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Although good progress has been made in the calculation of correlation energies from total energy expres-
sions which are implicit functionals of the one-particle reduced density matrix, and explicit functionals of the
natural orbitals �NOs� and their occupation numbers, a formulation of the calculation of excitation energies in
this so-called density-matrix-functional theory �DMFT� is still lacking. In this paper we propose a time-
dependent density-matrix-functional theory �TDDMFT�. It is based on the equation of motion �EOM� for the
1-matrix P�s��t� in the representation of the stationary NOs. In the final form of the EOM, the rate of change of
the P�s��t�, �P�s��t� /�t, is determined by the commutator of the generalized time-dependent Fock matrix
F�s��t� with P�s��t� plus an additional term D�s��t�. The matrix F�s��t� determines the evolution of the NOs in the
time-dependent one-electron Schrödinger equations, while D�s��t� determines the time evolution of the NO
occupations. With the neglect of the electron Coulomb correlation, the time-dependent one-electron equations
for the NOs reduce to those for the Hartree-Fock �HF� orbitals of time-dependent HF �TDHF� theory. The
coupled-perturbed equations of TDDMF response theory �TDDMFRT� are derived for the linear response of
the 1-matrix �P�s��t� to a time-dependent perturbation �vext�t� of the external potential. The frequency-
dependent changes �P�s�,ij��� and �P�s�,kl��� are coupled through the coupling matrix Kijkl���, which is
produced with the derivatives of F�s��t� and D�s��t� with respect to Pkl�t��. Based on the response equations,
TDDMFRT eigenvalue equations are derived for the electron excitations �q.

DOI: 10.1103/PhysRevA.75.012506 PACS number�s�: 31.15.Ew, 31.70.Hq

I. INTRODUCTION

Density-matrix-functional theory �DMFT� was formulated
�1–9� and has been developed �10–17� exclusively as a sta-
tionary ground-state theory. In DMFT the ground-state en-
ergy is defined as an �implicit� functional E��1� of the one-
particle reduced density matrix �or 1-matrix� �1�x ,x�� �x
��r ,s� denotes the spatial r and spin s coordinates�. In the
rigorous DMFT treatment of two-electron systems �1� and in
its many-electron approximations, explicit functionals of the
stationary ground-state natural spin-orbitals �NOs� �i

�0� and
their occupations ni

�0� are considered, with �i
�0� and ni

�0� be-
ing, respectively, the eigenfunctions and eigenvalues of �1,

�1
�0��x,x�� = �

i

ni
�0��i

�0��x��*�i
�0��x� . �1.1�

Recent DMFT developments include derivation of one-
electron equations for NOs �18� with an effective nonlocal
potential, v̂ee

�0�, representing the electron-electron interaction
�the atomic units are used throughout the paper�

�ĥ + v̂ee
�0���i

�0��x� = �i�i
�0��x� , �1.2�

where ĥ=− 1
2�r

2+vext�r� is the one-electron operator. Based
on these equations and on the variational equations for ni

�0�,
the coupled-perturbed equations were derived in Ref. �19�
for the 1-matrix response ��1 to a static perturbation of vext.
In Ref. �20� corrections to the approximate functional of
Buijse and Baerends �9� were made, which improve signifi-
cantly the quality of the calculated DMFT potential curves
for a set of prototype �-bonded molecules.

Another approximate functional was proposed in Refs.
�21,22� and used to calculate bond lengths, vibrational fre-
quencies and ionization potentials �see also Ref. �23��. A
variant of open-shell DMFT was proposed in Ref. �24� and
in Ref. �25� a rigorous few-orbital functional of �i

�0� and ni
�0�

was employed to establish the orbital mechanism of van der
Waals �vdW� interaction in the “pure” vdW triplet 3H2 mol-
ecule. These and other DMFT functionals can serve as a
paradigm for the development of orbital-dependent “fifth-
generation” functionals in density functional theory �DFT�
�26�.

However, while the dynamical time-dependent DFT �TD-
DFT� �27–30� enjoys successful development and applica-
tions, an analogous time-dependent approach in DMFT is not
known. The key function of the stationary ground-state DFT
is the diagonal part of �1

�0��x ,x��, the electron density
��0��x�, which is represented in the Kohn-Sham �KS� theory
�31� with the orbitals �i

�0��x� of the auxiliary noninteracting
KS system. Then, TDDFT is based on the time-dependent
one-electron Schrödinger equations for evolution of �i�t�. In
the response variant of TDDFT �TDDFRT� the eigenvalue
equations for electron excitation energies �32� are an impor-
tant feature.

In this paper time-dependent density-matrix-functional
theory �TDDMFT� is developed. In Sec. II the equation of
motion �EOM� is derived for the 1-matrix P�s��t� in the
representation of the stationary NOs �i

�0��x�. According
to the EOM, a rate �P�s��t� /�t of the P�s��t� change
is determined with a matrix, the one-electron part
of which is the matrix commutator �h�s��t� ,P�s��t�� of
P�s��t� and the matrix h�s��t� of the time-dependent

one-electron operator ĥ�t�. Its two-electron part is the

PHYSICAL REVIEW A 75, 012506 �2007�

1050-2947/2007/75�1�/012506�8� ©2007 The American Physical Society012506-1

http://dx.doi.org/10.1103/PhysRevA.75.012506


difference �W�s��t�−W�s�
+ �t��for the orbital interaction matrix

W�s�,ij�t�=2�klmP�s�,jklm
�2� �t�	�i

�0��k
�0� 
�l

�0��m
�0��, which involves

the time-dependent two-particle reduced density matrix �2-
matrix� P�s�

�2��t�. In TDDMFT the time-dependent 2-matrix is

considered as a universal functional �2���1� ; t� of the time-
dependent 1-matrix �1�x ,x� , t� by virtue of the Runge-Gross
theorem. In Sec. III the EOM matrix is transformed to the
commutator �F�s��t� ,P�s��t�� of P�s��t� and the time-dependent
generalized Fock matrix F�s��t� plus an additional term
D�s��t�. The two-electron part F�s�

ee �t� of F�s��t� is the unitary
transformation of the time-dependent generalization V�t�

ee�t�
of the electron-electron interaction potential in �1.2� in the
representation of the time-dependent NOs �i�x , t�. By a uni-
tary transformation, the EOM for P�s��t� is split into the time-
dependent one-electron Schrödinger equations for evolution
of the NOs �i�x , t� and the equations for evolution of the NO
occupations ni�t�. In Sec. IV coupled-perturbed equations of
response TDDMFT �TDDMFRT� for the linear response of
the 1-matrix are derived and, based on these equations, TD-
DMFRT eigenvalue equations are derived for the electron
excitations �q. In Sec. V a compact matrix formulation of the
response equations is presented. In Sec. VI the features of the
proposed TDDFRT and TDDMFRT are summarized and
their place in the dynamical many-electron theory is dis-
cussed.

II. EQUATION OF MOTION FOR THE 1-MATRIX

Our strategy in derivation of TDDMFT is to operate with
the time-dependent 1-matrix �1�x ,x� , t� of the following
form:

�1�x,x�,t� = �
ij

P�s�,ij�t��i
�0��x�� j

�0��x��*, �2.1�

where the entire time dependence is accumulated in the
1-matrix P�s��t� in the representation of the stationary NOs
�i

�0��x� �the subscript s indicates this representation�. The
matrix elements P�s�,ij�t� are obtained from the stationary
wave function ��0� with the corresponding second-
quantization creation ĉi

+�t�H and annihilation ĉi�t�H operators
in the Heisenberg picture �33�

P�s�,ij�t� = 	��0�
ĉj
+�t�Hĉi�t�H
��0�� . �2.2�

The operators ĉi�t�H form the Heisenberg field operator

�̂�x , t�H,

�̂�x,t�H = �
i

ĉi�t�H�i
�0��x� . �2.3�

Then, the equation of motion for the 1-matrix P�s��t� can be

derived from that for the operator �̂�x , t�H �34�

i
��̂�x,t�H

�t
= ĥ�x,t��̂�x,t�H

+� �̂�x�,t�H
+ 
r − r�
−1�̂�x�,t�H�̂�x,t�Hdx�, �2.4�

where ĥ�x , t� is the time-dependent one-particle operator

ĥ�x,t� = − 1
2�r

2 + vext�r,t� . �2.5�

Multiplying �2.4� from the left by �̂�x� , t�H
+ and taking the

expectation value of both sides for ��0�, one obtains

i	��0�
�̂�x�,t�H
+ ��̂�x,t�H

�t

��0�� = ĥ�x,t�	��0�
�̂�x�,t�H

+ �̂�x,t�H
��0��

+� 
r − r�
−1	��0�
�̂�x�,t�H
+ �̂�x�,t�H

+ �̂�x�,t�H�̂�x,t�H
��0��dx�. �2.6�

Insertion of �2.3� in �2.6�, multiplication of its both sides by
the product �i

�0��x��� j
�0��x�* and the subsequent integration

over x and x� gives

i	��0�
ĉi
+�t�H

�ĉj�t�H

�t

��0��

= �
k

h�s�,jk�t�P�s�,ki�t� + �
klm

P�s�,iklm
�2� �t�	� j

�0��k
�0�
�l

�0��m
�0�� ,

�2.7�

where

h�s�,ij�t� = 	�i
�0�
 −

1

2
�2 + vext�t�
� j

�0�� , �2.8�

	�i
�0�� j

�0�
�k
�0��l

�0��

=� �i
�0��x�*� j

�0��x��*�k
�0��x��l

�0��x��
r − r�
−1dxdx�

are the integrals of the electron-electron repulsion, and
P�s�

�2��t� is the time-dependent two-particle reduced density

matrix �2-matrix� in the representation of �i
�0��x�,

PERNAL, GRITSENKO, AND BAERENDS PHYSICAL REVIEW A 75, 012506 �2007�

012506-2



P�s�,ijkl
�2� �t� = 1

2 	��0�
ĉi
+�t�Hĉj

+�t�Hĉl�t�Hĉk�t�H
��0�� . �2.9�

Interchanging the indices i and j in �2.7�, taking the complex
conjugate, using the Hermiticity properties of h�0��t�, P�s��t�,
P�s�

�2��t� and subtracting the resultant equation from �2.7�, we

finally obtain the EOM for P�s��t� in the matrix form

i
�P�s��t�

�t
= �h�s��t�,P�s��t�� + �W�s��t� − W�s�

+ �t�� .

�2.10�

According to �2.10�, a rate of the P�s��t� change is determined
with the matrix, the one-electron part of which in the square
brackets is the matrix commutator

�h�s��t�,P�s��t�� � h�s��t�P�s��t� − P�s��t�h�s��t� �2.11�

of P�s��t� and the one-electron operator matrix �2.8�. Its two-
electron part in the curly brackets is the difference between
the following orbital interaction matrix W�s��t�,

W�s�,ij�t� = 2�
klm

P�s�,jklm
�2� �t�	�i

�0��k
�0�
�l

�0��m
�0�� �2.12�

and its complex conjugate.
In TDDMFT the time-dependent 2-matrix,

�2�x1,x1�,x2,x2�,t�

= �
ijkl

P�s�,ijkl
�2� �t��i

�0��x1��
*� j

�0��x2��
*�k

�0��x1��l
�0��x2�

= �
ijkl

P�t�,ijkl
�2� �t��i�x1�,t�

*� j�x2�,t�
*�k�x1,t��l�x2,t�

�2.13�

will be considered as a universal functional �2���1� ; t� of the

time-dependent 1-matrix �1�x ,x� , t� by virtue of the Runge-
Gross theorem �35� of TDDFT. In �2.13� P�t�,ijkl

�2� �t� is the

2-matrix in the representation of the time-dependent NOs
�i�x , t�, which are the eigenfunctions of �1�t� with the eigen-
values ni�t�,

�1�x,x�,t� = �
i

ni�t��i�x�,t�*�i�x,t� �2.14�

and which can be obtained from ��i
�0��x�� with the unitary

orbital evolution matrix U�t�,

�i�x,t� = �
j

Uji�t�� j
�0��x� . �2.15�

The map

�2�x1,x1�,x2,x2�,t� → �1�x1,x1�,t� �2.16�

follows trivially from the fact, that the latter function is pro-
duced with the incomplete spatial integration of the former
one

�1�x1,x1�,t� =
2

N − 1
� �2�x1,x1�,x2,x2,t�dx2. �2.17�

On the other hand, the diagonal part of �1�x1 ,x1� , t� is the
electron density, ��x1 , t���1�x1 ,x1 , t�, so that �1�x1 ,x1 , t�
→��x1 , t�. Then, according to the Runge-Gross theorem, the
time-dependent density ��x1 , t� determines the total time-
dependent function ��x1 , . . . ,xN , t� up to a merely time-
dependent phase

��x1,t� → e−ic�t���x1, . . . ,xN,t� . �2.18�

In turn, the right-hand side of �2.18� uniquely determines the
time-dependent 2-matrix �2�x1 ,x1� ,x2 ,x2� , t�,

�2�x1,x1�,x2,x2�,t� =
N�N − 1�

2
� �e−ic�t���x1�,x2�, . . . ,xN,t��*�e−ic�t���x1,x2, . . . ,xN,t��dx3 ¯ dxN

=
N�N − 1�

2
� �*�x1�,x2�, . . . ,xN,t���x1,x2, . . . ,xN,t�dx3 ¯ dxN �2.19�

so that the ambiguity in the phase in �2.18� cancels out in
�2.19�. This provides the map

�1�x1,x1,t� → ��x1,t� → e−ic�t���x1, . . . ,xN,t�

→ �2�x1,x1�,x2,x2�,t� . �2.20�

The maps �2.16� and �2.20� establish the time-dependent
2-matrix as a universal functional �2���1� ; t� of �1�x1 ,x1� , t�.
Then, for a fixed initial state ��0� with fixed stationary NOs
�i

�0��x� the matrices U�t�, P�s�
�2��t�, and W�s��t� are also func-

tionals U���1� ; t�, P�s�
�2����1� ; t�, and W�s����1� ; t� of �1�t�. This

allows to consider the EOM �2.10�, which includes the
2-matrix through �2.12�, as the basic equation of TDDMFT.

III. EOM WITH THE GENERALIZED FOCKIAN
AND DYNAMICAL EQUATIONS FOR NOS

AND NO OCCUPATIONS

The EOM �2.10� for the 1-matrix can be brought to a form
with the commutator of a generalized time-dependent Fock
matrix. To accomplish this, we consider the orbital interac-
tion matrix of �2.12� in the representation W�t��t� of the time-
dependent NOs,

TIME-DEPENDENT DENSITY-MATRIX-FUNCTIONAL THEORY PHYSICAL REVIEW A 75, 012506 �2007�

012506-3



W�t�,ij���1�;t� = 2�
klm

P�t�,jklm
�2� �t�	�i�t��k�t�
�l�t��m�t�� ,

�3.1�

W�t�,ij���1�;t�* = 2�
klm

P�t�,klmj
�2� �t�	�k�t��l�t�
�m�t��i�t�� .

�3.2�

The representations W�s��t� and W�t��t� are related via the
unitary transformation with the �complex conjugate� orbital
evolution matrix U+�t� of �2.15�,

W�s��t� = U�t�W�t��t�U+�t� . �3.3�

Inserting �3.3� in �2.10� and combining the resultant equation
with �2.11�, we obtain the EOM for the 1-matrix in the form

i
�P�s��t�

�t
= �F�s��t�,P�s��t�� + U�t�D�t��t�U+�t�

= �F�s��t�,P�s��t�� + D�s��t� , �3.4�

where D�t�,ij�t�=�ij(W�t�,ii�t�−W�t�,ii�t�*) is the diagonal ma-
trix composed from the diagonal elements of the matrix
W�t��t�.

The important first term of �3.4� is the commutator of the
generalized time-dependent Fock matrix F�s��t� and P�s��t�,

F�s��t� = h�s��t� + F�s�
ee �t� = h�s��t� + U�t�V�t�

ee�t�U+�t� .

�3.5�

The two-electron part F�s�
ee �t� of the Fockian �3.5� is the uni-

tary transformation with U�t� of the matrix V�t�
ee�t�, which has

the zero diagonal, V�t�,ii
ee �t�=0, while its off-diagonal elements

are constructed from those of the matrix W�t��t� and the oc-
cupations ni�t� of �i�x , t�,

V�t�,ij
ee �t� =

�W�t��t� − W�t�
+ �t��ij

nj�t� − ni�t�
, i � j . �3.6�

In the stationary case �3.6� turns to the off-diagonal elements

Vij
�0�,ee =

�W�0� − W�0�+�ij

nj�t� − ni�t�
= 	�i

�0�
v̂ee
�0�
� j

�0��, i � j �3.7�

of the time-independent potential v̂ee
�0� in the one-electron

equations �1.2� for the NOs �18�. In �3.7� Wij
�0� is obtained as

the integral

Wij
�0� =� �Eee��1

�0��
�� j

�0��x�* �i
�0��x�*dx �3.8�

with the orbital derivative of the electron-electron interaction
energy Eee of the stationary state ��0�, which is determined
with the diagonal part of the stationary 2-matrix �2

�0�,

Eee =� �2
�0��x,x�,t�

r − r�


dxdx�

= �
ijkl

P�s�,ijkl
�2� � �i

�0��x�*� j
�0��x��*�k

�0��x��l
�0��x��


r − r�

dxdx�.

�3.9�

This correspondence in the time-independent case would
suggest that the matrix V�t�

ee�t� of �3.6� actually is the time-

dependent extension of the potential v̂ee
�0�, in the sense that it

might feature as time-dependent electron-electron interaction
operator in time-dependent Schrödinger-type equations for
the NOs. As we will see below, this is indeed the case.

With �3.7� and �3.8�, the generalized time-dependent Fock
matrix F�s��t� of �3.5� turns in the stationary case to the gen-
eralized time-independent Fock matrix F�0�,

Fij
�0� =� �i

�0��x��* �E��1
�0��

��1
�0��x,x��

� j
�0��x�dxdx�

=
�E��1

�0��
�Pji

�0� = 0, i � j �3.10�

that is diagonal for the ground-state 1-matrix. In �3.10� the
derivatives of the total energy E,

E = �
i

ni
�0�hii

�0� + Eee �3.11�

are taken.
We now turn to the derivation of the equations for the

time evolution of the NOs and the NO occupations. These
can both be obtained from the EOM �3.4� using a transfor-
mation to the basis of time-dependent NOs �i�x , t�. Indeed,
by the unitary transformation of both sides of �3.4� with the
matrix U+ we obtain the equation

i
�nl�t�

�t
�kl − inl�t�
���k�t�

�t
��l�t�� − ink�t�
��k�t�� ��l�t�

�t
�

= �nl�t� − nk�t��h�t�,kl�t� + W�t�,kl�t� − W�t�,lk�t�*. �3.12�

For k� l this equation assumes the form

�nl�t� − nk�t���i
��k�t�� ��l�t�
�t

� − F�t�,kl�t�� = 0, k � l ,

�3.13�

where F�t��t� is the generalized Fock matrix in the represen-
tation of �i�x , t�,

F�t��t� = h�t��t� + V�t�
ee�t� . �3.14�

From �3.13� follow the one-electron time-dependent
Schrödinger equations for NOs in the matrix form

i
��k�t�� ��l�t�
�t

� = F�t�,kl�t� = h�t�,kl�t� + V�t�,kl
ee �t�, k � l .

�3.15�

In turn, for k= l in �3.12� the equations for the time evolution
of the NO occupations ni�t�,
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i
�nk�t�

�t
= D�t�,kk�t� �3.16�

are obtained. Time-dependent changes of the NO occupa-
tions defined in �3.16� correctly conserve the total number of
electrons

��
k

nk�t�

�t
= 0 �3.17�

as follows from �3.1� and �3.2�. Thus, the EOM �3.4� for the
1-matrix contains the full dynamics of TDDMFT, with the
time evolution of the NOs being governed with the func-
tional in the first term of �3.4�, the evolution of the NO
occupations being determined with that in the second term of
the EOM.

With the neglect of the electron Coulomb correlation, Eq.
�3.15� reduces to the one-electron equations of time-
dependent Hartree-Fock �TDHF� theory �36�. In TDHF the
occupations of the HF orbitals remain constant, ni�t�=1,
1	 i	N, and ni�t�=0, i
N, so that �3.16� vanishes in this
case. Then, it follows from �3.13� that only orbital pairs kl
where one orbital is occupied and another orbital is virtual
are involved in �3.15�. The generalized time-dependent
electron-electron interaction potential V�t�

ee�t� turns in this
case to the time-dependent HF potential

V�t�,kl
ee �t� = �

m

N

�	�k�t��m�t�
�l�t��m�t��

− 	�k�t��m�t�
�m�t��l�t��� . �3.18�

IV. LINEAR RESPONSE IN TDDMFT

In time-dependent density-matrix-functional response
theory �TDDMFRT� the linear response of the 1-matrix to a
time-dependent perturbation �vext�x , t� of the external poten-
tial is evaluated. The initial ground state is characterized with
the following matrices:

Pij
�0� = �ijni

�0�, �4.1�

Uij
�0� = �ij, �4.2�

hij
�0��nj

�0� − ni
�0�� + Wij

�0� − Wji
�0�* = 0. �4.3�

At t= t0 a Hermitian time-dependent perturbation �vext�x , t�
is switched on that can be represented in the stationary NO
basis as

	�i
�0�
�vext�t�
� j

�0�� = �v�s�,ij
ext �t���t − t0� �4.4�

and the linear response to this perturbation leads to the
1-matrix

P�s�,ij�t� = �ijni
�0� + �P�s�,ij�t� . �4.5�

Inserting �4.4� and �4.5� in the EOM �3.4�, we obtain within
first-order perturbation theory

i
�„�P�s�,ij�t�…

�t
= �nj

�0� − ni
�0����v�s�,ij

ext �t���t − t0� + �F�s�,ij
ee �t��

+ �hii
�0� − hjj

�0���P�s�,ij�t� + �D�s�,ij�t� . �4.6�

Linear responses �F�s�,ij
ee �t� and �D�s�,ij�t� in �4.6� are evalu-

ated as follows:

�F�s�,ij
ee �t� = �

kl
� � �F�s�,ij

ee ���1�;t�

�P�s�,kl�t��
�

�1�t�=�1
�0�

�P�s�,kl�t��dt�,

�4.7�

�D�s�,ij
ee �t� = �

kl
� � �D�s�,ij���1�;t�

�P�s�,kl�t��
�

�1�t�=�1
�0�

�P�s�,kl�t��dt�

�4.8�

with the derivatives in �4.7� and �4.8� taken at the ground-
state 1-matrix. Inserting �4.7� and �4.8� in �4.6� and taking
the Fourier transform of the resultant expression, we obtain
the coupled-perturbed equations for the frequency-dependent
response �P�s�,ij��� of the 1-matrix to a perturbation of fre-
quency �,

��P�s�,ij��� = �nj
�0� − ni

�0���v�s�,ij
ext ��� + �hii

�0� − hjj
�0���P�s�,ij���

+ �
kl

K�s�,ijkl����P�s�,kl��� �4.9�

which can be rewritten as

∀ij�
kl

��� − hkk
�0� + hll

�0���ki�lj − K�s�,ijkl�����P�s�,kl���

= �nj
�0� − ni

�0���v�s�,ij
ext ��� . �4.10�

In �4.9� �v�s�,ij
ext ��� is the external perturbation of frequency

�,

�v�s�,ij
ext ��� =� e−i�t�v�s�,ij

ext �t���t − t0�dt . �4.11�

In �4.9� and �4.10� the 1-matrix changes �P�s�,ij��� and
�P�s�,kl��� are coupled through the coupling matrix K,

K�s�,ijkl��� = �nj
�0� − ni

�0�� � e−i��t−t��

���F�s�,ij
ee ���1�;t�

�P�s�,kl�t��
�

�1�t�=�1
�0�

d�t − t�� +� e−i��t−t��

���D�s�,ji���1�;t�

�P�s�,kl�t��
�

�1�t�=�1
�0�

d�t − t�� . �4.12�

From �4.10� and �4.12� follows that the changes of the
1-matrix diagonal elements �P�s�,ii��� conserve the number
of particles

�
i

�P�s�,ii��� = 0. �4.13�

The matrix K has the following symmetry property:
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K�s�,ijkl��� = − K�s�,jilk�− ��* �4.14�

and in the case of real ground-state 1-matrix,

K�s�,ijkl��� = − K�s�,jilk��� . �4.15�

In the popular adiabatic approximation �27� the �nonlocal�
time dependence of the derivatives in �4.7� and �4.8� is ne-
glected

� �F�s�,ij
ee ���1�;t�

�P�s�,kl�t��
�

�1�t�=�1
�0�

� ��t − t��� �F�s�,ij
ee ��1�

�P�s�,kl
�

�1=�1
�0�

,

�4.16�

� �D�s�,ij���1�;t�

�P�s�,kl�t��
�

�1�t�=�1
�0�

� ��t − t��� �D�s�,ij��1�

�P�s�,kl
�

�1=�1
�0�

�4.17�

so that, according to �4.16� and �4.17� and to �3.5�–�3.7�, the
corresponding frequency-independent coupling matrix K has
the following form:

K�s�,ijkl = �nj
�0� − ni

�0��� �Fij
ee��1�
�Pkl

�
�1=�1

�0�

+ �ij� ��Wii
�0� − Wii

�0�*�
�Pkl

�
�1=�1

�0�
. �4.18�

Finally, the electron excitation energies �q are obtained in
TDDMFRT from the eigenequation that follows from �4.10�

∀ij �
kl

��hkk
�0� − hll

�0���ki�lj + K�s�,ijkl��q���P�s�,kl = �q�P�s�,ij .

�4.19�

V. MATRIX FORMULATION OF THE RESPONSE
EQUATIONS OF TDDFMT

The TDDMFRT equation �4.10� can be recast in matrix
form. Considering explicitly in these equations the changes
of the diagonal �P�s�,ii and off-diagonal �P�s�,ij 1-matrix ele-
ments, one obtains for i
 j,

�
k
l

��� − hkk
�0� + hll

�0���ki�lj − K�s�,ijkl�����P�s�,kl���

− �
k
l

K�s�,ijlk����P�s�,lk��� − �
k

K�s�,ijkk����P�s�,kk���

= �nj
�0� − ni

�0���v�s�,ij
ext ��� , �5.1�

�
k
l

��� − hll
�0� + hkk

�0���ki�lj − K�s�,jilk�����P�s�,lk���

− �
k
l

K�s�,jikl����P�s�,kl��� − �
k

K�s�,jikk����P�s�,kk���

= �ni
�0� − nj

�0���v�s�,ji
ext ��� , �5.2�

and for i= j,

− �
k
l

K�s�,iikl����P�s�,kl��� − �
k
l

K�s�,iilk����P�s�,lk���

− �
k

�P�s�,kk���„K�s�,iikk��� − ��ik… = 0. �5.3�

Denote for k
 l,

�P�s�,kl��� = Xkl��� , �5.4�

�P�s�,lk��� = Ykl��� , �5.5�

and for k= l,

Zkl��� = �P�s�,kl����kl. �5.6�

For the real ground-state 1-matrix, addition and subtraction
of Eqs. �5.1�–�5.3� from each other yields �the � dependence
will be skipped from now on�

∀i
j �
k
l

���ki�ljXkl
R + �Aijkl + Bijkl�Xkl

I � = Vij
I , �5.7�

∀i
j �
k
l

���ki�ljXkl
I + �Aijkl − Bijkl�Xkl

R � − �
k

CijkkZkk = Vij
R ,

�5.8�

�Zii − 2�
k
l

GiiklXkl
I = 0, �5.9�

where for k
 l,

Xkl
R = 1

2 �Xkl + Ykl� = F�Re��Pkl�� , �5.10�

Xkl
I = 1

2 �Xkl − Ykl� = F�i Im��Pkl�� , �5.11�

where F indicates a Fourier transform.
Also

Vij
R = �nj

�0� − ni
�0�� 1

2 ��v�s�,ij
ext + �v�s�,ji

ext � , �5.12�

Vij
I = �nj

�0� − ni
�0�� 1

2 ��v�s�,ij
ext − �v�s�,ji

ext � . �5.13�

In �5.7�–�5.9� the matrices A, B, C, and G are defined as
follows:

∀i
j,k
l, Aijkl = �− hkk
�0� + hll

�0���ki�lj − K�s�,ijkl, �5.14�

∀i
j,k
l, Bijkl = K�s�,ijlk, �5.15�

∀i
j,k,l, Cijkl = �klK�s�,ijkl, �5.16�

∀i,j,k
l, Gijkl = �ijK�s�,ijkl. �5.17�

With �5.14�–�5.17�, the set of linear equations �5.7�–�5.9� can
be brought to the matrix form

� � A + B 0

A − B � − C

0 − 2G �
��XR

XI

Z
� = �VI

VR

0
� . �5.18�

Note, that in the static limit �→0 the determinant of main
matrix �“3�3” supermatrix� vanishes and its inverse di-
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verges for finite matrices A, B, C, and G. As a result, the
response diverges at �→0 and that corresponds to an artifi-
cial zero-energy excitation �k→0. In order to suppress this
spurious zero excitation, the proper frequency dependence of
K��� should be taken into account. Specifically, the “diago-
nal” matrices C and G should vanish with �→0. In this case
�5.18� turns to the 2�2 supermatrix equation for X, which
can be considered as the exchange-correlation extension of
the corresponding TDHF equations.

VI. CONCLUSIONS

In this paper a time-dependent density-matrix-functional
theory is proposed. It is based on the equation of motion for
the Heisenberg field operator. From this equation, the EOM
is derived for the 1-matrix P�s��t� in the representation of the
stationary natural orbitals. The two-electron term of the
EOM is constructed from the orbital interaction matrix
W�s��t�, which involves the 2-matrix P�s�

�2��t�. The latter matrix

is considered in TDDMFT as a functional of P�s��t� by virtue
of the Runge-Gross theorem.

In the final form of the EOM, the rate of change
�P�s��t� /�t of the 1-matrix is expressed as the matrix
commutator of the generalized time-dependent Fock matrix
F�s��t� with P�s��t� plus an additional term D�s��t�. The matrix
F�s��t� determines the evolution of the NOs �i�x , t� in the
time-dependent one-electron Schrödinger equations, while
D�s��t� determines the time evolution of the NO occupations
ni�t�. With the neglect of the electron Coulomb correlation,
the time-dependent one-electron equations for the NOs
�i�x , t� reduce to those for the Hartree-Fock �HF� orbitals of
time-dependent HF �TDHF� theory.

Coupled-perturbed equations of response TDDMFT
�TDDMFRT� are derived for the linear response of the

1-matrix �P�s��t� to a time-dependent perturbation �vext�t� of
the external potential. The frequency-dependent changes
�P�s�,ij��� and �P�s�,kl��� are coupled through the coupling
matrix Kijkl���, which is produced with the derivatives of
F�s��t� and D�s��t� with respect to Pkl�t��. Based on the re-
sponse equations, TDDMFRT eigenvalue equations are de-
rived for the electron excitations �q.

TDDMFRT equations �4.19� represent an alternative type
of eigenvalue equation for excitation energies �q. Indeed, the
previous one-electron time-dependent response theories, TD-
DFT and time-dependent Hartree-Fock �TDHF�, are based
on independent-particle one-electron equations with different
orbital energies �i. In these theories, the orbital energy dif-
ferences provide a zero order of �q. Unlike this, TDDMFRT
is based on the correlation including one-electron theory of
DMFT with fractionally occupied NOs of the same orbital
energy 
 �2,3,7�. In this case all orbitals, not only pairs ij
and kl of one occupied and one virtual orbital �like in TD-
DFT and TDHF�, are involved in the eigenvalue equations.
In these equations, excitation energies �q are determined
through the diagonal matrix of the differences of the diago-
nal matrix elements of the one-electron operator �hll

�0�−hkk
�0��

as well as through the coupling matrix K.
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