions,

a similar expression
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nd�dmd,�m�kLM�Her���m,0� = −
4�ck

R

nd�dmd�jL�kr��� · Y� LL

M ��,	����m� . �54�

Using the properties of the spherical tensor operators �25�, we can write the RR matrix element as


nd�dmd,�m�kLM�Her���m,0� =
4�ck

R
i�− 1� j−L− 1

2
�2j + 1��2L + 1�
4�L�L + 1�

C�jLjd;mMmd���d + ��� jd j L

1

2
−

1

2
0 �


�
0

�

drjL�kr��gnd�d
�r�f���r� + fnd�d

�r�g���r�� . �55�

The remaining matrix element involved in the expression
of the Fano profile parameter Qf is that of the interaction
between the nucleus and the radiation field �12�. We make
use again of the long-wavelength approximation, so that the
spherical Bessel functions are written as in Eq. �44�. With
this approximation and using the properties of the vector
spherical harmonics, the magnetic solution of the wave equa-
tion can be expressed as

A� �m�kLM�r�� =
4�ck

R

kL

i
L�L + 1�
1

�2L + 1� ! !


�r� 
 �� ��rLYLM��,	�� . �56�

Rewriting the Hamiltonian Hnr we obtain

Hnr = i
4�ck

R

L + 1

L

kL

�2L + 1� ! !

1

c�L + 1�


� d3rn�r�n 
 j�n�r�n�� · �� �rn
LYLM��n,	n�� . �57�

The integral over the nuclear coordinate can be related to the
magnetic multipole operator MLM, defined as �17�

MLM =
1

c�L + 1� � d3rn�r�n 
 j�n�r�n�� · �� �rn
LYLM��n,	n�� .

�58�

The matrix element of the interaction Hamiltonian between
the radiation field and the nucleus yields


NIiMIi
,�m�kLM�Hnr�N*IdMId

,0�

=
4�ck

R

ikL


L


L + 1

�2L + 1� ! !

NIiMIi

�MLM�N*IdMId
�

= �− 1�Id−MId
4�ck

R

ikL

�2L + 1� ! !

 L + 1

L�2L + 1�


 C�IdIiL;MId
− MIi

− M�
NIi�ML�N*Id� . �59�

Combining the results from Eqs. �52�, �55�, and �59� we
write the expression of the dimensionless Fano profile pa-
rameter Qf

�m�, making use of the summation properties of the
Clebsch-Gordan coefficients

1

Qf
�m� =

��i�− 1�Ii+3Id+1�2jd + 1�
L�2L + 1��L + 1�

k−L�2L + 1� !! 	
�

�2j + 1�


��d + ��2�
0

�

drr−L+1�gnd�d
�r�f���r� + fnd�d

�r�g���r��


� jd j L

1

2
−

1

2
0 �

2

�
0

�

drjL�kr��gnd�d
�r�f���r�

+ fnd�d
�r�g���r�� . �60�

III. NUMERICAL RESULTS

We have calculated the Fano profile parameter and the
interference cross section term 
int as a function of the in-
coming electron energy for several collision systems involv-
ing electric E2 and magnetic M1 transitions. We consider
suitable cases of isotopes which have energetically low-lying
nuclear levels which make the interference between NEEC
and RR possible.

For the case of the electric transitions we consider the
0+→2+ E2 transitions of the 92

236U, 92
238U, 96

248Cm, 70
174Yb, 68

170Er,

64
154Gd, 64

156Gd, 66
162Dy, and 66

164Dy even-even nuclei. The ener-
gies of the excited nuclear levels Eexc as well as the reduced
transition probabilities B�E2�, that are needed for the calcu-
lation of the natural width of the nuclear excited state and the
NEEC cross section and rate, are taken from Ref. �28�. The
natural width of the nuclear excited state is considered to be
the sum of the partial radiative rates Ar

d→f and the IC rates
AIC

d ,

�d = 	
f

Ar
d→f + 	

i

AIC
d→i. �61�

Here we sum the radiative transition rates to all possible final
states �note that in our case there is only one nuclear final
state, namely, the ground state�. By summing over i we ac-
count for internal conversion to the initial state of the NEEC
process and all other possible IC channels, for the case when
the capture occurs into a He-like ion. The IC rate can be
related to the NEEC rate through the principle of detailed
balance
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AIC
d→i =

2�2Ii + 1�
�2Id + 1��2jd + 1�

Yn
i→d. �62�

The NEEC rates and cross sections are calculated using an
improved version of the computer routines applied in Ref.
�14�. We consider the capture into the bare ions of 66

164Dy,

68
170Er, 70

174Yb, and 64
154Gd. For the cases of the U isotopes and

for 96
248Cm, the capture into the K shell is not possible due to

the low energy level of the first excited nuclear state. For
these three systems, recombination into the L shell of ini-
tially He-like ions is the most probable one. We regard the
capture of the electron into a closed shell configuration as a
one-electron problem, without the participation of the
K-shell electrons. We also consider the capture of the elec-
tron into the He-like ions of 64

156Gd and 66
162Dy, in which case

the width of the nuclear excited state in Eq. �61� contains
partial IC rates accounting for the possible IC of the K-shell
electrons.

A numerical evaluation of the radial integrals correspond-
ing to NEEC �RL,�d,�, see Eq. �42�� and the ones correspond-
ing to RR �IL±1

± , Eq. �50�� is needed for the calculation of the
Fano profile parameters and for the interference cross sec-
tions. We consider Coulomb-Dirac wave functions for the
continuum electron and wave functions calculated with the
GRASP92 package �29� by considering a homogeneously
charged nucleus for the bound electron. In the case of recom-
bination into the He-like ions we assume a total screening of

the nuclear charge for the continuum electron, i.e., we use
Coulomb-Dirac functions with an effective nuclear charge
Zeff=Z−2. For the bound electron wave functions, the
electron-electron interaction is accounted for in the Dirac-
Fock approximation. The value of RL,�d,� is not affected by
finite nuclear size effects on the accuracy level of our calcu-
lations. Nevertheless, the finite size of the nucleus has a sen-
sitive effect on the energy levels of the bound electron. The
energy of the bound electronic state is calculated with
GRASP92 and includes one-loop one-electron quantum elec-
trodynamic terms, and in the case of many-electron bound
states approximate QED screening corrections. The nuclear
radius R0 is calculated according to the semiempirical
formula �30�

R0 = �1.0793A1/3 + 0.73587� fm, �63�

where A is the atomic mass number. Values of the Fano
profile parameters, as well as the NEEC rate and natural
width of the nuclear excited state are presented in Table I.
The values of the resonance strength of NEEC, given in Ref.
�14�,

Sd =
2�2

p2

Ar
d→fYn

i→d

�d
, �64�

are also presented.
The Fano line profile parameter characterizes the strength

of the interference effects between the two recombination

TABLE I. Parameters of the NEEC total cross section and the interference term for various heavy ion
collision systems involving electric quadrupole transitions. Eexc denotes the nuclear excitation energy, Ec is
the continuum electron energy at resonance, Yn stands for the resonant recombination rate, and �d is the total
width of the excited nuclear state. The column denoted by S contains the NEEC resonance strengths, 1 /Qf is
the inverse Fano line profile parameter, and Rint stands for the profile asymmetry parameter. See the text for
further explanations.

Isotope Eexc�keV� Ec�keV� Orbital Yn�1/s� �d�eV� S�b eV� 1/Qf Rint

66
164Dy 73.392 10.318 1s1/2 1.86
108 4.37
10−8 3.88
10−2 −2.11
10−3 3.67
10−3

68
170Er 78.591 11.350 1s1/2 2.23
108 5.75
10−8 4.70
10−2 −2.07
10−3 4.05
10−3

70
174Yb 76.471 4.897 1s1/2 1.79
108 4.85
10−8 9.27
10−2 −2.09
10−3 4.30
10−3

64
154Gd 123.071 64.005 1s1/2 5.69
108 2.51
10−7 2.91
10−2 −2.61
10−4 8.77
10−4

64
156Gd 88.966 74.742 2s1/2 3.35
107 1.21
10−7 7.09
10−4 −6.10
10−5 1.67
10−3

64
156Gd 88.966 74.896 2p1/2 1.16
108 1.32
10−7 2.25
10−3 −1.16
10−5 1.00
10−4

64
156Gd 88.966 75.680 2p3/2 1.59
108 1.27
10−7 3.17
10−3 3.06
10−4 1.86
10−3

66
162Dy 80.660 65.432 2s1/2 2.81
107 9.39
10−8 6.25
10−4 −1.28
10−4 3.26
10−3

66
162Dy 80.660 66.594 2p1/2 1.59
108 1.11
10−7 2.98
10−3 −5.78
10−5 3.06
10−4

66
162Dy 80.660 66.492 2p3/2 2.15
108 1.04
10−7 4.24
10−2 3.56
10−4 1.31
10−3

92
236U 45.242 12.404 2s1/2 1.06
108 1.76
10−8 8.47
10−3 1.60
10−3 2.00
10−3

92
236U 45.242 12.698 2p1/2 3.02
109 4.01
10−7 1.02
10−2 −1.26
10−3 1.27
10−3

92
236U 45.242 16.871 2p3/2 3.10
109 2.07
10−7 1.52
10−2 −9.86
10−4 5.01
10−4

92
238U 44.910 12.073 2s1/2 1.11
108 1.81
10−8 8.80
10−3 1.61
10−3 2.01
10−3

92
238U 44.910 12.356 2p1/2 3.14
109 4.17
10−7 1.06
10−2 −1.24
10−3 1.25
10−3

92
238U 44.910 16.534 2p3/2 3.23
109 2.16
10−7 1.56
10−2 −9.97
10−4 5.07
10−4

96
248Cm 43.380 6.888 2s1/2 2.18
108 3.25
10−8 1.78
10−2 1.92
10−3 2.16
10−3

96
248Cm 43.380 7.190 2p1/2 5.47
109 7.24
10−7 1.91
10−2 −5.96
10−4 5.99
10−4

96
248Cm 43.380 12.356 2p3/2 5.33
109 3.54
10−7 2.20
10−2 −1.43
10−3 7.24
10−4
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channels. Smaller values of �Qf� indicate more pronounced
interference. A more quantitative measure of the interference
is defined in Ref. �31� as the ratio of the interference term
and the resonant process term at the energy �±1/2=Ed±�d /2,

Rint = � 
int��±1/2�

NEEC��±1/2�

� =
�d

Yn
i→d

2Id + 1

2Ii + 1

1

�Qf�
. �65�

Values for this line asymmetry parameter Rint are given in the
last column of Tables I and III.

A possibility to cross-check the numerical accuracy of the
present calculations is given by the matrix element of the
interaction Hamiltonian Her, which enters the expression of
the Fano profile parameter. We can use the matrix element to
calculate the total cross section for RR for a given energy,
which can be written in the spherical wave approach as


RR =
2�

Fi

1

2	
ms

1

4�
� d�p	

md

	
�LM


�
nd�dmd,�kLM�Her�p�ms,0��2� f . �66�

RR cross sections calculated by this formula and with the
radial wave functions described above reproduce the values
tabulated in Ref. �20� with a typical relative accuracy of
about one per thousand, as it can be seen in Table II.

For the magnetic multipole transitions we consider the
M1 transitions of the odd isotopes 67

165Ho, 70
173Yb, 25

55Mn, 26
57Fe,

19
40K, 64

155Gd, 64
157Gd, 75

185Re, and 75
187Re. Numerical results for

these ions are presented in Table III. We present NEEC rates
and resonance strengths with improved accuracy with respect
to our previous results �14�. The electronic radial integrals
are calculated numerically using the same type of wave func-
tions for the bound and continuum electron as for the electric
transitions. The reduced magnetic transition probability
B�M1� and the energies of the nuclear levels are taken from
Refs. �32–40�. Recombination into the K shell is possible for
all the chosen ions, except for Gd. We also present results for
recombination into the initially He-like ions of the 64

155Gd and

64
157Gd isotopes.

In Fig. 2 interference and scaled NEEC cross section
terms are plotted as a function of the continuum electron
energy for the M1 transition of 75

185Re and E2 transition of

70
174Yb, respectively. These are the isotopes with the largest
values for the resonance strengths for the magnetic and elec-
tric multipole transitions, respectively. The NEEC cross sec-
tion has the shape of a very narrow Lorentzian, with the
width given by the natural width of the excited nuclear state,
about 2.4
10−5 eV for the case of 75

185Re and 4.9
10−8 eV
for the case of 70

174Yb. The interference term 
int for both
electric and magnetic cases is more than two orders of mag-
nitude smaller than the NEEC terms 
NEEC. The magnitude
of the interference term can be explained by investigating the
contributions of the multipolarities that enter the RR cross
section 
RR. While 
RR consists of an infinite sum of multi-
polarities, in the interference process only the RR photon
with the multipolarity of the nuclear transition participates.
The main contribution to the RR cross section comes from
the electric dipole photon. The cross sections corresponding
to the M1 and E2 photons are considerably smaller. In the

case of 70
174Yb, the E2 multipole accounts for only 121 b in

the total RR cross section of 2080 b, while the M1 multipole
for 75

185Re only contributes 0.5 b to the total RR cross section
of 212 b.

As an electron energy resolution in the order of 10−5 eV
and less can not be presently achieved in an experiment, we
convolute the theoretical total cross section with the energy
distribution of the electrons to give an orientation for mea-
surements in near future. The energy distribution of the in-
coming electrons is assumed to be described by a Gaussian
function with a width parameter s. The RR cross section has
a practically constant value on the energy interval of s. In
order to demonstrate the magnitude of the NEEC and inter-
ference cross sections 
NEEC and 
int compared to that of
RR, we present in Fig. 3 the ratio of the convoluted cross
sections

R�E,s� =

̃NEEC�E,s� + 
̃int�E,s�


̃RR�E,s�
, �67�

in the case of 75
185Re as a function of the continuum electron

energy for the three different experimental width parameters

TABLE II. Total RR cross sections for recombination into a
given bound state of a bare ion, compared with results from Ref.
�20�. The nuclear excitation energy Eexc, corresponding to the en-
ergy of the emitted photon, is given in the second column. The
values from Ref. �20� are numerically interpolated by a spline rou-
tine to obtain the RR cross section at the resonance energy Ec.


RR�b�

Isotope Eexc�keV� Ec�keV� Orbital This work Ref. �20�

66
164Dy 73.392 10.318 1s1/2 832 832

68
170Er 78.591 11.350 1s1/2 797 795

70
174Yb 76.471 4.897 1s1/2 2080 2080

64
154Gd 123.071 64.005 1s1/2 79 79

92
236U 45.242 11.113 2s1/2 245 245

92
236U 45.242 11.038 2p1/2 295 294

92
236U 45.242 15.601 2p3/2 229 229

92
238U 44.910 10.782 2s1/2 252 253

92
238U 44.910 10.706 2p1/2 306 306

92
238U 44.910 15.269 2p3/2 236 236

96
248Cm 43.380 5.500 2s1/2 543 544

96
248Cm 43.380 5.398 2p1/2 768 769

96
248Cm 43.380 11.018 2p3/2 410 410

67
165Ho 94.700 29.563 1s1/2 252 252

70
173Yb 78.647 7.073 1s1/2 1410 1410

75
185Re 125.358 42.198 1s1/2 212 212

75
187Re 134.243 51.083 1s1/2 166 166

25
55Mn 125.949 117.378 1s1/2 0.865 0.849

26
57Fe 14.412 5.135 1s1/2 216 216

19
40K 29.829 24.896 1s1/2 6.64 6.55
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s=0.5, 1, and 10 eV. While for a width parameter s
=0.5 eV the contributions of the NEEC and interference
terms can be clearly discerned from the RR background, for
presently more realistic widths in the order of eVs or tens of
eV the values of the ratio R�E ,s� are too small to be ob-
served experimentally.

IV. SUMMARY

In this article we investigated the interference between
NEEC and RR in an electron recombination process. We
derived the interference cross section and expressed it with
the help of the dimensionless Fano profile parameter.

We calculated the interaction matrix elements for both
electric and magnetic multipolarities using relativistic elec-
tronic wavefunctions. Nuclear excitations are described us-
ing a phenomenological nuclear collective model. The
nuclear part of the matrix element is written by the help of
the reduced nuclear transition probability whose value is
taken from experimental works. For the quantization of the
radiation field we use the multipole expansion.

Numerical values for the Fano profile parameters and in-
terference cross sections were obtained for various heavy-ion
collision systems. The interference term in the total cross

TABLE III. Parameters of the NEEC total cross section and the interference term for various heavy ion
collision systems involving magnetic dipole transitions. The notations are as defined in Table I.

Isotope Eexc�keV� Ec�keV� Orbital Yn�1/s� �d�eV� S�b eV� 1/Qf Rint

67
165Ho 94.700 29.563 1s1/2 1.28
1010 1.17
10−5 8.84
10−1 −1.67
10−3 2.90
10−3

70
173Yb 78.647 7.073 1s1/2 7.32
109 4.80
10−6 1.26 −2.24
10−3 2.98
10−3

75
185Re 125.358 42.198 1s1/2 2.62
1010 2.36
10−5 1.34 −2.58
10−3 4.71
10−3

75
187Re 134.243 51.083 1s1/2 2.50
1010 2.47
10−5 1.16 −2.50
10−3 5.00
10−3

25
55Mn 125.949 117.378 1s1/2 2.45
107 1.75
10−6 9.22
10−4 −2.14
10−5 3.10
10−3

26
57Fe 14.412 5.135 1s1/2 6.21
106 2.56
10−9 1.19
10−3 −6.73
10−5 8.42
10−5

19
40K 29.829 24.896 1s1/2 1.33
107 9.47
10−8 2.27
10−3 −1.46
10−5 1.22
10−4

64
155Gd 60.008 45.784 2s1/2 2.73
108 1.97
10−6 3.18
10−3 −1.25
10−4 2.06
10−3

64
155Gd 60.008 45.938 2p1/2 2.40
107 1.86
10−6 2.94
10−4 −1.85
10−5 3.27
10−3

64
155Gd 60.008 46.722 2p3/2 4.00
106 1.85
10−6 4.84
10−5 −1.81
10−5 1.91
10−2

64
157Gd 54.533 40.309 2s1/2 4.16
108 4.37
10−7 2.86
10−2 −1.25
10−4 3.00
10−4

64
157Gd 54.533 40.463 2p1/2 3.68
107 2.71
10−7 4.07
10−3 −2.00
10−5 3.36
10−4

64
157Gd 54.533 41.247 2p3/2 6.21
106 2.56
10−7 7.12
10−4 −1.94
10−5 1.82
10−3
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FIG. 2. Interference and NEEC terms of the cross section for
capture into bare 75

185Re �upper figure� and bare 70
174Yb �lower figure�

ions as a function of the continuum electron energy. The NEEC
term is scaled by a factor of 10−2.

FIG. 3. The ratio R�E ,s� in Eq. �67� for recombination into bare

75
185Re as a function of the energy of the continuum electron for three
different experimental electron energy width parameters s. See text
for further explanations.
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section of the recombination process is about two orders of
magnitude smaller than the NEEC cross section. This is
associated with the fact that from the infinite multipole
expansion of the RR radiation, only the multipolarities cor-
responding to the type of nuclear transition interfere with
the radiative decay photons following NEEC. The interfer-
ence term has a narrow extent on the electron energy scale,
which is related to the small natural width of the nuclear
excited state. In order to simulate data of a recombination
experiment, we convolute the total cross section with a
Gaussian electron energy distribution of realistic width pa-
rameters. While for well-defined experimental electron ener-
gies the presence of NEEC could be discerned from the RR
background, for larger width parameters both NEEC and

the interference with RR become difficult to be observed
experimentally.

If the angular distribution of the emitted photons in the
radiative decay of the nucleus following NEEC is different
from the one of the RR photons, this can be used to identify
the resonant process in the RR background. Calculations in-
vestigating a possible NEEC signature in the angular distri-
bution of the emitted photons are in progress.
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