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The Casimir-Polder potential for interaction between an excited atom and a ground-state one in the retarded
case is obtained with the help of perturbation technique. The potential drops as R−2 with the distance between
the atoms �E. A. Power and T. Thirunamachandran, Phys. Rev. A 47, 2539 �1993��. It results in divergent
integrals for interaction between an excited atom and a dilute gas medium. We investigate interaction between
two atoms embedded in a dielectric medium with the help of a method that enables us to make calculations
beyond the perturbation technique. We take into account absorption of photons in the medium. This approach
solves the problem of divergence. We consider interaction between an excited atom and a planar dielectric gas
medium of ground-state atoms. We show that the retarded interaction between an excited atom and a gas of
ground-state atoms is not oscillating but follows a simple power law. We show that to obtain a conventional
nonretarded expression for the van der Waals force between an excited atom and a dilute gas, the distance
between the atom and the interface should be much smaller than the free mean path of a photon in the medium.
Interaction between an excited atom and a hemisphere of ground-state atoms is considered.
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I. INTRODUCTION

The dispersion interaction between two ground-state at-
oms separated by a distance large enough to neglect ex-
change interaction was studied for the first time by London
in 1930 �1�. Using quantum mechanics, he showed that the
interaction potential between the atoms drops as R−6 with the
distance R between the atoms. Later, Casimir �2� and Ca-
simir and Polder �3� demonstrated that for the distances
larger than a transition wavelength of atoms �, one should
use quantum electrodynamics and take into account the elec-
tromagnetic vacuum to calculate the potential. According to
Casimir and Polder, the interaction potential in the retarda-
tion regime is proportional to R−7. The dispersion dipole-
dipole interaction between two ground-state atoms is always
attractive.

If one of the atoms is excited, the dispersion interaction
differs significantly from the case of two ground-state atoms.
It may be up to four orders of magnitude stronger than the
interaction between two ground-state atoms. Moreover, the
interaction may be either attractive or repulsive, depending
on the transition frequencies of the atoms. Such interaction
was studied both theoretically �4–12�, using perturbation
technique, and experimentally �13,14�.

If the atoms are identical, one should describe them in
terms of symmetric or antisymmetric eigenfunction. The cor-
responding eigenstates have a delocalized excitation �Frenkel
exciton� in a symmetric or antisymmetric configuration over
both atoms. This situation is not due to electron overlap but
due to dipole-dipole interaction �15�. For the nonretarded
case �R���, the interaction potential is proportional to R−3

�13–15�, while for the retarded case �R��� the potential
drops as R−4 �10,11,15�. The interaction of identical atoms is
studied in numerous papers theoretically and experimentally
�10,11,13–15�. We will not consider this case here.

If the atoms are dissimilar and coupling energy is smaller
than the splitting between the excited levels of the atoms,
one can describe the atoms by independent eigenfunctions.
In this case U�R−6 for nonretarded regime and U�R−2 for
the retarded one. In the opposite case, one should consider
the interaction as though the atoms were identical. The tran-
sition from nondegenerate �independent eigenfunctions� to
degenerate �common eigenfunction� cases is discussed in
Ref. �14�.

Interaction between a ground-state atom and a dielectric
or metal wall was studied for the first time by Lennard-Jones
in 1932 �16�. Since 1932, the problem of interaction between
an atom and a surface has been discussed in numerous papers
�17,18�. If the atom is not excited, the interaction is always
attractive �19�. If the atom is excited, the interaction is either
attractive or repulsive, depending on its transition frequency
�19–21�. This resonance character of interaction has been
confirmed experimentally �17,22,23�.

Let us analyze the results of perturbative approach to the
interaction of dissimilar atoms if one of them is excited �8,9�.
The result for the interaction energy was obtained with the
help of the linear response theory �8� and quantum electro-
dynamics �9�. Both approaches resulted in the same formula
for the excited atom A and the ground-state atom B separated
by a distance R
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We simplified the formula for the case of two-level atoms
and took into account only electric-dipole interaction. Here
�A and �B are the transition frequencies of excited atom A*Email address: sherkunovyb@physics.org
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and the ground-state atom B. deg
A and deg

B are the transition
dipole moments of atoms A and B. �A�iu� and �B�iu� are the
polarizabilities of atoms A and B. The second term of Eq. �1�
appears only if atom A is excited. It is interesting to consider
the asymptotic limits of the formula �1�. For small R separa-
tions �van der Waals limit� �R���, where � is the wave-
length corresponding to atom transitions, the result is propor-
tional to R−6. The contribution of the second term of the
right-hand side of Eq. �1� leads to

U�R� = −
4

3
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B 	2�B

��B
2 − �A

2�R6 . �2�

For a large separation case �R��� the expression �1� reads

U�R� = −
4

9
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4�B
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2�R2 . �3�

We should stress here that the interaction potential �3� for
excited and ground-state atoms is proportional to R−2, while
the potential for two ground-state atoms falls off as R−7.

Now let us consider interaction of an excited atom with a
semi-infinite medium of ground-state atoms. For the sake of
simplicity, we will consider a dilute gas of two-level atoms
as a medium. Let the distance between the excited atom and
the medium be z0��.

Taking into account only pair interactions, we can repre-
sent the energy as a volume integral over the semi-infinite
medium

U1�z0� =� dVU�R�n0, �4�

where n0 is the density number of the atoms of the medium.
Substituting expression �3� into �4�, we have

U1�z0� = −
4

9

	deg
A 	2	deg

B 	2�B�A
4

��B
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2�
n0� dV

R2 → � . �5�

This integral is divergent.
Thus, we arrive at the conclusion that the perturbation

theory resulting in the expression �3� cannot be implemented
to calculate the interaction energy between an excited atom
and a semi-infinite medium of ground-state atoms for a dilute
gas.

We will calculate the interaction energy of two dissimilar
atoms when they are immersed in a dielectric medium if one
of them is excited. To find the energy, we will use the method
offered in Ref. �24�. As we will show, the implementation of
this method will result in a finite expression for the energy
instead of formula �5�.

This paper is composed in the following way: In Sec. II
we consider interaction between two dissimilar atoms em-
bedded in a dielectric medium using the method based on the
kinetic Green functions �24�. We took into account absorp-
tion of the photons in the medium. The result for the inter-
action potential is proportional to the exponent of imaginary
part of the refractive index of the medium, so the problem of
divergences is solved. In Sec. III we apply the result obtained
in Sec. II to interaction between an excited atom and a gas
medium of ground-state atoms for the case of planer inter-

face. We show that in the retarded case the resonance term
does not oscillate but follows a simple power law. We intro-
duced a parameter: free mean path of the photon in the me-
dium Lph. We showed that the well-known results for inter-
action between an excited atom and a dielectric medium for
nonretarded regime can be obtained only for z0�Lph,
z0��, where z0 is the distance between the atom and the
interface. In Sec. IV, we consider interaction between an ex-
cited atom and a hemisphere of dilute gas medium, if the
atom is situated in the center of the hemisphere.

II. INTERACTION BETWEEN TWO ATOMS IN A
DIELECTRIC MEDIUM IF ONE OF THEM IS EXCITED

We consider two dissimilar atoms A and B immersed in an
absorbing dielectric medium. Let atom A be in the excited
state and situated at a point with radius-vector RA and B in
the ground state and situated at a point RB. We suppose the
electromagnetic field to be in its vacuum state. The exchange
interaction is negligible. Let us suppose for the sake of sim-
plicity that the radiation width of excited level of atom A is
negligible in comparison with the width of the excited level
of atom B.

The Hamiltonian of the system is as follows:

Ĥ = ĤA + ĤB + Ĥmed + Ĥph + Ĥint, �6�

where ĤA=

i

�Ai
0 b̂i

†b̂i, ĤB=

i
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0 	̂i

†	̂i, and Ĥmed=

i

�medi
0 ĉi

†ĉi

are the Hamiltonians of noninteracting atoms A, B, and the
atoms of the medium, �i

0 is the energy of ith state of the

corresponding atom without the Lamb shift; b̂i�b̂i
†�,	̂i�	̂i

†�,
ĉi�ĉi

†� are annihilation �creation� operators of ith state of cor-

responding atom; Ĥph= 

k�

k��̂k�
† �̂k�+ 1

2
� is the Hamiltonian of

free electromagnetic field; k is the wave vector; �=1,2 is the
index of polarization of electromagnetic field; and �̂k���̂k�

† �
are annihilation �creation� operators of the electromagnetic
field.

The interaction Hamiltonian in the interaction picture is

Ĥint l�t� = −� 
̂l
†�x�d̂�Êl

��x�
̂l�x�dr −� �̂l
†�x�d̂�Êl

��x��̂l�x�dr

−� 
̂l
†�x�d̂�Êl

��x�
̂l�x�dr , �7�

where


̂ = 

i


i�r − RA�e−i�Aitb̂t, �̂ = 

i

�i�r − RB�e−i�Bit	̂i,


̂l�x� = 

i


i�r − Rm�e−i�meditĉi, �8�

with 
i�r−RA�, �i�r−RB�, and 
i�r−Rm� being the wave

functions of ith state of corresponding atoms. d̂� is the op-

erator of dipole moment, Ê��r� is the operator of free elec-
tromagnetic field

YURY SHERKUNOV PHYSICAL REVIEW A 75, 012705 �2007�

012705-2



Ê��x� = i

k�

�2�k

V
ek�

� ��̂k�eikre−ikt − �̂k�
† e−ikreikt� , �9�

where V is the quantization volume, ek�
� is the polarization

unit vector, Rm describes the position of an atom of the di-
electric medium, x= �r , t
.

We will calculate the interaction potential of the atoms
using the method of kinetic quantum Green’s functions
�25,26� applied to quantum electrodynamics �24�. This
method enables us to handle the divergence of the integral
�5�. The interaction potential of the atoms can be expressed
as the energy shift of one of the atoms, as it could be shown
with the help of Hartree-Fock method,

U�RA − RB� = �EB. �10�

We suppose that the Lamb shift as well as the shift due to
the interaction with the atoms of the media excluding atom B
is already taken into account in �A0, so we take into account
only the interaction between atoms A and B.

Let

Gll�
B �x,x�� = − i�T̂c�̃l�x��̃l�

† �x��� �11�

be the Green function of atom B. Here x= �r , t
, operators are
in the Heisenberg representation, �. . .� means averaging over
initial state of free atoms and vacuum state of the electro-

magnetic field. T̂c is the operator of time ordering �25,26�. It
acts as follows:

T̂cÂ1�t�B̂1�t�� =�Â�t�B̂�t�� , t � t�,

B̂�t��Â�t� , t � t�,

T̂cÂ2�t�B̂2�t�� =�B̂�t��Â�t� , t � t�,

Â�t�B̂�t�� , t � t�,

T̂cÂ1�t�B̂2�t�� = B̂�t��Â�t�, T̂cÂ2�t�B̂1�t�� = Â�t�B̂�t�� .

�12�

If the exchange interaction can be omitted, the atoms can
be considered as independent. Consequently we can describe
each atom by its own matrix of density.

Using the Green function �11�, it is easy to find the matrix
of density of atom B,

�B�x,x�� = iG12
B �x,x�� . �13�

To find the Green function �11�, we will use the interaction
representation. An operator in the Heisenberg representation
�̃ is connected with the one in the interaction picture �̂ as
follows �26�:

�̃l�x� = Ŝ−1�t��̂l�x�Ŝ�t� , �14�

where Ŝ�t� is the scattering operator. Substituting �14� into
�11� results in �26�

Gll�
B �x,x�� = − i�T̂cŜ

−1�� ,− � ��̂l�x��̂l�
† �x��Ŝ�� ,− � �� .

�15�

To simplify this formula, we use the following general-
ized scattering operator �25,26�,

Ŝc = T̂cexp� 

l=1,2

�− 1�li�
−�

�

Ĥint l�t�dt� . �16�

Thus, Eq. �11� can be rewritten

Gll�
B �x,x�� = − i�T̂c�̂l�x��̂l�

† �x��Ŝc� . �17�

To find the expression for the density matrix �13�, we will
represent the matrix of scattering �16� as a perturbation ex-
pansion and substitute it into Eq. �17�.

The first two orders of the perturbation theory give

�B�x,x�� = �0
B�x,x�� −

1

2
�T̂c� dx1dx2�̂1�x��̂2

†�x��

��− 1�l1+l2�̂l1
† �x1�Êl1

�1�x1�d̂�1�̂l1
�x1��̂l2

† �x2�

�Êl2

�2�x2�d̂�2�̂l2
�x2�� .

We describe atoms A and B in terms of independent initial
eigenfunctions. Consequently, the normal ordering of opera-
tors describing atom B is

�N̂�̂l1
�x��̂l2

† �x���̂l
†�x1��̂l��x2� . . . � = 0,

for any order but the second one, while the second order of
normal product represents the density matrix of initial state
of atom,

�0
B�x,x�� = �N̂�̂l1

�x��̂l2
† �x��� = ��̂†�x���̂�x�� .

In the energy domain, this matrix of density is

�0
B�E,r − r�� = 2�


i

�i�r − RB��i
*�r� − RB���E − �Bi��	̂i

†	̂i� .

If the initial state of atom B is ground state, then

�0
B�E,r − r�� = 2��g�r − RB��g

*�r� − RB���E − �Bg� ,

�18�

where index g stands for ground state.

a

b

d

c

FIG. 1. Feynman’s diagrams for the lowest orders of perturba-
tion theory. Solid line corresponds to atom propagator g0B. Dashed
line corresponds to photon propagator D0. Dash-dotted line repre-
sents density matrix �B

0 . The coherent channel is represented by
�a�–�c�, the incoherent channel is represented by �d�.
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Using Wick’s theorem, we find

�B�x,x�� = �0
B�x,x�� − i� dx1dx2�0

B�x,x1�d̂�d̂��g22
0B�x1,x2�

�D22
0����x2,x1�g22

0B�x2,x�� − i� dx1dx2g11
0B�x,x1�d̂�d̂��

�g11
0B�x1,x2�D11

0����x2,x1��0
B�x2,x�� − i� dx1dx2g11

0B�x,x1�d̂�d̂���0
B�x1,x2�D21

0����x2,x1�g22
0B�x2,x�� . �19�

The Feynman diagrams corresponding to Eq. �19� are
given in Fig. 1. The first term is given in Fig. 1�a�, the sec-
ond term is given in Fig. 1�b�, the third term is given in Fig.
1�c�, and the fourth term representing the incoherent channel
is shown in Fig. 1�d�.

The propagators of free atom B are

g11
0B�x,x�� = − i�T̂c�̂1�x��̂1

†�x���vac

= − i��t − t��

i

�i
*�r���i�r�e−i�Bi�t−t��,

g22
0B�x,x�� = − i�T̂c�̂2�x��̂2

†�x���vac

= − i��t� − t�

i

�i
*�r���i�r�e−i�Bi�t−t��,

g12
0B�x,x�� = − i��̂2

†�x���̂1�x��vac = 0,

g21
0B�x,x�� = − i��̂2�x��̂1

†�x���vac = − i

i

�i
*�r���i�r�e−i�Bi�t−t��,

�20�

where ��t− t�� is the unit step function.
Deriving Eq. �19�, we took into account g12

0B=0.
The free photon propagator is

Dll�
0����x�,x� = i�T̂cÊl

��x��Êl�
���x��vac. �21�

The first three terms of the Eq. �19� correspond to the
so-called coherent channel ��c

B�, with atom B returning to its
initial state �e.g., elastic scattering�. The last term represents
the so-called incoherent channel ��n

B�, with atom B changing
its initial state �e.g., spontaneous decay, Raman scattering�.
Consequently, we can represent the matrix of density as a
sum

�B�x,x�� = �c
B�x,x�� + �n

B�x,x�� .

The representation of the density matrix as a sum of con-
tributions of the coherent channel and the incoherent one was
used by Veklenko �27� for electromagnetic field and �28� for
a group of atoms.

Here, we are interested in the Casimir-Polder interaction
only. Consequently, atom B does not change its initial state
as a result of interaction. It means that the incoherent channel
does not contribute to the interaction potential.

The simplest Feynman diagrams for the fourth-order per-
turbation expression for the coherent channel are given in
Fig. 2. Here, we did not take into account interaction be-
tween atoms A and B. The expression given by the diagram
in Fig. 2�a� can be expressed via the diagram given in Fig.
1�b�, as well as the diagram in Fig. 2�b� can be expressed via
diagram in Fig. 1�c�.

The diagram in Fig. 2�c� corresponds to the expression

�c
�4�B�x,x�� =� dx1dx2dx3dx4g11

0B�x,x1�d̂�d̂��g11
0B�x1,x2�

�D11
0����x2,x1��0

B�x2,x3�d̂�1d̂�2g22
0B�x3,x4�

�D22
0�1�2�x4,x3�g22

0B�x4,x�� .

To demonstrate the method of summation of Feynman’s
diagrams, let us consider diagrams in Figs. 1�b� and 2�a�. If
we calculate all the sequence of the diagrams of the same
type, we will find the diagram in Fig. 3. The thick solid line
represents the complete propagators g11

B �x ,x���g22
B �x ,x��� of

atom B, which obey the Dyson equations �29�,

g11
B �x,x�� = g11

0B�x,x�� +� dx1dx2g11
0B�x,x1�

�M11�x1,x2�g11
B �x2,x�� ,

a

b

c

FIG. 2. Feynman’s diagrams for the simplest expressions of the
fourth-order perturbation technique.
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g22
B �x,x�� = g22

0B�x,x�� +� dx1dx2g22
0B�x,x1�

�M22�x1,x2�g22
B �x2,x�� . �22�

M11 and M22 are the mass operators given by the following
equations:

M11�x,x�� = − id̂�d̂��g11
B �x,x��D11

0����x�,x� ,

M22�x,x�� = id̂�d̂��g22
B �x,x��D22

0����x�,x� , �23�

The real parts of mass operators �23� describe the Lamb
shift, while the imaginary parts describe the radiation widths
of excited levels of atoms.

To calculate the Green function g11
B of atom B taking into

account the Lamb shift and radiation line width of atom B,
we should substitute Eq. �23� into �22� and find the Fourier
transformation. After renormalization, we find

g11
B �E,r,r�� = 


i

�i�r − RB��i
*�r� − RB�

E − �Bi + i
�Bi

2

. �24�

For atom A we neglect the width of excited state energy;
consequently,

g11
A �E,r,r�� = 


i


i�r − RA�
i
*�r� − RA�

E − �Ai + i0
. �25�

Now, summing up Feynman’s diagrams, we find

�c
B�x,x�� = �0

B�x,x�� +� dx1dx2g11
B �x,x1�M11�x1,x2��0

B�x2,x��

+� dx1dx2�0
B�x,x1�M22�x1,x2�g22

B �x2,x��

+� dx1dx2dx3dx4g11
B �x,x1�M11�x1,x2��0

B�x2,x3�

�M22�x3,x4�g22
B �x4,x�� , �26�

with the mass operators given by �23�.
Equation �26�, along with the Eq. �23�, describes the in-

teraction of atom B with the vacuum, which results in the
Lamb shift and radiation line broadening. The interaction
with atom A and the medium could be taken into account the

similar way �30�. We should consider higher orders of the
expansion of the scattering operator �16�. Finally, we come
to Eq. �26�, with the mass operator given by

M11�x,x�� = − id̂�d̂��g11
B �x,x��D11

����x�,x� ,

M22�x,x�� = id̂�d̂��g22
B �x,x��D22

����x�,x� , �27�

Here, D11
����x� ,x� and D22

����x� ,x� are the complete photon
Green functions with account of the interaction with atoms,

Dll�
����x�,x� = i�T̂cẼl

��x��Ẽl�
���x��vac = i�T̂cÊl

��x��Êl�
���x�Ŝc�vac,

�28�

where Ẽ is in the Heisenberg representation and Ê is in the
interaction representation.

So, Eq. �26� along with the Eq. �27� take into account not
only the interaction of atom B with the vacuum �Lamb shift�,
but the interaction with atom A and the medium.

The integral equation �26� can be rewritten as a differen-
tial one �24�.

�c
B�x,x�� = ��x��*�x��,

�i
�

�t
− ĤB���x� =� M11�x,x����x��dx�, �29�

The coherent channel processes do not change the initial
state of atom B; consequently,

��x� = �0�r − RB�f�t� , �30�

where index 0 stands for initial state of atom B. Substituting
�30� into �29� and neglecting nondiagonal elements of the
mass operator, we arrive at the following equation:

i
�

�t
f�t� − �0Af�t� = �

t0

�

�M11�t,t���f�t��dt�,

�M11�t,t1�� =� �0
*�r − RB�M11�x,x1��0�r1 − RB�drdr1,

�31�

where we suppose that the interaction was switched on at t0
�t0→−� �.

Using pole approximation, we find

��x� = �0�r − RB�e−i�B0te−i�M11��B0���t−t0�,

where �M11��B0��=�−�
� �M11�t , t���ei�B0�t−t��d�t− t�� is the Fou-

rier transform of mass operator taken at point E=�B0.
Thus, the density matrix of coherent channel in energy

domain,

�c
B�E,E�,r,r�� = �

t0

�

�c
B�x,x��eiEt−iE�t�dtdt�, t0 → − � ,

is

+ +…

= + +…

=

FIG. 3. Summation of Feynman’s diagrams.
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�c
B�E,E�,r,r��

=
�0�r − RB��0

*�r� − RB�ei�E−E��t0

�E − �B0 − �M11��B0����E� − �B0 − �M22��B0���
.

�32�

Consequently, the interaction potential is expressed in terms
of the mass operator �M11�,

U�RA − RB� = �EB = Re�M11��B0�� . �33�

Thus, to calculate the interaction potential, we have to find
the mass operator �27� and the photon Green functions �28�.
Substituting �27� into �33�, we find the general relation be-
tween the interaction potential and the Green function of the
photons,

U�RA − RB� = − Re��
−�

�

d�� drdr��0
*�r − RB�

id̂�d̂��

2�

�g11
B �� + �B0,r,r��D11

�����,r�,r��0�r� − RB�� .

�34�

Now, we substitute Eq. �24� into Eq. �34� and calculate
the integrals using the following expressions for the matrix
elements of the dipole moments in dipole approximation:

dmn
B�eikRB =� �m

* �r − RB�d̂�eikr�n�r − RB�dr , �35�

U�RA − RB� = − Re
ideg

B�deg
*B��

2�
�

−�

�

d�
D11

�����,RB,RB�

� − �B + i
�B

2

.

�36�

Here �B is the transition frequency of atom B, deg
B� is the

matrix element of dipole moment, where index g stands for
ground state and index e stands for excited state.

Equation �36� corresponds to the interaction between an
atom B and electromagnetic field described by the Green

function D11
��� at zero temperature. Therefore, we can inves-

tigate the interaction between atom B and a body of arbitrary
shape, provided the photon Green function is known.

Using Eqs. �28� and �12�, we can write

D11
����x�,x� = i�Ẽ��x��Ẽ���x��vac��t� − t�

+ i�Ẽ���x�Ẽ��x���vac��t − t�� ,

D12
����x�,x� = i�Ẽ���x�Ẽ��x���vac,

D21
����x�,x� = i�Ẽ��x��Ẽ���x��vac,

D22
����x�,x� = i�Ẽ���x�Ẽ��x���vac��t� − t�

+ i�Ẽ��x��Ẽ���x��vac��t − t�� . �37�

These functions are connected with the retarded and ad-
vanced Green functions �31�,

Dr
����x�,x� = i�Ẽ��x��Ẽ���x� − Ẽ���x�Ẽ��x���vac��t� − t� ,

Da
����x�,x� = − i�Ẽ��x��Ẽ���x� − Ẽ���x�Ẽ��x���vac��t − t�� .

�38�

Comparing Eqs. �37� and �38�, we find �26,27�

Dr = D11 − D12 = D21 − D22,

Da = D11 − D21 = D12 − D22. �39�

Using Eq. �37�, we can establish another property of photon
Green function in an energy-coordinate domain,

D11
�����,r,r�� = D11

����− �,r�,r� . �40�

Using Eqs. �39� and �40�, we can rewrite �36�,

U�RA − RB� = Re
ideg

B�deg
*B��

2�
�

0

�

d��Dr
�����,RB,RB�

+ D12
�����,RB,RB��� 1

�B − � − i
�B

2

+
1

�B + � − i
�B

2
� . �41�

Direct calculation of the retarded Green function results in
�31�

Dr
����x�,x� = Dr

0����x�,x� +� dx1dx2 

�1�2

Dr
0��1�x�,x1��r

�1v2�x1,x2�Dr
0�2���x2,x�

+� dx1dx2dx3dx4 

�1�2�3�4

Dr
0��1�x�,x1��r

�1�2�x1,x2�Dr
0�2�3�x2,x3��r

�3�4�x3,x4�Dr
0�4���x4,x� + ¯ . �42�
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Equation �42� can be rewritten as the Dyson integral equa-
tion,

Dr
����x�,x� = Dr

0����x�,x� +� dx1dx2

� 

�1�2

Dr
0��1�x�,x1��r

�1v2�x1,x2�Dr
�2���x2,x� .

�43�

For the advanced Green function,

Da
����x�,x� = Da

0����x�,x� +� dx1dx2

� 

�1�2

Da
0��1�x�,x1��a

�1v2�x1,x2�Da
�2���x2,x� .

�44�

We use the retarded and advanced polarization operators
�26,27�

�r = �11 + �12 = − ��22 + �21� ,

�a = �11 + �21 = − ��22 + �12� . �45�

�11
�1v2�x1,x2� = − d̂�1d̂�2��A�x1,x2�g11

A �x2,x1�

+ g11
A �x1,x2��A�x2,x1�� + �11med

�1v2 �x1,x2� ,

�12
�1v2�x1,x2� = d̂�1d̂�2��A�x1,x2�g21

A �x2,x1�

+ g12
A �x1,x2��A�x2,x1�� + �12med

�1v2 �x1,x2� ,

�21
�1v2�x1,x2� = d̂�1d̂�2��A�x1,x2�g12

A �x2,x1�

+ g21
A �x1,x2��A�x2,x1�� + �21med

�1v2 �x1,x2� ,

�22
�1v2�x1,x2� = − d̂�1d̂�2��A�x1,x2�g22

A �x2,x1�

+ g22
A �x1,x2��A�x2,x1�� + �22med

�1v2 �x1,x2� ,

�46�

where �med
�1v2 is the polarization operator of the medium. The

first term of the expansion of the polarization operator for the
medium is

�11med
�1v2 = − d̂�1d̂�2��med�x1,x2�g11

med�x2,x1�

+ g11
med�x1,x2��med�x2,x1�� . �47�

Equation �47� corresponds to a single scattering of a photon
on an atom of the medium. This polarization operator results
from the part of the Hamiltonian �6� corresponding to the
atoms of the medium.

Now let us consider electromagnetic field in infinite me-
dium described by the permittivity ����. Then, Eq. �43� can
be rewritten in terms of the polarization operator of the me-
dium as

Drmed
��� �x�,x� = Dr

0����x�,x� +� dx1dx2 

�1�2

Dr
0��1�x�,x1�

��rmed
�1v2 �x1,x2�Drmed

�2�� �x2,x� . �48�

On the other hand, the retarded Green function of photons
obeys the equation �31�

� �2

�r� � r��
− ����� − �2���������Drmed

��� �r,r�,��

= 4��2������r − r�� . �49�

As a result, we arrive at a well-known relation �31�

�rmed
��� �k,�� =� exp�− ik�r − r�� + i��t − t���

��rmed
��� �r − r�,t − t��d�r − r��d�t − t��

=
��������� − 1��2

4�
. �50�

For the retarded Green function of the photons in �k ,�� do-
main in infinite medium, we find the equation using �48� and
�50�,

Drmed
��� �k,�� = − 4��2����� −

k�k��

�����2�������2 − k2�−1.

�51�

In the coordinate-energy domain, we have

Drmed
��� ��,r − r��

=
1

�2��3�
−�

�

Drmed
��� ��,k� exp�ik�r − r���d�r − r��

= �2������1 +
i

n����	r − r�	
−

1

n2����2	r − r�	2
�

+
�r − r����r − r����

	r − r�	2
� 3

n2����2	r − r�	2

−
3i

n����	r − r�	
− 1�� ein����	r−r�	

	r − r�	
,

Da
�����,r − r�� = �Dr

�����,r − r���* �52�

where n���=����� is the complex refractive index of the
medium.

Now, let us turn to our problem of interaction between
two atoms embedded in a dielectric. We use Eq. �43� and
denote

�A = � − �med �53�

the polarization operator of atom A only.
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Dr = Dr
0 + Dr

0�rmedDr
0 + Dr

0�rmedDr
0�rmedDr

0

+ Dr
0�rmedDr

0�rmedDr
0�rmedDr

0 + ¯ + Dr
0�ArDr

0

+ Dr
0�rmedDr

0�ArDr
0 + Dr

0�rmedDr
0�rmedDr

0�ArDr
0 + ¯ .

�54�

Here, we omit integrals for the sake of simplicity. The first
line of �54� can be rewritten with the help of �48�

Dr
0 + Dr

0�rmedDr
0 + Dr

0�rmedDr
0�rmedDr

0

+ Dr
0�rmedDr

0�rmedDr
0�rmedDr

0 + ¯ = Drmed,

while the second line reads

Dr
0�ArDr

0 + Dr
0�rmedDr

0�ArDr
0 + Dr

0�rmedDr
0�rmedDr

0�ArDr
0

+ ¯ = Drmed�ArDr
0.

So, the Eq. �54� is

Dr = Drmed + Drmed�ArDr
0 + Drmed�ArDr

0�rmedDr
0

+ Drmed�ArDr
0�rmedDr

0�rmedDr
0 + ¯

= Drmed + Drmed�ArDrmed + ¯

= Drmed + Drmed�ArDrmed + Drmed�ArDrmed�ArDrmed

+ ¯ .

Finally, we come to the Dyson equation

Dr
����x�,x� = Drmed

��� �x�,x� +� dx1dx2 

�1�2

Drmed
��1 �x�,x1�

��Ar
�1v2�x1,x2�Dr

�2���x2,x� , �55�

or in the first approximation,

Dr
����x�,x� = Drmed

��� �x�,x� +� dx1dx2 

�1�2

Drmed
��1 �x�,x1�

��Ar
�1v2�x1,x2�Drmed

�2�� �x2,x� . �56�

It is similar to Eq. �43�, but instead of the free photon Green
function D0 we have the Green functions of the photons in
absorbing medium Dmed.

The same type of consideration results in the following
equation �27� for D12:

D12
����x�,x� = D12 med

��� �x�,x� +� dx1dx2 

�1�2

Drmed
��1 �x�,x1��Ar

�1v2�x1,x2�D12 med
�2�� �x2,x�

+� dx1dx2 

�1�2

D12 med
��1 �x�,x1��Aa

�1v2�x1,x2�Damed
�2�� �x2,x� −� dx1dx2 


�1�2

Drmed
��1 �x�,x1��A12

�1v2�x1,x2�Damed
�2�� �x2,x�

�57�

for the Green functions D12
0 , we can write the equations using �37�,

D12
0�����,r − r�� =

2i�2��− ��
	r − r�	

������sin�	�		r − r�	��1 −
1

�2	r − r�	2
� +

cos��	r − r�	�
	�		r − r�	 � +

�r − r����r − r����

	r − r�	2 �sin�	�		r − r�	�

�� 3

�2	r − r�	2
− 1� −

3 cos��	r − r�	�
	�		r − r�	 �� . �58�

We should stress here, that D12
0���=0 for ��0. The situation does not change in the medium for it does not emit radiation �27�,

D12med
��� = 0 for � � 0. �59�

To calculate the interaction potential, we should substitute �56� and �57� into �36� and take into account �59�,

U�RA − RB� = Re
ideg

B�deg
*B��

2�
�

0

�

d�� 1

�B − � − i
�B

2

+
1

�B + � − i
�B

2
��Drmed

��� ��,RB,RB�

+ 

�1�2

Drmed
��1 ��,RB,RA��Ar

�1v2���Drmed
�2�� ��,RB,RA� − Drmed

��1 ��,RB,RA��A12
�1v2���Damed

�2�� ��,RB,RA�� . �60�
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The first term in the brackets corresponds to the interaction
of atom B with the medium and vacuum. Account of this
term results in substitution �B

0 →�B, with �B
0 being the energy

of bare state of atom B, and �B being the energy of the state
with account of the Lamb shift and interaction with the me-
dium.

Direct calculation of the polarization operators with the
help of �46�, �53�, and �45� gives us

�Ar
�1�2��� = − deg

*A�1deg
A�2� 1

�A + � + i0
+

1

�A − � − i0
� ,

�61�

�A12
�1�2��� = − 2�ideg

*A�1deg
A�2��� − �A� . �62�

The polarization operator is equal to the polarizability of
atom A.

�Ar
�1�2��� = �A

�1�2��� ,

with the polarizabilities of excited and ground-state atoms
being �29�

�g
������ =

dge
� deg

��

�eg − � − i
�

2

+
deg

� dge
��

�eg + � + i
�

2

, �63�

�e
������ =

deg
� deg

��

− �eg − � − i
�

2

+
dge

� deg
��

− �eg + � + i
�

2

, �64�

Thus, we find

U�RA − RB� = Re
ideg

B�deg
*B��

2�
�

0

�

d�� 1

�B − � − i
�B

2

+
1

�B + � − i
�B

2
�


�1�2

�Drmed
��1 ��,RB,RA�

��A
�1�2Drmed

�2�� ��,RB,RA�

+ 2�iDrmed
��1 ��,RB,RA�deg

*A�1deg
A�2���

− �A�Damed
�2�� ��,RB,RA�� . �65�

We should mention here that if both atoms are in their
ground states, then instead of �A we should substitute −�A.
As a result, according to �65�, the second term of �65� will be
equal to zero. And we will arrive at the generalization of the
result, obtained in Ref. �29� for interaction of two ground-
state atoms in a vacuum. To obtain the result �29�, we should
take free photon Green functions and put �B=0.

After averaging over all possible mutual orientations of
dipole moments of atoms, we can write �29�

deg
�1dge

�2 →
	deg	2

3
��1�2

,��1�2 → ���1�2
. �66�

Now, taking into account �29� Da���=Dr
*���, we find

U�RA − RB� = Re
i	deg

B 	2

6�
�

0

�

d�� 1

�B − � − i
�B

2

+
1

�B + � − i
�B

2
�


�1�2

��Drmed��,RB,RA��2

��A��� +
2�i

3
	Drmed��,RB,RA�	2	deg

A 	2���

− �A�� . �67�

For the ground-state atom B, the expression in parentheses
resembles the polarizability of the ground-state atom �63�.
The difference is in the sign of �B in the second nonresonant
term. For positive frequencies we can omit this difference
and write

U�RA − RB� = Re
i

2���0

�

d��B����A���

��Drmed��,RB,RA��2� + �2�i

3
�

0

�

d��B���

�	Drmed��,RB,RA�	2	deg
A 	2��� − �A�� . �68�

To find the result, we should substitute �52� into �68�,

U�R� = Re
i

9���0

�

�eA����gB���
�4

R2�1 +
2i

n����R

−
5

�n����R�2�� − � 6i

�n����R�3

+
3

�n����R�4�exp�2in����R�d�

0z

A

B

phL

B

B

z0n
R

ρ

ρ0

FIG. 4. Interaction between excited atom A and ground-state
atoms B.
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+ �2�i	deg
A 	2�gB��A�

�A
4

R2 �1 +
1

�n��A��AR�2

+
3

�n��A��AR�4�exp�− 2 Im�n��A���AR
� .

�69�

Here we use R=RA−RB.
Since polarizabilities of atoms have no poles in upper

complex plane of �, the first term of �69� can be represented
as an integral over imaginary frequency iu,

U�R� = Re�−
1

�
�

0

�

�eA�iu��gB�iu�
u4

R2��1 +
2

n�iu�uR

+
5

�n�iu�uR�2 +
6

�n�iu�uR�3 +
3

�n�iu�uR�4�
�exp�− 2n�iu�uR�du − �4

9

	deg
A 	2	deg

B 	2�B�A
4

��B
2 − �A

2 − i�B�A�R2

��1 +
1

�n��A��AR�2 +
3

�n��A��AR�4�
�exp�− 2 Im�n��A���AR
� . �70�

Expression �70� is the potential corresponding to interaction
between excited atom A and ground-state atom B embedded
in an absorbing dielectric medium described by complex re-
fractive index n. We took into account possible absorption of
photons by the dielectric medium, which is described by the
imaginary part of the refractive index. The first term is non-
resonant. It corresponds to either interaction between excited
and ground-state atoms, or interaction between two ground-
state atoms. The second term is resonant. It describes inter-
action between excited and ground-state atoms only. If both
atoms are not excited, this term is equal to zero. This term
may result in either attraction or repulsion between the at-
oms. If �A��B the interaction is repulsive, if �A��B the
interaction is attractive. Besides, the resonance term may be
up to four orders of magnitude greater than the nonresonance
term. Niemax has measured the force between excited and
ground-state atoms and confirmed the resonance repulsion
between them �13,14�.

Let us compare the result of �70� with the one obtained
with the help of perturbation theory by Power and
Thirunamachandran �1�. Let n=1, �B=0. In this case, the
formulas �70� and �1� coincide. The main difference of the
result �70� from the one obtained with the help of perturba-
tion technique is the exponential factor in the second term,
exp�−2 Im�n��A���AR
. This factor results in the suppression
of the van der Waals-Casimir-Polder interaction between ex-
cited and ground-state atoms in an absorbing dielectric me-
dium. The reason for this suppression is the possibility for
photons to be absorbed by the medium. Such absorption can-
not be taken into account in perturbation technique. As it will
be shown in the next section, this suppression is crucial for
Casimir-Polder limit of retardation �R���, and this expo-
nential factor makes the divergent integral �5� convergent.

Let us consider interaction between two ground-state at-
oms. We should substitute �A→−�A. It results in the for-
mula

U�R� = Re�−
1

�
�

0

�

�gA�iu��gB�iu�
u4

R2�1 +
2

n�iu�uR

+
5

�n�iu�uR�2 +
6

�n�iu�uR�3 +
3

�n�iu�uR�4�
�exp�− 2n�iu�uR�du� . �71�

For the nonretarded van der Waals limit �R���, the expres-
sion �71� reads

U�R� = − Re� 3

�
�

0

� �gA�iu��gB�iu�
R6�n�iu��4 du� . �72�

For the retarded limit �R���,

U�R� = −
23�gA�0��gB�0�

4��n�0��5R7 . �73�

The expression �71� coincides with the corresponding formu-
las, obtained for interaction between two ground-state atoms
embedded in a dielectric medium �32�.

III. INTERACTION BETWEEN AN EXCITED ATOM
AND A PLANE DIELECTRIC MEDIUM

OF GROUND-STATE ATOMS

We consider interaction between an excited atom and a
dielectric medium of ground-state atoms. Let the medium be
diluted so we can take into account only pair interactions.
Let excited atom A be situated at a distance of z0 from the
interface of the medium of atoms B �Fig. 4�. Atoms A and B
are dissimilar. The density number of the atoms of the me-
dium is n0. To find the interaction potential, we should inte-
grate expression �70� over the volume of the medium,

Uz�z0� =� dVU�R�n0.

This integral is convergent due to the exponential factor of
the second term. If we take the expression obtained with the
help of perturbation technique �1�, the result �5� is divergent.

To simplify calculations, we will use the following model.
Let

Lph = �2 Im�n��A���A
−1 �74�

be the photon free mean path in the medium. We will restrict
the volume of integration by the photon free mean path and
drop the exponent in the second term of the expression �70�.
The resonance part of the force between two atoms in this
model is
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FR�R� =
�

�R
U�R� = Re�8

9

	deg
A 	2	deg

B 	2�B�A
4

��B
2 − �A

2 − i�B�A�R3�1 +
2

��AR�2

+
9

��AR�4�� . �75�

Here, we put n�1 in denominators of �75� for dilute gas.
Integrating the force �75� over the volume shown in Fig. 4

gives us

Fz�z0� = Re
4�

9

	deg
A 	2	deg

B 	2�B�A
4n0

��B
2 − �A

2 − i�B�A��ln�1 +
Lph

z0
� +

2

�A
2 � 1

z0
2

−
1

�z0 + Lph�2� +
3

2�A
4 � 1

z0
4 −

1

�z0 + Lph�4�� . �76�

For dilute gas, the permittivity is

���� = 1 + 4�n0�g��� .

Substituting here the polarizability of atom B �63� with �66�,
we find

n��� = ����� =�1 +
4�

3
n0	dge

B 	2��B
2 − �2 − i�B��−1.

Using expression �74�, we find

Lph = 3
��B

2 − �A
2�2 + ��B�A�2

4�n0	dge
B 	2�B�A

2 . �77�

Let z0�Lph, then

Fz�z0� =
	deg

A 	2�B�A
2��B

2 − �A
2�

3z0�B
.

We should stress here that the force does not depend on
the density number of the medium. The force between an
excited atom and a gaseous medium is not oscillating as it
was expected for metal �19�. For the opposite case z0�Lph
and z0��, we obtain

Fz�z0� =
2�

3

	deg
A 	2	deg

B 	2�Bn0��B
2 − �A

2�
���B

2 − �A
2� + ��B�A�2�z0

A . �78�

This result coincides with the ones obtained for interaction of
excited atom and a dielectric medium for the case of dilute
gas medium and z0�� �19,20�. But here, we introduce an-
other parameter: the free mean path of the photon in the
medium. Our formula �76� coincides with the previous re-
sults �19,20� for dilute gas only if z0�Lph.

IV. EXCITED ATOM IN THE CENTER OF A HEMISPHERE
OF DILUTE GAS MEDIUM

Let excited atom A be situated in the center of a hemi-
sphere of a gas of ground-state atoms B �Fig. 5�.

The resonance part of the force of interaction between a
single atom B and atom A can be found using �70� as fol-
lows:

FR�R� =
�

�R
U�R�

= Re
4

9

	deg
A 	2	deg

B 	2�B�A
4

��B
2 − �A

2 − i�B�A�R2� 2

R
�1 +

2

�A
2R2 +

9

�A
4R4�

+
1

Lph
�1 +

1

�A
2R2 +

3

�A
4R4��exp�− �R − R0�/Lph� .

�79�

After integration of �79� over the infinite volume of the
hemisphere, we arrive at

F�R0� =
4�

9

	deg
A 	2	deg

B 	2�B�A
4��B

2 − �A
2�n0

���B
2 − �A

2�2 + ��B�A�2�
�1 + 2

Lph

R0
�

�80�

for R0�Lph and R0��, and

F�R0� = 2�
	deg

A 	2	deg
B 	2�B�A

4��B
2 − �A

2�2n0

���B
2 − �A

2�2 + ��B�A�2�R0
4 , �81�

for R0�Lph and R0��.

V. SUMMARY

The retarded interaction between two dissimilar atoms if
one of them is excited is described by the interaction poten-
tial, which is proportional to R−2. This result was obtained
with the help of perturbation technique �8,9�. So, if we con-
sider interaction between an excited atom and a dilute gas of
ground-state atoms using the lowest orders of perturbation
technique, we obtain divergence.

To solve the problem of divergence, we considered inter-
action between two atoms �one of them is excited� embedded
in an absorbing dielectric medium. To calculate the interac-
tion, we used the method based on the kinetic Green function
�24�. We took into account absorption of photons in the me-
dium. Therefore, the resonance part of the potential is pro-
portional to exp�−2 Im�n��A���AR
. It results in the suppres-

A

B

B

B

0R

FIG. 5. Interaction between an excited atom and a
hemisphere.
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sion of the Casimir-Polder interaction between excited and
ground-state atoms. Besides, we took into account finite
width of the excited level of one of the atoms. In the limiting
case n→1 and �→0, we obtained the result of perturbation
theory �8,9�. If the atoms are in their ground state, our result
coincides with the one obtained in Ref. �32� for two ground-
state atoms embedded in a dielectric medium.

Then we considered interaction between an excited atom
and a gas medium of ground-state atoms. We took into ac-
count only pair interactions. The result is no more divergent.
We introduced another parameter: the free mean path of the
photon in the absorbing medium Lph. We showed that for
z0�Lph and z0��, the conventional result for nonretarded
interaction between an excited atom and a medium for a case
of dilute gas �19,20� is obtained. But for z0�Lph and z0��
the result is different despite the nonretarded character of the
interaction. We obtained the Casimir-Polder force for

z0�Lph and z0��. It does not depend on the density num-
ber of the medium. But we should stress here that for limit-
ing case n0=0, the inequality z0�Lph is violated. The ob-
tained results are of resonance character, but for equal
transition frequencies of the atoms it cannot be applied. For
the case of identical atoms, one should describe the atoms by
a single symmetric or antisymmetric wave function �10�.

We calculated the force on an excited atom situated in the
center of a hemisphere of dilute gas of ground-state atoms.
We obtained an exact solution of the problem.
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