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We investigate for which resource states an efficient classical simulation of measurement-based quantum
computation is possible. We show that the Schmidt-rank width, a measure recently introduced to assess uni-
versality of resource states, plays a crucial role in also this context. We relate Schmidt-rank width to the
optimal description of states in terms of tree tensor networks and show that an efficient classical simulation of
measurement-based quantum computation is possible for all states with logarithmically bounded Schmidt-rank
width �with respect to the system size�. For graph states where the Schmidt-rank width scales in this way, we
efficiently construct the optimal tree tensor network descriptions, and provide several examples. We highlight
parallels in the efficient description of complex systems in quantum information theory and graph theory.
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I. INTRODUCTION

The classical description of many-body quantum systems,
and the classical simulation of their dynamics, is generically
a hard problem, due to the exponential size of the associated
Hilbert space �1,2�. Nevertheless, under certain conditions an
efficient description of states and/or their evolution is pos-
sible. This is, for instance, demonstrated by the density ma-
trix renormalization group method �3�, which allows one to
successfully calculate ground states of strongly correlated
spin systems in one spatial dimension using matrix product
states �4�. In this context, the questions “For which (families
of) states does an efficient classical description exist?”, and
“When is an efficient classical simulation of the evolution of
such states under a given dynamics possible?” are naturally
of central importance.

Apart from their practical importance, the above questions
are directly related to more fundamental issues, in particular
to the power of quantum computation and the identification
of the essential properties that give quantum computers their
additional power over classical devices; this relation to quan-
tum computation will be central in this paper. In particular,
we will study these questions from the point of view of the
measurement-based approach to quantum computing, more
specifically the model of the one-way quantum computer �5�.
In this model, a highly entangled multiqubit state, the two-
dimensional �2D� cluster state �6�, is processed by perform-
ing sequences of adaptive single-qubit measurements,
thereby realizing arbitrary quantum computations. The 2D
cluster state serves as a universal resource for measurement-
based quantum computation �MQC�, in the sense that any
multiqubit state can be prepared by performing sequences of
local operations on a sufficiently large 2D cluster state.

When studying the fundamentals of the one-way model,
two �related� questions naturally arise, which we will con-
sider in the following; first, it is asked which resource states,
other than the 2D cluster states, form universal resources for
MQC; second, one may also consider the question whether
MQC on a given state can be efficiently simulated on a clas-
sical computer. Naturally, these two issues are closely re-

lated, as one expects that an efficient classical simulation of
MQC performed on �efficient� universal resource states is
impossible. However, it is important to stress that classical
simulation and nonuniversality are principally different is-
sues.

The question of which other resource states are also uni-
versal has been investigated recently in Ref. �7�, where the
required entanglement resources enabling universality were
investigated. In particular, it was proven that certain en-
tanglement measures, in particular certain entanglement
width measures, must diverge on any universal resource, thus
providing necessary conditions for universality.

On the other hand, the issue of classical simulation of
MQC evidently brings us back to the central introductory
questions posed above. Results regarding the efficient simu-
lation of MQC do exist, and it is, e.g., known that any MQC
implemented on a one-dimensional �1D� cluster state can be
simulated efficiently �8�. More generally, the efficient de-
scription of quantum states in terms of �tree� tensor networks
turns out to play an important role in this context �9–11�.

In this paper we strengthen the connection between clas-
sical simulation of MQC and nonuniversality. Our starting
point will be the no-go results for universality obtained in
Ref. �7�, stating that the entanglement monotones entropic
entanglement width and Schmidt-rank width must diverge on
any universal resource; both measures are closely related,
and we refer to Sec. II A for definitions. We then focus on
the Schmidt-rank width measure, and prove, as our first main
result, that MQC can be efficiently simulated on every re-
source state which is ruled out by the above no-go result.
More generally, we prove that MQC can be simulated effi-
ciently on all states where the Schmidt-rank width grows at
most logarithmically with the system size �12�.

Second, along the way of proving the above results, we
provide a natural interpretation of the Schmidt-rank width
measure, as we show that this monotone quantifies what the
optimal description of quantum states is in terms of tree ten-
sor networks; this shows that there is in fact a large overlap
between the present research and the work performed in Ref.
�10� regarding the simulation of quantum systems using tree
tensor networks.
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As our third main result, we show that the Schmidt-rank
width �and entanglement width�—these are measures which
are defined in terms of nontrivial optimization problems—
can be computed efficiently for all graph states. Moreover,
for all graph states where the Schmidt-rank width grows at
most logarithmically with the number of qubits, we give ef-
ficient constructions of the optimal tree tensor networks de-
scribing these states.

We further remark that the origin of the Schmidt-rank
width lies in fact in graph theory, and its definition is inspired
by a graph invariant called rank width. It turns out that the
study of rank width in graph theory shows strong similarities
with the study of efficient descriptions and simulations of
quantum systems, viz. the two introductory questions of this
paper. The similarity is due to the fact that, in certain aspects
of both quantum information theory and graph theory, one is
concerned with the efficient description of complex struc-
tures in terms of treelike structures. We will comment on the
existing parallels between these fields.

Finally, we emphasize that the present work is situated in
two different dynamic areas of research within the field of
quantum information theory; the first is the study of univer-
sality and classical simulation of measurement-based quan-
tum computation, and the second is the problem of effi-
ciently describing quantum systems and their dynamics. An
important aim of this paper consists of bringing together ex-
isting results in both fields and showing that there is a strong
connection between them; in particular, we find that the no-
tion of Schmidt-rank width has been considered indepen-
dently in Refs. �7,10� and plays an important role in both
areas of research. In order to establish the connections be-
tween these two areas in a transparent manner, a substantial
part of this paper is devoted to giving a clear overview of
which relevant results are known in both fields.

The paper is organized as follows. In Sec. II we discuss
entanglement width and Schmidt-rank width, and their role
in universality and classical simulation of MQC. In Sec. III
the description of states in terms of tree tensor networks is
reviewed, and a connection to Schmidt-rank width is estab-
lished. This section also includes our main result, stating that
any state with a logarithmically bounded Schmidt-rank width
has, in principle, an efficient description in terms of a tree
tensor network, and hence any MQC performed on such
states can be efficiently simulated classically. In Sec. IV
these results are applied to graph states, and we provide in
addition an explicit way of obtaining the optimal tree tensor
network. We discuss the relation between the treatment of
complex systems in quantum information theory and graph
theory in Sec. V, and summarize and conclude in Sec. VI.

II. ENTANGLEMENT WIDTH, UNIVERSALITY,
AND CLASSICAL SIMULATION

In this section we introduce two related multipartite en-
tanglement measures called entropic entanglement width and
Schmidt-rank width and discuss their role in the studies of
universality of resources for measurement-based quantum
computation �MQC� and in classical simulation of MQC.

These entanglement measures are defined in Sec. II A. In
Sec. II B we review the definition of universal resources for

MQC, and the use of the above measures in this study. In
Sec. II C we consider the basic notions regarding efficient
classical simulation of MQC. Finally, in Sec. II D we pose
the two central questions of this paper in a precise way; the
first question asks about the interpretation of the measures
entanglement width and Schmidt-rank width, and the second
deals with the role of these measures in the context of clas-
sical simulation of MQC.

A. Entanglement width

The entropic entanglement width Ewd����� of a multiparty
state ��� is an entanglement measure introduced in Ref. �7�.
Qualitatively, this measure computes the minimal bipartite
entanglement entropy in the state ���, where the minimum is
taken over specific classes of bipartitions of the system. The
precise definition is the following.

Let ��� be an n-party pure state. A tree is a graph with no
cycles. Let T be a subcubic tree, which is a tree such that
every vertex has exactly 1 or 3 incident edges. The vertices
which are incident with exactly one edge are called the
leaves of the tree. We consider trees T with exactly n leaves
Vª �1, . . . ,n�, which are identified with the n local Hilbert
spaces of the system. Letting e= �i , j� be an arbitrary edge of
T, we denote by T \e the graph obtained by deleting the edge
e from T. The graph T \e then consists of exactly two con-
nected components �see Fig. 1�, which naturally induce a
bipartition �AT

e ,BT
e� of the set V. We denote the bipartite en-

tanglement entropy of ��� with respect to the bipartition
�AT

e ,BT
e� by EAT

e ,BT
e�����. The entropic entanglement width of

the state ��� is now defined by

Ewd����� ª min
T

max
e�T

EAT
e ,BT

e����� , �1�

where the minimization is taken over all subcubic trees T
with n leaves, which are identified with the n parties in the
system.

Thus, for a given tree T we consider the maximum, over
all edges in T, of the quantity EAT

e ,BT
e�����; then the minimum,

over all subcubic trees T, of such maxima is computed.
Similarly, one may use the Schmidt rank, i.e., the number

of nonzero Schmidt coefficients, instead of the bipartite en-
tropy of entanglement as basic measure. One then obtains the
Schmidt-rank width, or � width, denoted by �wd�����. The

e

AT BT
e e

(a) (b)

FIG. 1. �Color online� �a� Example of a subcubic tree T with six
leaves �indicated in blue �darker dots��. �b� Tree T \e obtained by
removing edge e and induced bipartition �AT

e ,BT
e�.
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precise definition is the following. Letting �AT
e ,BT

e����� denote
the number of nonzero Schmidt coefficients of ��� with re-
spect to a bipartition �AT

e ,BT
e� of V as defined above, the �

width of the state ��� is defined by

�wd����� ª min
T

max
e�T

log2 �AT
e ,BT

e����� . �2�

It is straightforward to show �cf. Ref. �7�� that Ewd is an
entanglement monotone �13�, i.e., this measure vanishes on
product states, is a local invariant, and decreases on average
under local operations and classical communication �LOCC�.
The proof can readily be extended to �wd, demonstrating that
also � width is a valid entanglement measure. In fact, using
that the Schmidt rank is nonincreasing under stochastic
LOCC, or SLOCC, it can be proven that the � width is also
nonincreasing under SLOCC.

Since the inequality

log2 �A,B����� � EA,B����� �3�

holds for any bipartition �A ,B� of the system and for any
state ���, we have

�wd����� � Ewd����� . �4�

Note, however, that these quantities can show a completely
different �scaling� behavior.

It is clear that the definitions of entropic entanglement
width and Schmidt-rank width are based upon similar con-
structions, where optimizations are performed over subcubic
trees. Such constructions can of course be repeated for any
bipartite entanglement measure; hence a whole class of mul-
tipartite entanglement measures is obtained, which we will
call the class of entanglement width measures. The entropic
entanglement width and � width are two examples of en-
tanglement width measures. It would be interesting to con-
sider other examples of entanglement width measures, and
investigate their possible role in quantum information theory.

The definitions of the above entanglement measures are
inspired by a graph invariant called rank width, which was
introduced in Ref. �14�. The connection with rank width is
obtained by evaluating the entropic entanglement width or �
width in graph states. This is explained next.

First we recall the definition of graph states. Let �x ,�y ,�z
denote the Pauli spin matrices. Let G= �V ,E� be a graph with
vertex set Vª �1, . . . ,n� and edge set E. For every vertex a
�V, the set N�a� denotes the set of neighbors of a, i.e., the
collection of all vertices b which are connected to a by an
edge �a ,b��E. The graph state �G� is then defined to be the
unique n-qubit state which is the joint eigenstate, with eigen-
values equal to 1, of the n commuting correlation operators

Ka ª �x
�a�

�
b�N�a�

�z
�b�. �5�

Standard examples of graph states include the GHZ states,
and the 1D and 2D cluster states, which are obtained if the
underlying graph is a 1D chain or a rectangular 2D grid,
respectively. We refer to Ref. �15� for further details.

Let � be the n�n adjacency matrix of G, i.e., one has
�ab=1 if �a ,b��E and �ab=0 otherwise. For every biparti-
tion �A ,B� of the vertex set V, define ��A ,B� to be the
�A�� �B� submatrix of � defined by

��A,B� ª ��ab�a�A,b�B. �6�

Using standard graph state techniques it can then be shown
�see, e.g., Ref. �15�� that

rankF2
��A,B� = log2 �A,B��G�� = EA,B��G�� , �7�

where rankF2
X denotes the rank of a matrix X when arith-

metic is performed over the finite field F2=GF�2�. Thus, the
Schmidt rank and the bipartite entanglement entropy with
respect to any bipartition �A ,B� coincide for graph states,
and are given by the rank of the matrix ��A ,B�. Using the
identity �7�, one immediately finds that the � width �and
entropic entanglement width� of the graph state �G� coincides
with the rank width rwd�G� of the graph G. The explicit
definition of rwd�G� reads �14�

rwd�G� ª min
T

max
e�T

rankF2
��AT

e ,BT
e� �8�

�where the minimization is again over subcubic trees as in
the definition of � width�, which, using �7�, indeed coincides
with the � width of �G�.

Note that the subcubic trees which are considered in the
definition of rank width are not to be confused with the de-
fining graph G of the graph state �G� �the latter can be an
arbitrary graph�; the subcubic trees merely serve as a means
of selecting certain bipartitions of the system, independent of
the state which is considered. For instance, if we consider a
linear cluster state �L6� of six qubits, corresponding to a
graph L6 that is a linear chain, then the tree depicted in
Fig. 1 corresponds to the optimal tree in the definition of the
rank width �and � width�, leading to rwd�L6�=�wd��L6��=1.

In Sec. V we will further comment on the motivations for
the definition of rank width, and we will draw parallels with
the study of complex systems in quantum information theory.

B. Universal resources for MQC

In Ref. �7� a definition for universality of families of
states for MQC was put forward, and the use of Ewd to assess
nonuniversality of states was demonstrated. In this section
we briefly review the definition and the corresponding re-
sults.

Consider an �infinitely large� family of qubit states

� = ���1�, ��2�, . . . � , �9�

where ��i� is a state on mi qubits and mi�mi+1 for every
i=1,2 , . . .. This family is called a universal resource for
MQC if for each state �	� on n qubits there exists a state
��i��� on mi qubits, with mi�n, such that the transforma-
tion ��i�→ �	��0�mi−n is possible deterministically by means
of LOCC. That is, any state �	� can be prepared using only
states within the family � as resource. Equivalently, the ac-
tion of an arbitrary unitary operation U on a product input
state �0�n can be implemented, where now �	�ªU�0�n in the
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above definition. This definition is in the spirit of the model
of the one-way quantum computer, where sequences of adap-
tive single-qubit measurements performed on a sufficiently
large 2D cluster state allow one to prepare any multiqubit
state. The definition of universal resource aims to identify the
required resources, in terms of entanglement, that allow one
to perform universal quantum computation in the sense
specified above.

In the above definition of universality of a family �, we
have not yet considered the efficiency with which states can
be prepared using members of �. An efficient universal re-
source � is a universal resource having the property that all
states that can be efficiently generated with a quantum gate
network should also be efficiently generated from universal
resource �. We refer to Ref. �16� for a detailed account on
efficient universality.

In Ref. �7� it was found that any universal resource �
must satisfy the following property. Let E��	�� be a func-
tional which is defined on the set of all n-qubit states, for all
n�N, and suppose that E��	�� is nonincreasing under
LOCC. More precisely, if �	� and �	�� are states on n and n�
qubits, respectively, then E��	���E��	��� whenever the

transformation �	�→ �	���0�n−n� is possible by means of
LOCC. Moreover, let E* denote the supremal value of
E��	��, when the supremum is taken over all n-qubit states,
for all n�N �the case E*=
 is allowed�. Then any universal
resource � must satisfy the property

sup�E��������� � �� = E*. �10�

That is, the supremal value of every entanglement measure E
must be reached on every universal resource �. Using the
fact that there exist families of quantum states where the
entropic entanglement width and � width grow unboundedly
with the system size �the 2D cluster states are such ex-
amples�, it is then straightforward to show that any universal
family of states � must have unbounded entropic entangle-
ment width and � width as well. More precisely, one has �7�
the following theorem.

Theorem 1. Let � be a universal resource for MQC. Then
the following statements hold:

�i� sup�Ewd����� � ������=
,
�ii� sup��wd����� � ������=


In other words, families � where the measures Ewd or �wd
are bounded, cannot be universal. This insight, together with
the relation between entropic entanglement width and �
width and the graph theoretical measure rank width, allows
one to identify classes of graph states as being nonuniversal
since the rank width is bounded on such classes. Examples
include linear cluster graphs, trees, cycle graphs, cographs,
graphs locally equivalent to trees, graphs of bounded tree
width, graphs of bounded clique-width or distance-hereditary
graphs. We refer to the literature for definitions.

In the remainder of this paper, we will focus on the
�-width measure.

C. Classical simulation of MQC

Rather than considering the question whether a family �
is a universal resource for MQC, one may also consider the
question whether MQC on � can be efficiently simulated on
a classical computer. We will say that efficient classical
simulation of MQC on a family of states � is possible, if for
every state ��i��� it is possible to simulate every LOCC
protocol on a classical computer with overhead poly�mi�,
where mi denotes the number of qubits on which the state
��i� is defined, as before. We remark that an efficient classi-
cal description of the initial states ��i� is a necessary, but not
necessarily a sufficient condition for efficient simulation on a
classical computer.

The issue of classical simulation of MQC has recently
been considered by several authors. At this point we remind
the reader of what is already known in this context. Regard-
ing simulation of MQC on graph states, we recall the fol-
lowing results:

�i� In Ref. �8� it was showed that MQC on 1D cluster
states can be simulated efficiently classically.

�ii� In Ref. �10� it was shown that MQC on tree graphs
can be simulated efficiently classically.

�iii� In Ref. �9� it was shown that MQC on graphs with
logarithmically bounded tree width �17� can be simulated
efficiently classically.

Note that the above result on tree width implies the two
other results, as tree graphs �and thus also 1D cluster graphs�
have tree width equal to 1 �18�.

More general results, i.e., regarding arbitrary states, were
obtained in Ref. �10�, where it was shown that MQC can be
simulated efficiently on all states allowing an efficient tree
tensor network description. The description of quantum sys-
tems in terms of tree tensor networks will play an important
role in the present analysis, and will be reviewed in detail in
Sec. III.

Although related, the issues of universality and classical
simulation in MQC are fundamentally two different ques-
tions. Most of us expect that any family � for which classi-
cal simulation of MQC is possible, will not be an efficient
universal resource; this reflects the common belief that quan-
tum computers are in some sense exponentially more pow-
erful than classical machines—note, however, that so far
there is no rigorous proof of this statement. While one ex-
pects the possibility of classical simulation of MQC to imply
nonuniversality of a resource �, the converse implication is
certainly not believed to hold in general. Indeed, it is highly
likely that many nonuniversal families could still be used to
implement specific quantum algorithms.

D. Problem formulation

It is clear that regarding the notion of � width, and the
above issues of universality and classical simulation of
MQC, a number of open questions remain. In this section we
formulate two central questions, �Q1� and �Q2�, which will
constitute the main research topics in this paper. We will first
state these questions and then discuss them.
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�Q1� Does there exist a natural interpretation of the �
width measure?

�Q2� Do there exist resources � having bounded � width,
which nevertheless do not allow an efficient classical simu-
lation of MQC?

Question �Q1� is concerned with the fact that the defini-
tion of � width seems to be rather arbitrary and not intuitive,
and solely motivated by the connection to the graph theoret-
ical measure rank width. We will, however, provide a satis-
factory interpretation of this measure in the context of quan-
tum information in the next section.

Question �Q2� is concerned with the question whether
nonuniversal resources can still be useful for quantum com-
putation, in the sense that MQC performed on such states is
more powerful than classical computation. As remarked
above, it may well be that there exist nonuniversal families
of states where MQC is nevertheless hard to simulate classi-
cally. Previous results leave open this possibility, as the cri-
teria for nonuniversality and classical simulatability do not
coincide. For nonuniversal states detected by the �-width
criterion �i.e., Theorem 11 �ii��, we will show that this is not
the case. In Sec. III C we will show that MQC can be simu-
lated efficiently for any family � which is ruled out by the
�-width criterion as being a nonuniversal resource.

III. ENTANGLEMENT-WIDTH AND TREE
TENSOR NETWORKS

In this section we tackle questions �Q1� and �Q2� as stated
in the preceding section. First we will attach a natural inter-
pretation to the �-width measure, as we will show that
�wd����� quantifies the complexity of the optimal tree tensor
network �TTN� describing the state ���, thus providing a sat-
isfactory answer to question �Q1�. Moreover, we shall see
that this connection with tree tensor networks immediately
allows us to give a negative answer to �Q2�: we find that
MQC can be simulated efficiently on all resources having a
bounded � width.

These results will be obtained in three main steps. In Sec.
III A we review the notions of tensor networks and, more
particularly, tree tensor networks. We also review results ob-
tained in Ref. �10�, where it was proved that LOCC on states
specified in terms of efficient TTN descriptions can be simu-
lated efficiently; the results in Ref. �10� will be central ingre-
dients to our analysis. In Sec. III B we show how to obtain
TTN descriptions for arbitrary quantum states. Finally, in
Sec. III C we establish the connection between TTNs and �
width.

A. Tree tensor networks and efficient simulation
of quantum systems

In this section we review the basic notions regarding
�tree� tensor networks �see also Ref. �9��, and the simulation
of quantum systems described by TTNs as obtained in
Ref. �10�.

Consider a d1� ¯ �dn complex tensor �19,20�

A ª Ai1i2. . .in
, �11�

where each index i� ranges from 1 to d�, for every �

=1, . . . ,n. The number of indices n is sometimes called the
rank of the tensor A. We will call the number Dªmax� d�

the dimension of A. For example, every pure n-qubit state
expressed in a local basis,

�	� = 	
i1,. . .,in=0

1

Ai1. . .in
�i1 . . . in� �12�

corresponds to a 2� ¯ �2 tensor of rank n and dimension
2.

If A�1� and A�2� are two tensors of ranks n1 and n2, respec-
tively, and s and t are integers with 1�s�n1 and 1� t
�n2, and both the sth index of A�1� and the tth index of A�2�

range from 1 to the same integer d, then a sum of the form

	
j=1

d

Ai1. . .is−1 j is+1. . .in
�1� Ai1. . .it−1 j it+1. . .in

�2� �13�

yields a tensor of rank n1+n2−1. This sum is called a con-
traction of the tensors A�1� and A�2�. More specifically, one
says that the sth index of A�1� is contracted with the tth index
of A�2�. A situation where several tensors A�1� , . . . ,A�N� are
contracted at various indices is called a tensor network. The
maximal dimension of any tensor in the network, is called
the dimension of the network, and will usually be denoted by
D in the following. Note that every tensor network with n
open indices �i.e., indices which are not contracted�, can be
associated in a natural way to an n-party pure quantum state.

We will only consider tensor networks where every index
appears at most twice in the network. In this case, every
tensor network can be represented by a graph F in the fol-
lowing way.

�i� For every tensor A��� a vertex � is drawn.
�ii� Whenever two tensors A��� and A�
� are contracted, an

edge is drawn between the corresponding vertices � and 
 in
the graph.

�iii� Finally, for every open index of a tensor A���, i.e., an
index which is not contracted, one draws a new vertex and an
edge connecting this vertex to the vertex �.

As an example, consider three tensors A�1� ,A�2� ,A�3� con-
tracted as follows:

	
jkl

Aajk
�1�Abjl

�2�Ackl
�3�. �14�

This tensor network has three open indices a ,b ,c, and the
indices j ,k , l are contracted. The graph underlying this tensor
network is depicted in Fig. 2�a�. The tensor network �14� is
naturally associated with a three-partite pure state

��� ª 	
abc


	
jkl

Aajk
�1�Abjl

�2�Ackl
�3���a�1�b�2�c�3, �15�

where we introduced local bases ��a�1�, ��b�2�, and ��c�3� �the
subscripts denote the associated Hilbert spaces of the basis
vectors�. In fact, ��� is an example of a matrix product state.
Writing

�� jk
�1�� ª 	

a

Aajk
�1� �a�1,
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�� jl
�2�� ª 	

b

Abjl
�2��b�2,

��kl
�3�� ª 	

c

Ackl
�3��c�3,

one obtains the shorthand notation

��� = 	
jkl

�� jk
�1���� jl

�2����kl
�3�� . �16�

It is clear that similar shorthand expressions can be obtained
for arbitrary tensor networks.

A tree tensor network is a tensor network where the un-
derlying graph is a tree, i.e., a graph with no cycles. An
example of a TTN is

	
ijklm

Aabi
�1�Aijk

�2�Ajlm
�3� Acdl

�4�Aefm
�5� Aghk

�6� , �17�

and the corresponding tree graph is depicted in Fig. 2�b�.
Note that �14� is an example of a tensor network which is not
a TTN.

The following definitions regarding TTNs will be impor-
tant below �see Theorem 3.2�. Let T be a tree. An open edge
is an edge which is incident with a leaf of T. An inner edge
is an edge which is not an open edge. Consider a TTN with
tree T having n open edges, corresponding to an n-party state
���. Let e�T be an inner edge, and let �AT

e ,BT
e� be the cor-

responding bipartition of the system. By partitioning all ten-
sors in the network in two classes as induced by the biparti-
tion �AT

e ,BT
e� and grouping all contractions which occur

between tensor in the same class of the bipartition, one can
write the network in the form

	
i

�	AT
e

i ���BT
e

i � . �18�

We say that the TTN is in normal form with respect to the
bipartition �AT

e ,BT
e� if the vectors ��	AT

e
i �� and ���BT

e
i �� are �up

to a normalization� the Schmidt vectors of the state ��� with
respect to the bipartition �AT

e ,BT
e�. We say that the TTN is in

normal form if it is in normal form for all bipartitions
�AT

e ,BT
e�, where e ranges over all inner edges in T �21�.

The interest in TTNs in quantum information theory lies
in the property that the representation of systems in terms of
TTNs leads to efficient descriptions of states as well as to the
possibility of efficiently simulating the dynamics of the sys-
tem. The main results in this context were obtained in Refs.
�9,10�. The latter result will be particularly interesting for our
purposes, and will be reviewed next.

We will be concerned with TTNs corresponding to subcu-
bic trees. It can easily be verified that if a TTN corresponds
to a subcubic tree, has n open indices, and has dimension D,
then the TTN depends on at most O�nD3� complex param-
eters. Therefore, if an n-party state can be described by a
TTN where D scales at most polynomially in n, then ��� can
be described by poly�n� complex parameters by using this
TTN. Hence a family of systems allowing an efficient de-
scription is obtained. What is more, it has been shown that
also the processing of such systems can efficiently be simu-
lated classically. The following result, obtained in Ref. �10�,
will play an important role in the subsequent analysis.

Theorem 2. If an n-party pure quantum state ��� is speci-
fied in terms of a TTN of dimension D, where the underlying
tree graph is subcubic, then any MQC performed on ��� can
be classically simulated in poly�n ,D� time.

Therefore, if D grows at most polynomially with n, then
the above simulation scheme is efficient. It is noted by the
authors in Ref. �10� that there is no restriction in considering
subcubic trees only, in the sense that any n-party state which
can be represented by a TTN �with arbitrary underlying tree�
with poly�n� parameters, can also be represented by a sub-
cubic TTN with poly�n� parameters.

B. Description of quantum systems with TTNs

Theorem 2 shows that, if an efficient TTN description is
known for a quantum state, then LOCC on this state can be
simulated efficiently. However, this result does not give any
information about obtaining an �efficient� TTN description
of a given state. Note that, if a state is specified, there might
exist several TTN descriptions, some of which might be ef-
ficient and some of which might not be. In fact, we will see
below that, if a subcubic tree with n open edges is specified,
then any n-party state ��� can be represented by a TTN with
this specific tree structure—although generally tensors of ex-
ponential dimension in n are required. Therefore, the follow-
ing two questions are naturally raised:

�i� If a state ��� and a subcubic tree T are given, what is
the behavior of the dimension D of the associated TTN�s�?

�ii� If only a state ��� is given, what is the optimal sub-
cubic TTN describing this state, i.e., the one with the small-
est dimension D?

Next it is shown that the entanglement in the state ��� as
measured by the Schmidt rank, plays a crucial role in an-
swering the above questions. We prove the following result.

Theorem 3. Let ��� be an n-party state and let T be a
subcubic tree with n leaves which are identified with the n
parties in the system. Then there exists a TTN description of
��� with underlying tree T, where the dimension D of this
TTN is equal to

j

A(1)

A(2)

A(3)

a b
c

d

e
f

h

g

i
k j

m

l
A(1)

A(2)
A(6)

A(3)
A(4)

A(5)

k

l

a

b

c

(a) (b)

FIG. 2. �Color online� Tensor network with three tensors
Aajk

�1� ,Abjl
�2� ,Ackl

�3� and three open indices a ,b ,c corresponding to a
cycle graph. �b� Tensor network with six tensors Aabi

�1� ,Aijk
�2� , . . . ,Aghk

�6�

and eight open indices a ,b ,c ,d ,e , f ,g ,h corresponding to a tree
graph.
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log2 D = max
e�T

�AT
e ,BT

e����� . �19�

Moreover, this TTN is in normal form.
Proof. The proof is constructive. The idea is to stepwise

compute all tensors associated to the vertices of T, by tra-
versing the tree from the leaves to the root, as depicted in
Fig. 3. First we need some definitions. A vertex of T which is
not a leaf is called an inner vertex; note that every inner
vertex has degree 3. We fix one inner vertex r and call it the
root of the tree T. The depth of a vertex is the length of the
shortest path from this vertex to the root r. We denote by �
the maximal depth of any inner vertex in T. We refer to Fig.
3 for a schematic representation.

The construction is initialized by considering all inner
vertices �v1 , . . . ,vN� of depth �. Every such vertex has two
open edges, corresponding to two qubits in the system. We
let �a� ,b�� be the vertices associated in this way to v�, for
every �. We then compute all Schmidt decompositions with
respect to the bipartitions ��a� ,b��, rest of the system�, i.e.,

��� = 	
i

�	i
������i

���� , �20�

for every �. The vectors �	i
���� have support on the qubits

�a� ,b��, the vectors ��i
���� have support on the rest of the

system. The Schmidt coefficients are absorbed in the latter
vectors.

One then proceeds by computing the tensors associated to
the inner vertices of depth �−1, and then to the vertices of
depth �−2, . . ., up to depth equal to 1, by in every step
applying the procedure which will be outlined now.

Let 1����−1. For every vertex v, let Tv be the unique
subtree of T such that v�Tv and Tv is one of the two sub-
trees obtained by deleting the upper edge of v. Let Tv

* be the
tree obtained by, first, adding one vertex v* to Tv and con-
necting v* to v with an edge �v ,v*� and, second, drawing �
open edges at the vertex v*, where � is equal to the number
of qubits which do not correspond to leaves of Tv.

Now, suppose that the following is true: for all inner ver-
tices w of depth �+1, a TTN description for ��� is known
with tree Tw

* , and all these TTNs are in normal form. We then
outline a procedure to obtain, for every inner vertex v of
depth �, a TTN description for ��� with tree Tv

*, and all these
TTNs are in normal form.

Procedure. Consider an inner vertex v of depth �. Let
e1 ,e2 ,e3 denote the edges incident with v, such that e1 and e2

are the lower edges, and e3 is the upper edge as in Fig. 4. Let
�X1 ,X2 ,X3� be the unique tripartition of the system defined
by

�X1,X2 � X3� ª �AT
e1,BT

e1� ,

�X2,X1 � X3� ª �AT
e2,BT

e2� ,

�X3,X1 � X2� ª �AT
e3,BT

e3� . �21�

See also Fig. 4 for a simple pictorial definition.
We then make the distinction between the following

cases:

�A� neither e1 or e2 are open edges, i.e., both edges con-
nect v to other inner vertices;

�B� one of these two edges, say e2, is an open edge.

First we consider case �A�. Let v1 �v2� be the vertex con-
nected to v by the edge e1 �e2�. By assumption, we have TTN
descriptions for ��� with trees Tv1

* and Tv2

* which are in nor-
mal form. Consider these TTN descriptions, and group all
contractions in such a way that one obtains Schmidt decom-
positions of ��� with respect to the above bipartitions,

r

δ=1
δ=2

δ ∆= =3

FIG. 3. �Color online� Subcubic tree with root r, where leaves
�corresponding to the n=13 parties of the system� are indicated in
blue �dark�, and inner vertices are indicated in red �light�. The tree
is arranged in such a way that all inner vertices of same depth � are
on the same horizontal line.

e2e1
e3

v

X3

X1

X2

T *vTv v v
v*

(b) (c)

(a)

FIG. 4. �Color online� �a� Same subcubic tree as depicted in Fig.
3, where vertices are rearranged. We consider an inner vertex v of
depth �=1 with lower edges e1, e2 and upper edge e3, and the
corresponding tripartition of the system into groups X1 ,X2 ,X3. �b�
Subtree Tv and �c� tree Tv

* �for definition see text�.
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��� = 	
i=1

d�

��Xi

i ���
X̄i

i � , �22�

for every �=1,2, where d�ª�Xi,X̄i
����� denote the Schmidt

ranks, and where X̄i denotes the complement of Xi �e.g., X̄1
=X2�X3�. The Schmidt coefficients have been absorbed in
the vectors ��

X̄i

i �. Consider also the Schmidt decomposition

of ��� with respect to the split �X3 ,X1�X2�, using an analo-
gous notation

��� = 	
i=1

d3

��X3

i ���
X̄3

i � . �23�

The latter decomposition is not given by TTN so far, and
must be calculated separately. Using the above three Schmidt
decompositions, we can write

��� = 	
i=1

d1

��X1

i ���X2�X3

i � �24�

=	
i=1

d1

��X1

i ���X1

i ��� �25�

=	
i=1

d1

	
j=1

d2

��X1

i ���X2

j ���X1

i ��X1�X3

j � �26�

=	
i=1

d1

	
j=1

d2

	
k=1

d3

��X1

i ���X2

j ���X3

k �Bijk, �27�

where we have used the following arguments and definitions.
In order to go from �25� and �26�, we have inserted Eq. �22�
for �=2 in �25�; to obtain the last equality �27�, we have
defined the tensor Bijk by

��X1

i ��X1�X3

j � = 	
k=1

d3

Bijk��X3

k � . �28�

This yields a TTN description of ��� with underlying tree Tv
*.

Note that �27� implies that the Schmidt vectors ��X1�X2

k � are
recuperated as

��X1�X2

k � = 	
i,j

��X1

i ���X2

j �Bijk, �29�

which shows that the TTN is in normal form with respect to
the bipartition �X3 ,X1�X2�. It then immediately follows that
this TTN is in normal form. This concludes case �A�.

Next we consider case �B�. Let v1 and v2 be defined as
above. Note that in this case X2= �v2�. Consider again the
TTN description and related Schmidt decomposition �22� for
�=1, i.e., for the bipartition �X1 , �v2��X3�. Note that the
Schmidt decomposition for the split ��v2� ,X1�X3� is not
available from the TTN since v2 is not an inner vertex, but
we will not need it. As in case �A�, consider also the Schmidt
decomposition �23�, i.e., for the bipartition �X3 ,X1� �v2��.
We then write

��� = 	
i=1

d1

��X1

i ���X1

i ��� �30�

=	
i=1

d1

	
k=1

d3

��X1

i ���X3

k ���X1

i ��X1��v2�
k � �31�

=	
i=1

d1

	
k=1

d3

��X1

i ����v2�
ik ���X3

k � , �32�

where we have used the definition

���v2�
ik � ª ��X1

i ��X1��v2�
k � . �33�

This yields a TTN description of ��� with underlying tree Tv
*

which is again in normal form. This concludes case �B�. This
also ends the procedure.

Note that the assumption of the procedure is trivially ful-
filled for �=�−1 after the Schmidt decompositions �20�
have been computed. The procedure is then applied to �
=�−1,�−2, . . . ,1. After this, all tensors in the desired TTN
description are known, except the one associated to the root
r of T. To obtain this final tensor, the following steps are
taken. Let e1 ,e2 ,e3 be the edges incident with r, let v1 ,v2 ,v3
be the corresponding vertices of depth 1, and let the triparti-
tion �X1 ,X2 ,X3� be defined as before. From the previous
steps in the algorithm, we have TTN descriptions for ���
with trees Tv1

* , Tv2

* , and Tv3

* which are in normal form. Con-
sider these TTN descriptions, and group all contractions as
above, in such a way that one obtains Schmidt decomposi-
tions of ��� with respect to the above bipartitions,

��� = 	
i=1

d�

��Xi

i ���
X̄i

i � , �34�

for every �=1,2 ,3. A similar derivation as �24�–�27� shows
that ��� can be written as

��� = 	
i=1

d1

	
j=1

d2

	
k=1

d3

��X1

i ���X2

j ���X3

k �Bijk, �35�

where Bijk is defined similarly as above. This expression de-
scribes ��� as a TTN with tree T, as desired. Moreover, it
follows from �35� that this TTN is in normal form with re-

spect to the bipartitions �X� , X̄�� for �=1,2 ,3. Since the
TTNs �34� were in normal form by construction, this implies
that the TTN description �35� is in normal form altogether.

Finally, it immediately follows that the dimension of this
TTN is equal to �19� �22�. This concludes the proof of Theo-
rem 3. �

Note that Theorem 3 proves that, if a subcubic tree with n
open edges is specified, then any n-party state can be repre-
sented by a TTN with this specific tree structure. The con-
struction presented in the proof of Theorem 3 is similar to a
procedure presented in Ref. �23� of how to obtain a matrix
product description �which is a particular instance of a tensor
network� for an arbitrary state ���; there, too, the dimension
of the tensor network depends on the maximal Schmidt rank
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of ��� as measured with respect to a specific class of bipartite
splits, similar to �but different from� Eq. �19�.

C. Connection with � width

Theorem 3 now allows us to give a natural interpretation
of the �-width measure �2�. Namely, for any state ��� one has

�i� �wd����� is the smallest possible dimension of a TTN
associated to ��� through the Schmidt decomposition con-
struction described in Theorem 3;

�ii� the tree T which yields the minimum in �2� corre-
sponds to the optimal TTN, i.e., the one with smallest dimen-
sion �24�.

These observations fully answer �Q1�, the first of the two
central questions put forward in Sec. II D of this paper. What
is more, we now immediately arrive at a satisfactory answer
to question �Q2�, since Theorems 2 and 3 �see also Ref. �10��
imply the following.

Theorem 4. Let ��� be an n-party state. Denote �
ª�wd�����, let T be a tree yielding the optimum in the defi-
nition of �, and suppose that the TTN description of ��� with
underlying tree T is known. Then any MQC on ��� can be
simulated classically in poly�n ,2�� time.

In particular, this result shows that, whenever �wd is
bounded on a family of states �= ���1� , ��2� , . . . �, then any
MQC on � can be simulated efficiently classically. This re-
sult fully answers question �Q2� in the negative; i.e., the
�-width measure, which was originally introduced as a
means to assess whether a resource � is universal for MQC,
can equally well be used to assess whether MQC on � can
be efficiently simulated classically. In particular, we have
found that MQC can be simulated efficiently for any family
� which is ruled out by the �-width criterion �i.e., Theorem
1 (ii)� as being a nonuniversal resource.

Note that Theorem 4 even allows one to conclude that
efficient simulation is possible when �wd grows at most loga-
rithmically with the system size—i.e., it may be unbounded.
One observes that if �wd exhibits this scaling behavior on a
family of states �, then it is not detected by the �-width
universality criterion. This apparent paradox is resolved by
considering the notion of efficient universality, which was
briefly introduced in Sec. II B. When this requirement is in-
troduced in the definition of universality, the above paradox
is resolved as follows. One can prove �16� that �wd �and Ewd�
need to grow faster than logarithmically with the system size
on any efficient universal resource. This clearly resolves the
above apparent contradiction.

While the above results indeed settle questions �Q1� and
�Q2�, in practical situations one is of course faced with the
problem whether, when a state ��� is specified, the optimal
TTN can be computed efficiently. In particular, if Theorem 4
is to be applied, the following quantities need to be com-
puted:

�a� the quantity � itself,
�b� an optimal subcubic tree T in the calculation of �,
�c� the TTN description of ��� corresponding to the tree T.

It is clear that, for any of the above quantities to be effi-

ciently computable, in the least one needs to have an efficient
description of the state ��� in some form—say, a polynomial
size quantum circuit leading to the preparation of the state,
or, in the case where ��� is a graph state, the underlying
graph or stabilizer description. If an efficient description is
not available, quantities such as, e.g., the Schmidt rank with
respect to some bipartition can generally not be computed
efficiently, and there is no hope of computing, e.g., �a� in
polynomial time. However, it is important to stress that the
possibility of an efficient description is by no means suffi-
cient to compute the quantities �a�-�b�-�c� efficiently.

Regarding �a� and �b�, the optimization in the definition of
the �-width measure suggests that an explicit evaluation of
�wd in a specified state, as well as the determination of the
optimal subcubic tree, might be a highly nontrivial task.
However, we note that general results in this context are
known. In particular, we refer to Ref. �14�, where optimiza-
tion problems of the form

min
T

max
e�T

f�AT
e� �36�

are considered, where f is a function defined on subsets of
Vª �1, . . . ,n� , f :A�V→ f�A�. It has been shown that such
optimizations can be performed in polynomial time in n, i.e.,
the optimum as well as the tree yielding the optimum can be
determined efficiently, for a subclass of functions f which
meet several technical requirements. In the next section we
will see that the graph states form a class of states where
these requirements are met, such that the calculation of the �
width can be performed efficiently. However, the techniques
presented in Ref. �14� might be used or generalized to calcu-
late the � width efficiently for classes of states larger than the
graph states.

Regarding �c�, it is clear that the optimal TTN description
of ��� can only be computed efficiently if this TTN descrip-
tion is itself efficient, i.e., if it depends on at most poly�n�
parameters—this is exactly the case when � scales as ln�n�.
If � scales in the latter way, then it follows from the proce-
dure outlined in Theorem 3, that the optimal TTN description
of ��� can be obtained efficiently given one is able to deter-
mine the following quantities in poly�n� time:

�i� the Schmidt coefficients and Schmidt vectors for all
bipartitions �AT

e ,BT
e�, where T is the optimal tree in the defi-

nition of the � width.
�ii� Certain overlaps between Schmidt vectors: in particu-

lar, the tensor coefficients

Bijk = ��X1

i ���X3

k ��X1�X3

j � �37�

in Eq. �28� and similar tensors in Eq. �35�, as well as the
vectors

���v2�
ik � ª ��X1

i ��X1��v2�
k � �38�

in Eq. �33�.

Thus, a number of conditions need to be fulfilled to obtain
an efficient TTN description, if it exists, for a given state.
Remarkably, in the next section we show that the quantities
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�a�, �b�, and �c� can be computed efficiently for all graph
states.

As a final remark in this section, note that an efficient
TTN description �if it exists� of a state ��� with respect to a
given tree T, can always we obtained efficiently if ��� is
already specified in terms of an efficient TTN description
with respect to a different tree T�.

IV. GRAPH STATES

In this section we specialize the results obtained in the
preceding section to graph states.

A. Simulation of MQC

Theorem 4 and the connection between � width of graph
states and rank width of graphs, allows us to obtain the fol-
lowing result.

Theorem 5. Let �G� be a graph state on n qubits. If the
rank width of G grows at most logarithmically with n, then
any MQC on �G� can efficiently be simulated classically.

In particular, the above result shows that if rwd�G� is
bounded on a family G= �G1 ,G2 , . . . �, then any MQC on the
set ��G�= ��G1� , �G2� , . . . � can efficiently be simulated clas-
sically. This provides a complementary result to the one ob-
tained in Ref. �7�, where it was proved that any family of
graphs with bounded rank width cannot provide a universal
resource for MQC. Therefore, all examples given in Ref. �7�
of nonuniversal graph states �see also Sec. II B� can also be
given here as examples of resources on which MQC can be
simulated efficiently classically.

Note that Theorem 5 supersedes all known results �see
Sec. II C� on classical simulation of MQC on graph states. To
see this, let us consider the result in Ref. �9� stating that
MQC can be simulated efficiently on all graph states G with
logarithmically bounded tree width twd�G�. Using the in-
equality �25�

rwd�G� � 4 · twd�G� + 2, �39�

one finds that, whenever twd�G� scales as ln�n� �where n is
the number of qubits in the system�, then also rwd�G� scales
at most as ln�n�. Thus, Theorem 5 implies that MQC can be
simulated efficiently on all graph states G with logarithmi-
cally bounded tree width, and the result in Ref. �9� is re-
trieved. This shows that Theorem 5 fully recovers and gen-
eralizes the known results on simulation of MQC on graph
states.

Finally, we emphasize that the rank width can be bounded
on families of graphs which do not at all have any treelike
structure, i.e., graphs possibly having many cycles; therefore,
the presence of cycles in a graph is no indication that effi-
cient simulation of MQC on the associated state might be
hard. One reason of this property is that a possible tree struc-
ture of a graph does not remain invariant under local opera-
tions; e.g., the fully connected graph and the star graph �one
central vertex connected to all other vertices� are locally
equivalent; the latter is a tree graph, the former is not—in
fact, the tree width of the star graph is equal to 1, whereas
the tree width of the fully connected graph on n vertices is

n−1 �18�. Contrary to, e.g., the tree-width measure, the rank
width is a local invariant, thus taking into account such
cases. Due to these properties, our results prove a significant
extension to the use of the tree width; indeed, the above
example unambiguously illustrates the superiority of the rank
width as a criterion to address the classical simulation of
MQC on graph states.

B. TTNs for graph states

In this section we are concerned with the issue whether, if
a graph state is given, the optimal TTN can be computed
efficiently, i.e., we consider the quantities �a�-�b�-�c� as de-
noted in Sec. III C.

Let G be a graph on n vertices. It was shown in Ref. �14�
that, for a fixed integer k, the problem “Is the rank width of
G smaller than k?” is in the complexity class P. Moreover,
in Ref. �26� several polynomial-time so-called approximation
algorithms for the rank width are constructed. When G is
given as an input, the �most efficient� algorithm either con-
firms that rwd�G� is larger than k, or it outputs a subcubic
tree T* such that

max
e�T*

rankF2
��AT*

e ,BT*
e � = 3k − 1, �40�

which implies that rwd�G��3k−1. The running time of the
algorithm is O�n3�.

These results immediately yield an efficient procedure to
gain insight in the scaling behavior of the �-width of a given
�family of� graph states. A possible approach is the follow-
ing. First fix a positive integer K of at most O�log n�. Then
run the above algorithm for k=1, . . . ,K, i.e., K times. This
algorithm can be used to determine the scaling behavior of
the rank-width of a given �family of� graph�s�, and the cor-
responding optimal subcubic trees. Note that the fact that one
does not obtain the rank width exactly does not cause any
difficulties, since we are only interested in the scaling behav-
ior of the rank width. If the scaling is logarithmic, the ap-
proach allows to efficiently determine the optimal subcubic
tree in the calculation of the �-width.

Thus, both quantities �a� and �b� as defined in the discus-
sion following theorem 4, can be computed efficiently for
any graph state with logarithmically bounded Schmidt-rank
width.

As for an efficient calculation of quantity �c�, we note
that, for any bipartition of the system, both the Schmidt co-
efficients and the Schmidt vectors can be computed effi-
ciently for graph states using the stabilizer formalism; more-
over, the Schmidt vectors can always be chosen to be
stabilizer states themselves. This can be proved as follows
�we only give a sketch of the argument, as it involves stan-
dard stabilizer techniques�. Let �G� be a graph state on qubits
Vª �1, . . . ,n�, and let �A ,B� be a bipartition of V. Let S
denote the stabilizer of �G�, defined by

S ª 


a�V

�Ka�xa�xa � �0,1�, ∀ a � V� , �41�

where the operators Ka have been defined in Eq. �5�. Thus, S
is the commutative group generated by the operators Ka. One
then has �15�
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�G��G� =
1

2n 

a�V

�I + Ka� =
1

2n 	
g�S

g . �42�

Let SA be the subgroup of operators in S acting trivially on
the qubits in V \A=B. Then

�A � IB ª �TrB�G��G�� � IB =
1

2�A� 	
g�SA

g . �43�

This operator satisfies

��A�2
� IB =

1

22�A� 	
g�SA

g 	
h�SA

h =
1

22�A� 	
g�SA

	
h�SA

h

=
�SA�

2�A� �A � IB. �44�

The second equality holds since SA is a group. Denoting r
ª2�A��SA�−1, it follows that �r�A�2=r�A, showing that r�A a
projection operator. Thus, all nonzero eigenvalues of this op-
erator are equal to 1. This shows that all nonzero eigenvalues
of �A �which are the squares of the Schmidt coefficients of
�G� with respect to the bipartition �A ,B�� are equal to r−1

=2−�A��SA�. Moreover, as �A has unit trace, it follows that

r−1 · rank��A� = 1, �45�

such that the number of nonzero eigenvalues of �A is equal to
r=2�A��SA�−1 �27�.

The eigenvectors of �A can be computed as follows. Let
�K1

A , . . . ,Ks
A��SA denote a minimal generating set of SA,

where sª log2�SA�. Let �Ks+1
A , . . . ,K�A�

A � be additional Pauli
operators, chosen in such a way that

�K1
A, . . . ,Ks

A,Ks+1
A , . . . ,K�A�

A � �46�

is a set of commuting and independent operators; such a set
always exists �though it is nonunique� and can be computed
efficiently, by using the stabilizer formalism �see, e.g., Ref.
�15��. Note that �46� is the generating set of a stabilizer state
��� on the qubits in A, namely the state

������ ª
1

2�A�

i=1

�A�

�I + Ki
A� . �47�

Moreover, this state is an eigenstate of �A. To see this, note
that Kj

A������= ������, and thus Kj
A���= ���, for every j

=1, . . . ,s. As �Kj
A� j=1

s is a generating set of the group SA, this
last identity implies that g���= ��� for every g�SA, and
therefore

�A��� =
1

2�A� 	
g�SA

g��� =
�SA�

2�A� ��� . �48�

In order to obtain a basis of eigenvectors, one considers the
2�A�−s=2�A��SA�−1 stabilizer states ���s+1,. . .,��A�

� with stabilizers
generated by

�K1
A, . . . ,Ks

A,�s+1Ks+1
A , . . . ,��A�K�A�

A � , �49�

where �k= ±1, for every k=s+1, . . . , �A�. One can, with ar-
guments analogous to above, show that all these states are

eigenvectors of �A. Moreover, all these states are mutually
orthogonal; one has

���s+1,. . .,��A�
��
s+1,. . .,
�A�

� = �− 1��k���s+1,. . .,��A�
�Kk

A��
s+1,. . .,
�A�
�

= �− 1��k+
k���s+1,. . .,��A�
��
s+1,. . .,
�A�

� ,

�50�

for every k=s+1, . . . , �A�, where we have, respectively, used
that

���s+1,. . .,��A�
� = �− 1��k���s+1,. . .,��A�

�Kk
A �51�

and

Kk
A��
s+1,. . .,
�A�

� = �− 1�
k��
s+1,. . .,
�A�
� . �52�

It immediately follows from the identity �50� that the states
���s+1,. . .,��A�

� are mutually orthogonal. Since there are exactly
2�A��SA�−1 such vectors, as many as there are nonzero Schmidt
coefficients, we have computed all Schmidt vectors of �G�
with respect to the bipartition �A ,B�. Remark that at this
point we only have a stabilizer description of the Schmidt
vectors; if necessary, the expansion of these vectors in the
computational basis can be computed using the results in
Ref. �28�.

This shows that both Schmidt coefficients and Schmidt
vectors of �G� with respect to any bipartition �A ,B� can be
computed efficiently, and that the Schmidt vectors can al-
ways be chosen to be stabilizer states. Moreover, note that
overlaps between stabilizer states can be computed effi-
ciently using stabilizer techniques, and we refer to Ref. �29�,
where this problem was considered.

Thus, all necessary ingredients �cf. �i� and �ii� in Sec.
III C� needed for the efficient construction of the optimal
TTN of a graph state �G�, can be computed efficiently when
rwd�G� scales as ln�n�.

We then arrive at the following result.
Theorem 6. Let �G� be a graph state on n qubits and

denote �ª�wd��G��. Then an optimal subcubic tree T in the
definition of � can be computed in poly�n� time. Moreover, if
� scales as ln�n� then the TTN description of �G� correspond-
ing to T can be computed in poly�n� time. Note that, in
particular, the conditions of the above theorem are fulfilled
for all classes of graphs having bounded rank width, and thus
efficient TTNs can be computed in poly�n� time for all such
classes.

C. Example for the cycle graph on n=6 qubits

In this section we give an explicit example of the compu-
tation of the rank width, the optimal subcubic tree, and the
corresponding TTN description of a particular graph state,
namely the 6-qubit state �C6� associated to the cycle graph
�or ring graph� C6 on six vertices. The adjacency matrix � of
C6 is the 6�6 matrix
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�
· 1 · · · 1

1 · 1 · · ·

· 1 · 1 · ·

· · 1 · 1 ·

· · · 1 · 1

1 · · · 1 ·

� , �53�

where a dot denotes an entry equal to zero.

1. Rank width and optimal tree

First we compute the rank width of the graph C6. In fact,
we will prove that rwd�C6�=2. To show this, consider the
subcubic tree T depicted in Fig. 1. The leaves of T are asso-
ciated to the vertices of C6 in the following natural way: first,
fix an arbitrary vertex of C6 and denote this to be vertex 1;
then, starting from vertex 1, traverse the vertices of C6 in a
counterclockwise way, and denote the vertices by 2, 3, 4, 5,
and 6, respectively; these vertices are now associated to the
leaves of T by identifying vertex 1 with the leftmost leaf of
T, vertex 2 with the second leaf from the left, etc.

It is now straightforward to show that

max
e�T

rankF2
��AT

e ,BT
e� = 2. �54�

This can be shown by simply computing the ranks of all
matrices ��AT

e ,BT
e� and picking the largest of these ranks.

Furthermore, one has

�T��C6� ª max
e�T�

rankF2
��AT�

e ,BT�
e � � 2 �55�

for every subcubic tree T�. This can be seen as follows: first,
note that �T��C6��1 for every T�, since

rankF2
��A,B� � 1 �56�

for every bipartition �A ,B�. Second, suppose that T� is a
subcubic tree such that �T��C6�=1; we will show that this
leads to a contradiction. Note that rankF2

��A ,B� is equal to
1 if and only if �A ,B� is a bipartition of the form �one vertex,
rest�. Moreover, if �T��C6�=1, then one must have

rankF2
��AT�

e ,BT�
e � = 1 �57�

for every e�T�. Thus, every bipartition �AT�
e ,BT�

e � must be of
the form �one vertex, rest�; this leads to a contradiction. This
shows that the inequality �55� is correct. We can therefore
conclude that

rwd�C6� ª min
T�

�T��C6� = 2 �58�

and that the tree T as depicted in Fig. 1 yields the optimum.
At this point we note that here ad hoc methods have been

used to obtain the above result; however, we remind the
reader that general algorithms exist to calculate the rank
width and the optimal tree, as cited in Sec. IV A.

2. TTN description

The computation of the TTN description of �C6� with un-
derlying tree T is performed in the Appendix. The result is
the following:

�x1 . . . x6�C6� =
1

23 	
abcdef

�abx1x2

�1� �abcdx3

�2� �cdefx4

�3� �efx5x6

�4� ,

�59�

where x1 , . . . ,x6� �0,1� and where all indices in the sum run
from 0 to 1. The pair ab should be regarded as one index
taking four different values, as well as the pairs cd and ef .
Moreover, one has the following definitions:

�abx1x2

�1�
ª �a,x1

�b,x2
,

�abcdx3

�2�
ª �− 1�ac+ab+bx3+dx3,

�cdefx4

�3�
ª � f ,c�d,x4

�− 1�de+ec,

�efx5x6

�4�
ª �e,x5

� f ,x6
. �60�

V. COMPLEX SYSTEMS VERSUS TREE STRUCTURES
IN QIT AND GRAPH THEORY

We have seen that the � width of a graph state is equal to
the rank width of the underlying graph. There is in fact a
striking parallel between the motivations for the definitions
of rank width of graphs and of � width of general quantum
states, on which we comment here.

As explained above, the � width gives information about
the optimal TTN which describes a given quantum state. The
interest in such TTNs naturally arises due to the fact that the
dynamics of quantum systems which allow TTN descriptions
with sufficiently small dimension D, can be simulated effi-
ciently on a classical computer. These and similar techniques
�cf., e.g., the matrix product states formalism� are invoked
because the efficient classical simulation of general quantum
systems can be a very difficult problem. Thus, in spite of the
general hardness of this simulation problem, it becomes trac-
table when restricted to the class of those systems with effi-
cient TTN descriptions.

In graph theory an analogous situation occurs. While
many interesting problems are hard to compute on general
graphs, they become tractable for those classes of graphs
which can be associated, through certain constructions, with
tree structures. The simplest examples are of course the tree
graphs themselves, which are in some sense the simplest
instances of graphs; and indeed, many difficult problems be-
come efficiently solvable, or even trivial, on trees. However,
this is far from the whole story. In graph theory one has
considered a variety of so-called width parameters, which all
measure, in different ways, how similar a graph is to a tree
graph. Examples are rank width, tree width, clique width,
path width, and branch width. It has been shown that for
families of graphs where a given width parameter is
bounded, large classes of �NP� hard problems have efficient
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solutions. For example, the problem of deciding whether a
graph is 3-colorable, which is a NP hard, is efficiently solv-
able when restricted to classes of graphs of bounded rank
width. The graph theoretical results in this context are often
very general and far reaching; e.g., it has been show that all
graph problems which can be formulated in terms of a cer-
tain mathematical logic calculus, have efficient solutions
when restricted to graphs of bounded rank width. We refer to
Ref. �30� for an accessible treatment of these and related
issues.

Thus, in certain aspects of both quantum information
theory and graph theory there is a natural interest in using
tree structures for the approximation of complex systems.
Moreover, there seems to be a strong parallel in the explicit
constructions which are used in both fields. A striking ex-
ample is obtained here, as the rank width of graphs exactly
coincides with the �-width measure on graph states. As a
second example, it was found in Ref. �9� that the efficient
contraction of large tensor network is directly related to the
tree width of the underlying graphs. The present authors be-
lieve that the aforementioned parallel can significantly be
exploited further.

VI. CONCLUSION

In this paper we have considered the possibility to classi-
cally simulate measurement based quantum computation. We
have shown that all states with a bounded or logarithmically
growing Schmidt-rank width can in fact be described effi-
ciently, and moreover any one-way quantum computation
performed on such states can also be simulated efficiently.
We have given an interpretation of the Schmidt-rank width, a
measure that has its origin in graph theory, in terms of the
optimal tree tensor network describing a state. We have also
provided a constructive procedure how to obtain the optimal
TTN, and discussed the requirements that this can be done
efficiently. For graph states, we have explicitly constructed
the corresponding TTN, and provided an efficient algorithm
to do this for any graph state where the underlying graph has
bounded or logarithmically growing rank width. These re-
sults on efficient simulation complement recent findings on
universality of states, in the sense that all states that are
found to be nonuniversal resources for MQC using the
Schmidt-rank width criteria �i.e., which have bounded
Schmidt-rank width� can also be simulated efficiently on a
classical computer. The connection to complexity issues in
graph theory, also highlighted in this paper, seems to provide
future possibilities for a fruitful interchange of concepts and
methods between the fields of quantum information and
graph theory.
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APPENDIX: OPTIMAL TTN DESCRIPTION OF �C6‹

We now compute the TTN description of �C6� with respect
to the tree T depicted in Fig. 1, using the procedure outlined
in Theorem 3. Consider the following Schmidt decomposi-
tions of �C6�:

�C6� =
1

��1�	
i

�	i
�1��12��i

�1��3456 �A1�

=
1

��2�	
j

�	 j
�2��123�� j

�2��456 �A2�

=
1

��3�	
k

�	k
�3��1234��k

�3��56. �A3�

These decompositions are taken with respect to the biparti-
tions ��1,2�, �3,4,5,6��, ��1,2,3�, �4,5,6��, and ��1,2,3,4�,
�5,6��, respectively; these correspond to the bipartitions
�AT

e ,BT
e�, where e runs over all inner edges of T. All Schmidt

vectors in �A1� are normalized, and the ���� are the square
roots of the Schmidt ranks of the corresponding bipartitions
�31�.

We now show how the TTN description of �C6� with re-
spect to the tree T is obtained, by applying the procedure
presented in Theorem 3. First, note that the depth � of T is
equal to 3. We start by considering the single inner vertex of
depth 3; this is the vertex which has leaves 1 and 2 as lower
vertices. We then compute the Schmidt decomposition �A1�,
corresponding to the bipartition which is obtained by delet-
ing the upper edge of this vertex. In a second step, we con-
sider the single vertex in T having depth 2, and compute the
corresponding Schmidt decomposition �A2�. Moreover, we
write

�C6� =
1

��1�	
i

�	i
�1���	i

�1��C6� =
1

��1���2�	
i,j

�	i
�1��	i

�1��	 j
�2���� j

�2��

�A4�

�where we have omitted the subscripts of the Schmidt vec-
tors�. Finally, we consider the Schmidt decomposition �A3�
�corresponding to the upper edge of the unique depth 1 ver-
tex�, and write it as

�C6� =
1

��3�	
k

��k
�3����k

�3��C6� . �A5�

Combining Eqs. �A5� and �A4� then shows that �C6� can be
written as follows �32�:

�C6� =
1

��1���2���3�	
ijk

�	i
�1���	i

�1��	 j
�2����k

�3����k
�3��� j

�2�� .

�A6�

Note that the states �	i
�1� �	 j

�2�� are defined on qubit 3, for
every i and j, and that the states ��k

�3� �� j
�2�� are defined on

qubit 4, for every j and k.
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Next we explicitly compute the Schmidt coefficients and
Schmidt vectors in the above expansions, using the stabilizer
formalism.

As for the Schmidt coefficients, note that

2 = rankF2
���1,2�,�3,4,5,6��

= rankF2
���1,2,3�,�4,5,6��

= rankF2
���1,2,3,4�,�5,6�� , �A7�

and therefore �using �7�� all the Schmidt ranks of the above
bipartitions are equal to 22=4. Thus, the indices i , j ,k in Eq.
�A6� all run from 1 to 4, and we also have

��1� = ��2� = ��3� = �4 = 2. �A8�

It will be convenient to write the indices i , j ,k as pairs of
bits, and we will use the notations i�ab , j�cd ,k�ef ,
where a ,b ,c ,d� �0,1�.

We now consider the Schmidt vectors with respect to the
above bipartitions. We start with the bipartition ��1,2�,
�3,4,5,6��. Here one finds that

Tr�3,4,5,6���C6��C6�� = 1
4 I . �A9�

Thus, a Schmidt basis for the subset �1,2� could simply be
chosen to be the computational basis; in other words, we take

�	ab
�1�� = �a� � �b� � �ab� , �A10�

defined on the qubits �1,2�, for every a ,b� �0,1�.
The same argument can be repeated for the vectors ���ef

�3��,
where we can take ��ef

�3��= �ef�, defined on the qubits �5,6�, for
every e , f � �0,1�.

As for the bipartition ��1,2,3�, �4,5,6��, one can easily
show that

Tr�4,5,6���C6��C6�� = 1
8 �I + �z � �x � �z� �A11�

and that, hence, the states

�	cd
�2�� = �z

c
� I � �z

d�L3� �A12�

form a valid Schmidt basis, where c ,d� �0,1� and where
�L3� is the linear cluster state on three qubits, defined on the
qubits �1,2,3�.

To compute the vectors ���cd
�2���, note that one has

��cd
�2�� = 2�	cd

�2��C6� . �A13�

Therefore, we must compute expressions of the form

���L3��z
c

� I � �z
d� � I��C6� , �A14�

for every c ,d=0,1. To do so, we use that every n-qubit
graph state �G� with adjacency � can be written as �15�

�G� =
1

2n/2 	
u��0,1�n

�− 1�qG�u��u� , �A15�

where ��u� �u� �0,1�n� is the n-qubit computational basis and
where

qG�u� ª 1
2uT�u . �A16�

One then finds that �A14� is equal to �omitting multiplicative
constants�

	
u,v,w

�	
x,y,z

�− 1�qC6
�x,y,z,u,v,w�+qL3

�x,y,z�+xc+zd��uvw� .

�A17�

Straightforward algebra then shows that the power of −1 in
the above expression is equal to

x�w + c� + z�d + u� + qL3
�u,v,w� . �A18�

Moreover, one has

	
x,y,z

�− 1�x�w+c�+z�d+u� = 
23 w = c and d = u ,

0 else.
�

�A19�

We then find that �A17� is equal to

�d��	
v=0

1

�− 1�qL3
�d,v,c��v���c� , �A20�

for every c ,d=0,1. Thus, these four states form the set
���cd

�2��� j=1
4 , defined on qubits �4,5,6�.

The only remaining task is the computation of the states
�	ab

�1� �	cd
�2�� and ��ef

�3� ��cd
�2��. To compute the former of these

states, it follows from the above that one must compute, for
every a ,b ,c ,d� �0,1�, overlaps of the form

�	ab
�1��	cd

�2�� = ��a� � �b� � I���z
c

� I � �z
d�L3��

= �− 1�ac�a� � �b� � �z
d�L3� . �A21�

Using the expansion �A15�, it is then easy to show that �A21�
is equal to

�− 1�ac	
v=0

1

�− 1�qL3
�a,b,v�+dv�v� , �A22�

for every a ,b ,c ,d� �0,1�, and these states are defined on
qubit 3. A similar calculation can be performed to obtain

��ef
�3���cd

�2�� = � f ,c�− 1�qL3
�d,e,c��d� , �A23�

for every c ,d ,e , f � �0,1�, and these states are defined on
qubit 4.

We can now write down the TTN description of the state
�C6� with respect to the tree T depicted in Fig. 1,
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�C6� =
1

23 	
abcdef

��ab�12�	
v

�− 1�ac+qL3
�a,b,v�+dv�v�3�

� �� f ,c�− 1�qL3
�d,e,c��d�4��ef�56� , �A24�

where we have again indicated subscripts to specify on
which qubits the states are defined.

Recalling the definition of qL3
, namely

qL3
�t1,t2,t3�: = t1t2 + t2t3, �A25�

for every t1 , t2 , t3� �0,1�, we recover expression �59�. Note
that one can easily check that �59� is correct, by summing
out all indices a , . . . , f ,

�x1 . . . x6�C6� =
1

23 	
abcdef

��a,x1
�b,x2

�− 1�ac+ab+bx3+dx3

�� f ,c�d,x4
�− 1�de+ec�e,x5

� f ,x6
�

=
1

23 �− 1�x6x1+x1x2+. . .+x5x6

=
1

23 �− 1�qC6
�x1,. . .,x6�, �A26�

where in the last equality we indeed obtain the correct com-
putational basis expansion of �C6�.
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