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We deal with many-electron systems having a noninteger number of electrons, which cannot be described
properly by means of pure states or by canonical statistical ensemble states. The study of the one-electron
reduced density matrix for these systems raises the problem of its representability in statistical ensembles of
grand canonical type. We derive the necessary and sufficient conditions for the representability of the one-
electron reduced density matrix of grand-canonical statistical ensembles.
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I. INTRODUCTION

The reduced density matrices �RDM’s� �1–12� arise from
an average over a subset of the variables of the N-electron
density matrix �DM� corresponding to an N-electron system
state, which is known as contraction mapping �9,13–15�. For
all practical purposes, this average over �N− p�-electron vari-
ables, which leads to the p-RDM, does not imply any loss of
the useful information. This is due to the fact that DM con-
tains redundant information to compute the expectation val-
ues for p-electron observables and the �N− p� variables av-
eraged in the contraction mapping can be ignored �3,4,9�.
Therefore, the RDM’s may be regarded as statistical objects
much simpler than the DM, depending on a lower number of
variables.

The N-representability conditions are the constraints that
a given pth-order density matrix must fulfill to be derivable
from a DM corresponding to an N-electron system state
�13–16�. These conditions have been completely established
for the 1-RDM in systems with fixed integer number of
electrons—i.e., systems described by means of pure states or
canonical statistical ensembles. However, open systems in
quantum chemistry, molecular physics, solid-state physics,
embedding theories, etc., share the feature of possessing a
noninteger �or variable� number of electrons �8,17–31�. Like-
wise, domains related to fragments within molecular systems
such as Daudel’s loges, “fuzzy” atoms, Bader’s basins, etc.,
lead to a fractional electron number �32–35�. Therefore, such
systems may not be described either by means of pure states
or by canonical ensemble states. Thus, the necessity for such
a description leads us to consider p-RDM’s, and particularly
the 1-RDM, within the scenario of grand-canonical en-
sembles. The aim of this paper is to establish the necessary
and sufficient conditions for the representability of 1-RDM
in this kind of ensembles, in order to provide a rigorous
support to the interpretation of results in dealing with sys-
tems with a noninteger number of electrons.

The article is organized as follows. Section II reports the
main features of the RDM’s related to the representability

problem. Section III deals with the mathematical derivation
of the representability conditions for the 1-RDM in grand-
canonical ensembles. Finally, Sec. IV summarizes the con-
cluding remarks.

II. REDUCED DENSITY MATRICES: A BRIEF REVIEW

The most general description of a mixed quantum state of
an N-electron system is given by the DM �2,3,36�. This ma-
trix, which will be denoted as ND, is defined as the weighted
sum of the complete set of all accessible pure quantum states
of the system, whose physical meaning is the statistical dis-
tribution of the states in the mixture given by

ND = �
LN

wLN
�LN��LN� , �1�

where �LN� stand for N-electron quantum state functions in
the antisymmetric N-electron Hilbert space and wLN

are the
statistical weights or probability of occurrence of �LN� in the
mixture. It is obvious that a single or pure state is repre-
sented as a particular case in which all weights vanish except
only one:

ND = �LN��LN� . �2�

The trace operation �full real-space integration� of ND is nor-
malized to unity, so that tr�ND�=�LN

wLN
=1. The matrix ND

is Hermitian �self-adjoint�, positive semidefinite �all its ei-
genvalues are non-negative�, and bounded �the module of its
elements has an upper bound�.

The application of the contraction mapping to the DM
leads to a general definition of the p-RDM’s, which in the
occupation number representation is given by

pDj1,j2,. . .,jp

i1,i2,. . .,ip = tr	ND
ci1

† ci2
†
¯ cip

† cjp
¯ cj2

cj1

p!



= �
LN

wLN

pDj1,j2,. . .,jp

i1,i2,. . .,ip �LN� , �3�
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pDj1,j2,. . .,jp

i1,i2,. . .,ip �LN� =�LN� ci1
† ci2

†
¯ cip

† cjp
¯ cj2

cj1

p!
�LN

�4�

stand for p-RDM’s corresponding to all accessible pure
quantum states of the system. The indices i , j , . . . denote a set
of orthonormal one-electron functions �spin-orbitals�, and ci

†

and cj are the standard creation and annihilation fermion op-
erators, respectively. The average process expressed through-
out the trace symbol is performed over the remaining �N
− p� variables and hence for p=1 stands for the one-electron
reduced density matrix, for p=2 the two-electron or pair re-
duced density matrix, and so forth. The p-RDM’s are Her-
mitian, positive semidefinite, and bounded �4,13�. The nor-
malization condition for these distributions is given by the
binomial number of N electrons forming p-electron groups
or p-ons, � N

p
�.

The N-representability �13–16� plays a role of paramount
importance in the performance of the p-RDM’s. This feature
ensures that a given pth-order density matrix derives from a
pure state or from a canonical ensemble state of a fermion
system with a fixed integer number of electrons, N, by con-
traction, as defined by Eq. �3�. Hence, the fulfillment of the
N-representability conditions may be established as a crite-
rion to recognize whether a positive Hermitian matrix on the
Hilbert space of p-electron functions admits a representation
in the form of Eq. �3� or does not. Although the determina-
tion of the N-representability conditions remains open for
two- and high-order RDM’s, it has been solved completely in
practice only for the 1-RDM �37�. Let us recall the
N-representability conditions for this case reported by Cole-
man �13�, in order to introduce our notation and the method
that we will follow for working in the grand canonical en-
semble.

Given a trial 1-RDM, its necessary and sufficient
N-representability conditions are that its eigenvalues, one-
electron occupation numbers �ni�, must be bounded as

0 � ni � 1, i = 1, . . . ,r , �5�

and must fulfill the conservation of the number of electrons
throughout the trace operation as

�
i=1

r

ni = N, N � N , �6�

where r stands for the dimension of the one-electron Hilbert
space and N means the set of positive integer numbers.

While the necessity of these conditions arises from the
properties of fermion operators, their sufficiency can be
proved �13� taking into account that the set of DM’s is con-
vex and so is the set of allowable 1-RDM’s. Hence, let us
consider a bounded compact convex set K of the real field of
dimension r, Rr. An element x in K is said to be an extreme
element of K if there are no two distinct elements x1 and x2
in K such that x=�x1+ �1−��x2 for some �, 0���1. Ac-
cording to the theory of convex sets any element x�K may
be written as a linear convex combination x=�i �ixi where
�xi� stands for the set of extreme elements of K and ��i�0

with �i�i=1� are the coefficients of the expansion. There-
fore, to characterize the convex set of 1-RDM’s we need to
obtain its extreme elements. This task is successfully per-
formed using the following theorems �38�.

Theorem 1. Let Ax�b be a linear system of inequalities
and their solutions K= �x�Rr /Ax�b�. If K is bounded, it
holds that �i� K is a compact convex set, �ii� the number of
extreme elements of this set is finite, and �iii� the extreme
elements in K are those that at least verify r equalities asso-
ciated to the linear system. It must be noted that the general
case in which a part of the linear system is expressed by
Ax�b is easily solved by only transforming A→−A.

Theorem 2. Regarding identical hypotheses than in theo-
rem 1, the extreme elements may be determined by the fol-
lowing procedure: �i� Choose r inequalities from the linear
system Ax�b. �ii� Replace the inequalities of i by equalities.
�iii� If the linear system of r equalities defined in �ii� has a
unique solution satisfying all the original inequalities, it de-
fines an extreme element in K. �iv� If the system defined in
�ii� has not a unique solution, its solutions are discarded. �v�
As there are, in general, more than r conditions defining the
system, it is necessary to consider all possible sets of r in-
equalities and to repeat the above steps.

The above described procedure allows us to find all ex-
treme elements of the convex set of 1-RDM’s defined by
Eqs. �5� and �6� and therefore to characterize any element in
the convex set as a linear convex expansion of these extreme
elements. Thus, let x be a vector whose components are the
sequence of one- electron spin-function natural occupation
numbers �ni, i=1, . . . ,r�. The first step is to consider r
equalities with ni=0 or ni=1. By virtue of theorem 2 the
solutions of the linear system must also fulfill the trace rela-
tion that fix the sum of the components �ni� to the total num-
ber of electrons �trace constraint�. Thus, the feasible
solutions—i.e., extreme points—are vectors composed of N
components equal to 1 and the remaining r−N ones equal to
zero. The other family of solutions arises from choosing r
−1 equalities with ni=0 or ni=1 for all indices i except one
which is determined by the trace constraint. However, this
family of solutions turns out to be identical to the previous
one. Hence, the complete set of extreme points is composed
of vectors having N components equal to 1 and the remain-
ing r−N ones equal to zero. From now on we will call these
extreme points as binary states or binary points of level N.
Therefore, as the components of these vectors are one-
electron states �or spin-orbital� occupation numbers, it fol-
lows that they stand for 1-RDM’s arising from N-electron
state functions of Slater type �Slater determinants� �13�.
Hence, any other 1-RDM fulfilling Eqs. �5� and �6� may be
written as a linear convex combination of these extreme
1-RDM’s and consequently admits a representation in the
form of Eq. �3�. These results stand for the necessary and
sufficient conditions for a 1-RDM to be N-representable.
This set of N-representability conditions has been widely
analyzed and discussed by several authors from different
points of view �3,13–16,39–46�.

III. REDUCED DENSITY MATRICES
FOR GRAND-CANONICAL ENSEMBLES

In the previous section we have introduced RDM’s in Hil-
bert spaces with a fixed integer number of electrons. How-
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ever, a noninteger number of electrons appears in several
systems which have been reported in the literature �17�
which cannot be interpreted within the above-mentioned en-
sembles. Therefore, the description of these systems must be
performed within the grand-canonical ensemble formulation
that admits such situations. For such a goal we may use
DM’s within this ensemble in which the number of electrons
is not fixed. These matrices are expressed by

D = �
M�0

�
LM

wLM
�LM��LM� , �7�

where �LM� and wLM
stand for M-electron state functions and

their corresponding statistical weights or probability of oc-
currence in the statistical mixture, respectively. The trace op-
eration �full real-space integration� of D remains normalized,
and thus �M�0 �LM

wLM
=1. The mathematical properties of

D are identical to those mentioned for the canonical en-
semble.

The contraction mapping of Eq. �3� in the grand-canonical
ensemble has contributions arising from each of the
M-electron Hilbert subspaces and, in a formal way, the
p-RDM’s may be written as

pDj1,j2,. . .,jp

i1,i2,. . .,ip = �
M�0

�
LM

wLM

pDj1,j2,. . .,jp

i1,i2,. . .,ip �LM� �8�

where pDj1,j2,. . .,jp
i1,i2,. . .,ip �LM� stands for p-RDM’s corresponding to

quantum-state functions �LM� in the M-electron subspace.
Note that subspaces with M � p do not contribute to that
sum.

One of the central hypotheses when solving the
N-representability problem for canonical ensembles is that
the number of electrons is fixed and integer. However, in the
grand-canonical case this is not a consistent hypothesis.
Hence, hereafter we will use the term representability instead
of N-representability in dealing with grand-canonical en-
sembles. The set of necessary and sufficient representability
conditions should be determined anew. Thus, since the fer-
mion properties are still valid, the necessary conditions for
the representability of the 1-RDM in this scenario are given
by

0 � ni � 1, i = 1, . . . ,r ,

�
i=1

r

ni = N + �, N � N0, � � R, 0 � � � 1, �9�

where N0 and R mean the set of non-negative integer num-
bers and the set of real numbers, respectively. The last equa-
tion indicates that the trace of the matrix is now a noninteger
number. The set of conditions expressed by Eq. �9� stands for
the generalization of the canonical ensemble representability
conditions �where �=0 or �=1� as has been solved in Ref.
�13� and reviewed in the previous section. Its sufficiency can
be proved following a similar procedure to that used in the
canonical ensemble case, taking into account that the set of
grand-canonical 1-RDM’s defined by Eq. �9� also presents a
convex structure. Hence, we state the following theorem.

Theorem 3. A vector �n1 ,n2 , . . . ,nr� such that its compo-
nents are bounded as �0�ni�1, i=1, . . . ,r� and fulfill the

constraint �i=1
r ni=N+�, with 0���1, may be written as a

linear convex combination of binary points of levels N and
N+1.

Proof. Let us apply the algorithm given by theorem 2. The
first step is to consider only the conditions leading to identi-
cal solutions to that of the canonical ensemble case: that is,
�ni=0 or ni=1, i=1, . . . ,r�—i.e., binary points. However,
these solutions are not compatible with the constraint.
Hence, the other family of solutions arises from choosing r
−1 equalities with ni=0 or ni=1 for all indices i except one
which will be determined by the constraint. Let j be this
distinct index, and let us write the constraint as

nj + �
i�j

r

ni = N + � �10�

or, equivalently,

nj − � = N − �
i�j

r

ni. �11�

The numerical value of the left-hand side of this equation
lies in −1� �nj −���1 while the value of its right-hand side
is an integer number. Therefore, the only feasible solution for
this equation is that both members are zero. Hence, nj =�
and the remaining components of the vector must be equal to
0 and 1, summing N. Thus, the vector structure of the ex-
treme points is given by �1, . . . ,1 ,� ,0 , . . . ,0� or any other
arbitrary permutation of the occupation numbers. We will
call these elements, or extreme points, �-binary points.
Hence, by virtue of the convex set definition and theorems 1
and 2, any arbitrary vector of the type defined within the
hypothesis of theorem 3 may be written as a linear combina-
tion of these extreme �-binary points. The second step to
complete the proof of this theorem is to show that these �-
binary points may also be expressed as a linear convex com-
bination of binary points. For this goal, let us choose a point
v� of this �-binary point set such that nj =� and any other
ni�j is 0 or 1. Let us define v0 as the point with nj =0, while
the others ni�j remain identical to those of v�; then, v0 is a
binary point of level N—i.e., the sum of its components is N.
In the same way, we define a point v1 that only differs from
v� in that its jth component is nj =1, so that this is a �N
+1�-level binary point. Then we may write that

v� = �v1 + �1 − ��v0, �12�

which is also a linear convex combination of two binary
points v1 and v0. Consequently, we may conclude that any
vector under the hypothesis of theorem 3 may be written as
linear convex combinations of �-binary points. Moreover,
each of these �-binary points may be written by means of a
linear convex combination of binary points of levels N and
N+1, which proves the theorem.

According to theorem 3, any first-order density matrix
fulfilling Eq. �9� may be written by means of linear convex
combinations of binary points of levels N and N+1. As each
of these binary points stands for a 1-RDM arising from
Slater-type N- and �N+1�-electron-state functions, it follows
that this matrix admits a representation in the form of Eq.
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�8�. This result allows us to enunciate that the necessary and
sufficient representability conditions for a given 1-RDM to be
representable within the grand-canonical ensemble are that
its eigenvalues must be bounded between 0 and 1—i.e., �0
�ni�1, i=1, . . . ,r�, r being the dimension of the one-
electron Hilbert space.

The mathematical proof we have given above states that
any 1-RDM with noninteger number of electrons, N+�,
1D�N+��, may be written as a convex combination of only two
canonical-ensemble-state binary points of levels N and N
+1. Thus, it is worthwhile to interpret this result within the
statistical framework because of the nature of the 1-RDM.
For such a goal we may recall that

1D�N+�� = �
M�0

cM
1D�M�, �13�

where cM and 1D�M� stand for the convex coefficients and for
the canonical ensemble 1-RDM’s corresponding to mixtures
of Slater determinant 1-RDM’s �extreme elements� with
trace equal to M, respectively. Equation �13� represents the
fact that neither pure states nor canonical ensemble states are
able to describe a 1-RDM with a noninteger number of elec-
trons. The calculation of the trace of expression �13� leads to

N + � = �
M�0

cMtr�1D�M�� = �
M�0

cMM , �14�

which, regarding the meaning of the coefficients, shows that
the noninteger number of electrons is an average of the num-
ber of electrons of the systems involved in the expansion.
Furthermore, because of Eqs. �12� and �14�, expression �13�
may be written as

1D�N+�� = cN+1
1D�N+1� + cN

1D�N�, �15�

which after an elementary algebra leads to cN+1=� and cN
=1−�, in complete agreement with theorem 3. This result
establishes a rigorous justification of using Eq. �15� as an
ansatz to built up accurate functionals within the framework
of density matrix and density functional theories previously
reported by several authors �20,25,27,29�.

It is worthwhile to note that expression �15� is not the
only expansion that fulfills the necessary and sufficient con-
ditions derived in this section. Other expansions containing
canonical ensembles with a number of particles other than N
and N+1 are also compatible with these conditions. How-
ever, theorem 3, which used to come to the expansion �15�,
does not assure the coefficients of such other expansions dif-
ferent from Eq. �15� are nonzero.

IV. CONCLUDING REMARKS

In this work we have dealt with systems possessing a
noninteger number of electrons which need be described
within the grand-canonical-ensemble formulation. Our treat-
ment has set out the representability problem for reduced
density matrices corresponding to this kind of systems. We
have characterized the necessary and sufficient conditions
that a first-order density matrix must fulfill to ascertain that it
derives from a grand-canonical-ensemble state. An important
achievement arising from our work is that a 1-RDM corre-
sponding to an electronic system with noninteger number of
electrons may be described by means of only two statistical
ensemble states of N and N+1 electrons.
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