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We propose a size-consistent method to combine small active space multiconfigurational self-consistent-field
�MCSCF� wave functions with standard correlation energy density functionals. The correlation energy is not
evaluated from the standard spin densities but from a pair of alternative densities obtained from the natural
orbitals and occupation numbers. The method substantially improves the MCSCF estimates of the spectro-
scopic constants of a set of 11 diatomics, with an accuracy comparable to that from Becke three-parameter
Lee-Yang-Parr �B3LYP� hybrid functional and Becke–Lee-Yang-Parr �BLYP� functional spin-unrestricted
Kohn-Sham density functional theory �DFT� calculations. The method also provides estimates in good agree-
ment with multireference coupled-cluster calculations for the diradical-involved automerization barrier of
cyclobutadiene, with deviations �0.3−1.7 kcal mol−1 as compared to deviations �14–15 kcal mol−1 provided
by B3LYP or BLYP spin-restricted Kohn-Sham DFT calculations. It also yields rather good estimates of energy
differences between triplet and open-shell singlet states in the helium atom and the methylene molecule.

DOI: 10.1103/PhysRevA.75.012503 PACS number�s�: 31.10.�z, 31.15.Ar, 31.25.Qm, 31.15.Rh

I. INTRODUCTION

Every chemical process is characterized by the changes in
the electronic structure experienced by the species involved.
In bond rearrangements near transition states or dissociation
of molecules into open-shell fragments such changes can be
quite drastic. There are several methods within quantum
chemistry that can be applied to appropriately handle these
situations �1�. In particular, multiconfiguration self-
consistent-field �MCSCF� �2,3� procedures are well suited to
describe the usually multiconfigurational �MC� nature of the
complete reaction path. Large configuration spaces, however,
are usually required to obtain accurate results so that this
method is mostly restricted to small molecules due to the
corresponding increase in computational cost. Alternative
methods such as MC analogs to perturbation �4�, configura-
tion interaction �5�, and coupled-cluster theories �6� share the
same shortcomings. Therefore, a computationally simpler
strategy would be highly desirable.

Kohn-Sham density functional theory �KS DFT� �7,8� is,
on the other hand, a much less demanding computational
method, but it lacks a procedure to systematically improve
the accuracy in a well-defined way. Despite the fact that the
standard implementation of KS DFT involves a single-
determinant wave function, its unrestricted version �UKS
DFT� may implicitly include some nonspecific MC effects.
This is connected with the self-interaction error of some ex-
change functionals �9�, and may lead to reasonable potential
energy surfaces at the expense of a wrong description of the
spin densities �10–12�. Although alternatives to UKS DFT
have been proposed and applied over the years �see, e.g.,
Refs. �10–30� � they are not entirely satisfactory �31�.

A different approach tries to combine the accuracy of MC
wave functions with the low computational cost typical of
DFT. The goal is merging MC wave functions with correla-

tion energy functionals while avoiding the double-count
problem: some correlation energy is counted twice, as part of
the wave function description and as part of the DFT descrip-
tion. In their pioneering work, Lie and Clementi solved this
problem by choosing a MCSCF wave function with an active
space as small as possible, adding the correlation energy cal-
culated with a reparametrized Gombás functional depending
on MC natural orbitals and occupation numbers �32–35�.
Probably the simplest approach is that of Kraka �36� who
directly adds the energy from a local spin density correlation
energy functional to that from a generalized valence bond of
the perfect pairing �GVB PP� type wave function �37�. Savin
and co-workers propose an explicit splitting of the electron-
electron interaction operator into a long-ranged and a short-
range part, the effect of each treated by a multireference
wave function and by DFT density functionals, respectively
�38–43�. Panas follows a similar approach by modifying the
two-electron integrals �44,45�. The on-top pair density has
also been used as a key ingredient to link MCSCF calcula-
tions and correlation energy functionals, as in the works by
Colle and Salvetti �46,47�, Moscardó and San-Fabián �48�,
Mielich, Stoll, and Savin �49�, Gräfenstein and Cremer
�31,50,51�, McDouall �52�, Takeda, Yamanaka, and Yamagu-
chi �53�, or Gusarov, Malmqvist, and Lindh �54�. Other ap-
proaches based on several partitioning techniques that go
beyond the simple addition of a �corrected� correlation en-
ergy functional to the energy from a MC calculation are
those of Wu and Shaik �55�, Malcolm and McDouall�56–59�,
and Stoll �60�. The interested reader can find an account of
the achievements and drawbacks of most of the above MC
+DFT approaches in Ref. �31�.

An important property that every method aimed at de-
scribing chemical reactions should have is size consistency:
if a supersystem A-B is composed of two noninteracting sys-
tems A and B, then a method is size consistent if the energy
of the supersystem A-B is equal to the sum of the energy of
A plus the energy of B taken by themselves �E�A−B�
=E�A�+E�B��. Unfortunately, in a MC+DFT approach size*Electronic address: jmpj@ua.es
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consistency problems may arise either from the chosen MC
wave function and/or from the way used to evaluate the DFT
correction. In this work we use a method recently proposed
in the context of UKS DFT calculations �61� to combine MC
wave functions with DFT correlation energy functionals in a
size-consistent fashion by using information from MC natu-
ral orbitals and occupation numbers. The method can be ap-
plied to every kind of wave function, it is easy to implement,
and it works well for correlation energy density functionals
frequently used in KS DFT. Its performance is tested here by
evaluating the spectroscopic constants of several diatomic
molecules, the automerization barrier of cyclobutadiene, and
energy differences between triplet and open-shell singlet
states of He and CH2. These are well-known representatives
of problems where important reorganizations of the elec-
tronic structure take place.

II. DESCRIPTION OF THE METHOD

For systems where the Hartree-Fock description is reason-
ably accurate, it is possible �62� to approximate the total
energy as

E � EHF + Ec���,��� , �1�

where EHF is the Hartree-Fock energy, and Ec��� ,��� is an
approximation to the correlation evaluated from the Hartree-
Fock spin densities.

In some situations, such as bond dissociation, the Hartree-
Fock description is not adequate. A way of dealing with such
problems will be to use a better wave function instead of the
Hartree-Fock determinant. We could use, for example, a MC-
SCF wave function that correctly describes the bond disso-
ciation, and then write, in analogy to Eq. �1�,

E � EMCSCF + Ec���,��� . �2�

There is a problem with this last approach, as can be seen
in Table I. For a dissociated hydrogen molecule, both the
exact unrestricted Hartree-Fock and MCSCF correlation en-
ergies should be zero �because the system is composed of
two isolated hydrogen atoms�. A typical correlation energy
functional �63� �column B88� shows the correct behavior
when applied to Hartree-Fock densities, but fails for MCSCF
densities.

Let us analyze this problem in detail. For the H2 ground
state and all along the potential energy curve, the exact spin
densities satisfy the relation

�� = �� =
1

2
� . �3�

Near the equilibrium distance, both UHF and MCSCF den-
sities comply with this relation and therefore any correlation
energy functional takes the value

Ec��/2,�/2� . �4�

Near the dissociation limit, the MCSCF densities still com-
ply with Eq. �3�, but the correlation energy is wrong, as seen
in Table I. The behavior for the UHF method is just the
opposite: Eq. �3� is no longer satisfied, but the correlation
energy is correct. Note that, at dissociation distances, and
regarding energies and total densities, the UHF solution for a
dissociated system composed of an � hydrogen atom plus a
� hydrogen atom is equivalent to that of a system composed
of two � hydrogens or two � hydrogens. Therefore, we can
express the correlation energy of a dissociated UHF solution
as

Ec���,��� � Ec��,0� � Ec�0,�� . �5�

We can summarize the results of our analysis for the hy-
drogen molecule as follows: both for UHF and MCSCF so-
lutions, the correlation energy can be correctly evaluated by

Ec��/2,�/2� �6�

near the equilibrium distance, and by

Ec��,0� � Ec��,0� �7�

near the dissociation limit. The problem is how to switch
from one behavior to the other.

One possible solution will be to use natural orbitals and
their occupation numbers as indicators of which alternative
should be used. Considering again the H2 molecule we have
that, near the equilibrium distance both the UHF and the
MCSCF natural orbitals are mainly composed of a single
orbital with an occupation number equal or almost equal to
2. On the other hand, near the dissociation limit, both the
UHF and the MCSCF natural orbitals are composed of two
natural orbitals �one per hydrogen atom�, each with an occu-
pation number equal to 1.

A generalized way of implementing this idea has been
proposed recently �61� to improve the results of UHF corre-
lation energies in certain situations. The same method can be
applied without any modification to MCSCF calculations.
The method splits the total density into two components ac-
cording to the natural orbitals and their occupation numbers,
avoiding the conventional splitting into spin components that
does not work for MCSCF densities. A description of the
method follows.

Given a density � expressed in terms of a set of natural
orbitals as

TABLE I. Correlation energies for the dissociated hydrogen
molecule �absolute values, in mhartree�. “Exact” values are the dif-
ference between the exact total energy and the UHF or two-
configuration MCSCF energy. B88 values are computed by apply-
ing Becke’s correlation functional �63� to the corresponding UHF or
MCSCF spin densities, while B88�� ones are evaluated by apply-
ing the Becke functional �63� to the transformed spin densities ��

and ��.

Exact B88 B88��

UHF 0 0 0

MCSCF 0 27 0
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� = �
i=1

ni	�i	2, �8�

where ni is the occupation number of natural orbital �i, we
define the following densities,

�� = �
i,ni�1

�ni − 1�	�i	2 �9�

�� = � − �� = �
i,ni�1

	�i	2 + �
i,ni�1

ni	�i	2. �10�

In Eqs. �9� and �10� ni can be a fractional number depending
on the particular point in the reaction path considered and the
kind of wavefunction used to describe it. It is straightforward
to see that when there is one single natural orbital with oc-
cupation number 2 we have ��=��=� /2, while two natural
orbitals each with occupation number 1 implies ��=0, ��

=�. With these new densities, it is possible to provide a
unified description of the correlation energy both at equilib-
rium and dissociation distances with the expression

Ec���,��� . �11�

The total energy can now be estimated as

E � EMCSCF + Ec���,��� . �12�

The last column in Table I shows the correct behavior of
our method. As an additional illustration, we show in Fig. 1
the potential energy curves for the H2 ground state evaluated
using Eq. �2� with a MCSCF wave function �labeled
MCSCF+B88� and Eq. �12� �labeled MCSCF+B88���,
where B88 indicates the Becke 1988 correlation func-
tional.�63� We see that both approaches give similar results
near the equilibrium distance, which is consistent with the
MCSCF description having a natural orbital with occupation
number close to 2, and therefore

�

2
= �� = �� � �� � ��. �13�

Near the dissociation limit, however, only Eq. �12� shows the
correct behavior.

We will wrap up the description of our method by stress-
ing some key ideas.

�1� The method can be applied to UHF determinants,

E � EUHF + Ec���,��� , �14�

and, for certain systems, this could be preferable �61� to the
conventional approach of Eq. �1�.

�2� The method can be applied to MC wave functions,
though it is advisable to use the smaller wave function that is
able to give a qualitatively correct description of the system.
The use of sophisticated MCSCF or configuration-interaction
CI wave functions together with our method will result in an
overestimation of the correlation energy due to the double-
count problem.

�3� Any spin-dependent functional can be used to imple-
ment this method, by just replacing the spin-densities in its
expression by the new �� and �� densities.

III. RESULTS AND DISCUSSION

The procedure described above is now checked by using
it in several contexts where combination of MC wave func-
tions and DFT functionals may be a sound alternative: the
evaluation of spectroscopic constants of diatomic molecules,
the calculation of the automerization barrier of cyclobutadi-
ene, and the estimation of energy differences between triplet
and open-shell singlets in the helium atom and the methylene
molecule.

A. Spectroscopic constants of diatomic molecules

Here we will estimate the value of the equilibrium bond
length �Re� the harmonic vibrational energy �	e� and the ho-
molytic dissociation energy �De� of several diatomic mol-
ecules. We have focused our study on a group of 11 diatom-
ics, namely, H2, LiH, HF, HCl, Li2, C2, N2, O2, F2, Cl2, and
ClF. This set comprises well-known examples of single-,
double-, and triple-bond homonuclear and heteronuclear,
closed- and open-shell molecules with first- and second-row
atoms. Despite their simple atomic composition, these mol-
ecules represent a challenge regarding the changes involved
in their electronic structures upon their dissociation into the
ground states of the constituent atoms.

For single-bond diatomics, a correct description of both
spatial and spin symmetries along the whole dissociation
process can be achieved by means of a GVB PP wave func-
tion using just one pair of correlated orbitals. This is equiva-
lent to a two-configuration MCSCF calculation �2�, which is
actually the reference wave function we have chosen for H2,
LiH, HF, HCl, Li2, F2, Cl2, and ClF. Unfortunately, the lack
of interpair correlation in a GVB PP description of a multiply
bonded molecule makes it an unsuitable wave function to
correctly describe the dissociation into the corresponding
ground states of the two atoms involved �see, e.g., Ref. �64��.
Thus, for C2, N2, and O2 we have been forced to go beyond
the GVB PP and use a proper reference MCSCF wave func-
tion which correctly describes the bond rupture �33,65�. In
the limit of infinite internuclear distance the energy obtained
with these MCSCF wave functions reduces to the sum of
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FIG. 1. Potential energy curves for the ground state of the H2

molecule from two-configuration MCSCF calculations corrected
with the B88 correlation energy functional �see text for details�. The
exact values are those of Kołos and Wolniewicz �96,97�.
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restricted open-shell Hartree-Fock �ROHF� calculations on
each atom �66�.

Once the energy of the MCSCF wave function is obtained
we correct it by adding the correlation energy calculated
from the MCSCF spin densities by three different correlation
energy functionals, namely, the Lee, Yang, and Parr �LYP�
functional �67�, the Perdew-Wang generalized gradient ap-
proximation �GGA� functional �PW GGA II� �68�, and
Becke’s meta-GGA functional �63�. We refer to these calcu-
lations as MC+LYP, MC+PW, and MC+B88, respectively.
We also correct the MCSCF energy with the correlation en-
ergy provided by these three functionals but evaluated via
the transformed �� and �� spin densities described in the
previous section. In the following, the latter calculations will
be termed MC+LYP��, MC+PW��, and MC+B88��, re-
spectively.

All the MC and KS DFT calculations have been per-
formed using the GAMESS program �69� with the augmented
Pople’s “triple-split” 6-311G+ + �3df ,3p� basis set �70–72�,
while the numerical integration method used for the correla-
tion energy functionals is that proposed in Refs. �73,74�. The
values of 	e and Re corresponding to the MCSCF and MC
�correlation calculations have been obtained by fitting a set
of 16 points on the dissociation curves around the equilib-
rium bond length at intervals of 0.005 Å to a cubic polyno-
mial in R−1. The Re values corresponding to DFT calcula-
tions have been analytically determined using GAMESS.
However, limitations in the GAMESS program force the nu-
merical approximation of the DFT Hessian needed to evalu-
ate 	e by twice differentiating the DFT energy. The values
for De are obtained by subtracting the energy at a large in-
teratomic distance �10 Å for H2 and HF, 30 Å for Li2, and
20 Å for the rest� from that at Re.

Tables II–IV show the values obtained for the spectro-

scopic constants using the above methods, as well as those
obtained by means of UKS DFT calculations using the popu-
lar Becke three-parameter Lee-Yang-Parr �B3LYP� hybrid
functional and Becke–Lee-Yang-Parr �BLYP� functional
exchange-correlation functionals �67,75,76�. The results in-
dicate that correcting MCSCF energies by correlation energy
functionals leads to shorter equilibrium bond lengths and
larger harmonic vibrational energies, irrespective of the cor-
relation energy functional considered, as previously dis-
cussed in the literature �80�. Overall, this is a step in the right
direction, which explains the improvement found, on aver-
age, for Re and 	e estimates with respect to MCSCF uncor-
rected ones. Both MC+C and MC+C�� bond lengths and
frequencies �C denoting one of LYP, PW, or B88� are of a
quality similar to those from UKS DFT calculations using
the BLYP functional, although the best estimates for these
properties correspond to the B3LYP method. Note that the
values of Re and 	e corresponding to MC+C calculations are
quite similar to those from MC+C�� ones, as might be ex-
pected from the discussion in Sec. II.

The major improvement, however, corresponds to the dis-
sociation energies yielded by the MC+C�� method which
are of the same quality as the B3LYP results for the three
functionals tested. This improvement is easy to understand:
while the MC+C calculations always overestimate the en-
ergy when R→
 as commented above, thus underestimating
De, the MC+C�� gives the correct energy, leading to mean
average errors �MAEs� of �4 kcal mol−1 for the 11 mol-
ecules tested and the three functionals considered.

B. Automerization barrier of cyclobutadiene

We now apply our method to a situation where KS DFT
calculations fail to provide good results: the automerization

TABLE II. Exact equilibrium distances �in Å� for the ground state of several diatomics and deviations
�calculated minus exact� using several methods with the 6-311G+ + �3df ,3p� basis set. The mean absolute
error �MAE� over the set of 11 molecules considered is also printed at the end of the table.

Molecule Exacta B3LYP BLYP MCSCF B88��
b LYP��

b PW��
b B88c LYPc PWc

H2 0.741 0.002 0.005 0.014 0.007 0.007 0.009 0.007 0.007 0.009

LiH 1.596 −0.004 0.003 0.040 0.004 0.002 0.011 0.005 0.002 0.012

HF 0.917 0.005 0.016 −0.002 −0.010 −0.009 −0.013 −0.010 −0.009 −0.009

HCl 1.275 0.007 0.016 0.012 −0.002 −0.001 −0.002 −0.002 −0.001 −0.002

Li2 2.673 0.033 0.041 0.258 0.147 0.134 0.170 0.154 0.144 0.177

C2 1.243 0.005 0.014 −0.018 −0.030 −0.030 −0.028 −0.033 −0.033 −0.031

N2 1.098 −0.006 0.006 −0.002 −0.012 −0.011 −0.012 −0.011 −0.011 −0.012

O2 1.208 −0.003 0.022 0.006 −0.013 −0.010 −0.018 −0.012 −0.009 −0.018

F2 1.412 −0.017 0.019 0.057 −0.001 0.008 −0.014 0.002 0.010 −0.012

Cl2 1.988 0.024 0.054 0.047 −0.008 0.004 −0.018 −0.008 0.004 −0.018

ClF 1.628 0.014 0.046 0.028 −0.016 −0.009 −0.022 −0.016 −0.009 −0.022

MAE 0.011 0.022 0.044 0.023 0.020 0.029 0.024 0.022 0.029

aExact values taken from the “NIST Chemistry WebBook” �77�.
bResults obtained by adding the energy of the correlation functional evaluated with the transformed spin
densities �� and �� to the MCSCF energy.
cResults obtained by adding the energy of the correlation functional evaluated with the MCSCF spin densities
to the MCSCF energy.
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barrier of cyclobutadiene. It has been established that the
ground state of this molecule is a singlet with rectangular
shape �see, e.g., Refs. �81–90� and references therein�. Its
automerization reaction represents the interconversion be-
tween two rectangular geometries of D2h symmetry through
a square transition state of D4h symmetry. The latter is a
diradical because each of the two degenerate nonbonding �
-eg molecular orbitals is singly occupied, thus requiring more
than just a single determinant to be adequately described,
which explains why the barrier height predicted by Hartree-
Fock or KS-DFT calculations is extremely wrong �55,88,91�.

The MCSCF wave function that we have chosen to ac-
commodate the four � electrons involved in the automeriza-
tion process is, basically, a two-pair GVB PP wave function
�b1u, au and b3g, b2g being the symmetries of the correspond-
ing pairs of orthogonal orbitals� where interpair correlation

has been allowed by including also those determinants where
each of the above four orbitals is singly occupied �64�. We
report in Table V accurate activation barriers from multiref-
erence coupled-cluster �MRCC� calculations performed in
Refs. �88,90�. Table V also lists the B3LYP, BLYP, MCSCF,
MC+C, and MC+C�� estimates of the barrier calculated at
the corresponding D4h and D2h MCSCF optimized geom-
etries �also given in Table V�. The MC+C�� results are
strikingly good, with deviations of �0.3 �C=B88�, �0.5�C
=LYP�, and �1.7 �C=PW� kcal mol−1 with respect to the
average of the MRCC values reported. On the other hand,
B3LYP and BLYP functionals overestimate the activation
barrier by as much as �14–15 kcal mol−1 while the MCSCF
wave function used here underestimates it by �5 kcal mol−1.
It should also be emphasized that MC+C calculations lead to
even lower barriers than MCSCF ones. The main reason for

TABLE III. Exact harmonic vibrational frequencies �in cm−1� for the 11 diatomics considered and devia-
tions using several methods with the 6-311G+ + �3df ,3p� basis set. See caption and notes of Table II.

Molecule Exact B3LYP BLYP MCSCF B88�� LYP�� PW�� B88 LYP PW

H2 4401 47 −21 −179 −92 −89 −93 −94 −90 −95

LiH 1406 9 −20 −104 −39 −27 −45 −40 −28 −46

HF 4138 −50 −204 0 122 109 162 120 109 161

HCl 2991 −43 −135 −81 21 17 49 20 16 48

Li2 351 −11 −13 −86 −54 −47 −44 −55 −54 −48

C2 1855 15 −30 86 165 163 169 174 168 175

N2 2359 83 −32 18 90 91 107 85 87 103

O2 1580 59 −82 −22 75 59 120 72 56 115

F2 917 128 38 −240 −77 −95 −44 −95 −108 −55

Cl2 560 −20 −58 −57 5 −6 24 5 −7 24

ClF 786 −5 −64 −94 −7 −17 13 −9 −19 11

MAE 43 63 88 68 66 79 70 67 80

TABLE IV. Exact dissociation energies �in kcal mol−1� for the ground state of the 11 diatomics considered
and deviations using several methods with the 6-311G+ + �3df ,3p� basis set. See caption and notes of Table
II.

Molecule Exacta B3LYP BLYP MCSCF B88�� LYP�� PW�� B88 LYP PW

H2 109.5 0.6 −0.2 −14.2 8.4 9.8 6.2 −8.6 −7.3 −5.5

LiH 57.7 0.6 0.2 −13.2 5.1 8.7 3.8 −8.3 −6.4 −6.1

HF 141.3 −1.6 −0.2 −26.7 0.6 −1.2 −1.2 −13.4 −13.4 −10.2

HCl 106.4 −1.7 −2.1 −15.9 7.8 6.3 7.4 −5.0 −5.4 −1.1

Li2 24.4 −3.7 −3.9 −14.2 −1.2 1.8 −1.1 −10.9 −11.3 −9.0

C2 146.0 −27.5 −11.2 −48.6 −7.1 −9.7 −4.0 −24.2 −28.3 −19.6

N2 228.5 −0.7 11.3 −58.8 −2.1 2.9 3.6 −37.3 −37.3 −28.7

O2 120.3 2.8 15.6 −29.7 2.5 −0.2 6.0 −10.1 −11.8 −4.4

F2 38.2 −2.4 10.1 −22.8 0.3 −3.8 −3.2 −10.3 −11.0 −9.5

Cl2 58.0 −3.7 −0.5 −19.5 4.9 −0.6 4.8 −3.7 −7.0 −0.4

ClF 60.2 −0.6 6.5 −24.0 1.4 −3.0 −0.8 −8.2 −9.9 −6.6

MAE 4.2 5.6 26.1 3.8 4.4 3.8 12.7 13.5 9.2

aExact values evaluated from the experimental atomization energies at 0 K reported in the “Computational
Chemistry Comparison and Benchmark DataBase” �78�, corrected by the zero-point energy �see, e.g., Ref.
�79�, p. 100� calculated from the spectroscopic constants reported in Ref. �77�.
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the superior behavior of MC+C�� over MC+C is that the
open-shell singlet character of a system is better described
by a standard correlation energy density functional if the two
singly occupied orbitals are considered to be in the high-spin
state, as our method does in this case. Otherwise the func-
tional interprets the absence of spin polarization yielded by
the MCSCF spin densities as a closed-shell system, overes-
timating the correlation energy �31�. This is further tested
below for the energy difference between triplet and open-
shell singlet states.

C. Energy differences between triplet and open-shell singlet
states

We estimate the energy difference between two states dif-
fering in the spin coupling of the electrons, namely, the 3B1
and 1B1 states in CH2, and the lowest excited 2 3S and 2 1S
states in He. We approximate these states with �2,2�complete
active space self-consistent field �CASSCF� reference wave
functions to minimize the double count of the correlation
energy, using the �1s,2s� and �a1 ,b1� active spaces for He
and CH2 respectively. The 6-311+ +G�3df ,3p� basis set was
used for CH2, while the smaller size of He allowed us to use
the larger augmented correlation-consistent polarized va-
lence quintuple-zeta �aug-cc-pV5Z� basis set �92,93� on this
system.

The MCSCF triplet-singlet splittings estimated by the
above wave functions, as well as from MC+C and MC
+C�� calculations are listed in Table VI. Although the

�2,2�CASSCF wave functions provide the correct energy or-
dering, with the triplet being more stable than the open-shell
singlet, they overestimate the triplet-singlet splittings by 5.4
and 4.02 kcal/mol in CH2 and He, respectively. The MC
+C results, on the other hand, severely underestimate the
triplet-singlet splittings, mainly because the open-shell sin-
glet correlation is overestimated. The amount of overstabili-
zation of the open-shell singlet varies with the specific func-
tional used, with the PW functional providing the best result.

Finally, we see that the MC+C�� methods correct the
overestimation of the �2,2�CASSCF energy difference with-
out severely underestimating it as in MC+C calculations,
leading to rather good values on average for the three func-
tionals considered. This correction is mostly due to the lower
correlation energy introduced by our method for the open-
shell singlet states by effectively increasing their high-spin
character.

IV. CONCLUSIONS

We have proposed a size-consistent method to combine
multiconfigurational wave functions with standard correla-
tion energy functionals used in Kohn-Sham DFT calcula-
tions. In order to avoid the double count of the correlation
energy the method should be applied to small active spaces
in MC calculations, which is also advantageous from the
point of view of its computational cost. The good results
achieved for the spectroscopic constants of several diatomic
molecules shows the importance of adequately addressing

TABLE V. Automerization barrier of cyclobutadiene using the 6-311G+ + �3df ,3p� basis set and several
methods. See notes of Table II.

MRCC B3LYPa,b BLYPa,b MCSCFb B88��
b LYP��

b PW��
b B88b LYPb PWb

�6.6c, 7.0d� 22.2 20.9 1.7 7.1 6.3 5.1 1.1 1.6 1.5

aClosed-shell spin-restricted Kohn-Sham calculations.
bBarrier heights evaluated at the MCSCF/ �6-311G+ + �3df ,3p�� optimized geometries; rectangular: RCvC

=1.370 Å, RC–C=1.524 Å, RC–H=1.070 Å, ��H,C,C�=134.86°; square: RC–C=1.444 Å, RC–H=1.069 Å.
cMultireference coupled-cluster singles and doubles with approximate triples �MRCCSD��T� / �3s2p1d /1s�
barrier height from Ref. �88� calculated at the corresponding optimized geometries; rectangular: RCvC

=1.367 Å, RC–C=1.570 Å, RC–H=1.103 Å, ��H,C,C�=134.73°; square: RC–C=1.467 Å, RC–H=1.104 Å.
dMultireference Brillouin-Wigner coupled-cluster singles and doubles with approximate triples
�MR BWCCSD��T�/�cc-pVTZ� barrier height from Ref. �90� calculated at the corresponding optimized ge-
ometries; rectangular: RCvC=1.354 Å, RC–C=1.564 Å, RC–H=1.079 Å, ��H,C,C�=134.94°; square:
RC–C=1.451 Å, RC–H=1.078 Å.

TABLE VI. Energy difference �in kcal mol−1� between triplet and open-shell singlet states from
�2,2�CASSCF calculations. See notes of Table II.

System States Referencea MCSCFb B88��
b LYP��

b PW��
b B88b LYPb PWb

He 2 3S-2 1S 18.39 22.41 13.83 14.52 18.29 5.10 6.97 10.51

CH2
3B1-1B1 33.4 38.79 37.23 37.18 38.08 25.01 25.09 29.77

aHe values are from theoretical energies reported in Ref. �94� considering infinite nuclear mass and neglecting
relativity effects. CH2 values are from quadratic configuration interaction singles and doubles �CISD�+Q
energies extrapolated to the complete basis set limit reported in Ref. �95�.
bHe values calculated with the aug-cc-pV5Z basis set. CH2 values calculated with the 6-311G+ + �3df ,3p�
basis set at the �2,2�CASSCF/6-311G+ + �3df ,3p� optimized geometries; 3B1: RC–H=1.070 Å, ��H,C,H�
=129.48°; 1B1: RC–H=1.065 Å, ��H,C,H�=141.39°.
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the size-consistency problem in a consistent manner through-
out the whole dissociation process. The method looks prom-
ising for describing open-shell systems, as evidenced by the
rather good estimates it gives for the activation barrier of
cyclobutadiene and the energy difference between triplet and
open-shell singlet states of He and CH2.
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