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The fidelity of postselecting devices based on direct photon number detection can be significantly improved
by insertion of a phase-insensitive optical amplifier in front of the detector. The scheme is simple, and the cost
to the probability of obtaining the appropriate detector outcome is low.
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I. INTRODUCTION

The reliable production of tailored quantum states is one
of the main challenges in quantum information. Experiments
in optics rely on postselection to do this �1–3�. A general
perfect postselecting device is shown in Fig. 1. A multicom-
ponent quantum state is fed into a device which transforms
the input state. One of the outputs �arm 2� is measured, and
when the measurement gives a particular result �represented
mathematically by a probability operator measure element
�̂c� the device produces the correct useful state �̂c in arm 1.
If one of a set of incorrect measurement results ��̂ij� is found
the device produces an incorrect state �̂ij.

Often in optics the unselected state is mixed, so postse-
lection is essential. Simple examples include the generation
of heralded single photon states from twin-beam parametric
down-conversion �2�, or the quantum scissors device �3�,
which produces a superposition of zero and one photon. In-
terest in the topic received a further boost with the realization
that it might be possible to perform scalable linear optical
quantum computing, with both state production and logic
gate operation relying on postselection �4–6�. Variations on
this include the one-way quantum computer, which produces
states from measurements performed on cluster states �7�.

Imperfections, either in internal device components or in
detection, are a serious problem for real postselectors. As a
result they do not make the state that they would have made
if they had been functioning perfectly. Photodetectors are
poor at present, suffering from low quantum efficiency, from
dark counts, and from an inability to distinguish between
higher photon numbers. This means that the single-photon-
number readout from a detector, which ought to correspond
to a pure number-state measurement, in fact corresponds to a
mixed measured state �8�. The effect of this on the postse-
lector output state is to mix �̂c with the set of incorrect states
�̂ij.

The quality of device output can be quantified by the fi-
delity, which is a measure of the closeness of the imperfect
output state produced, �̂c�, to the required output state, �̂c.
The standard definition, if �̂c is pure, is F=Tr��̂c�̂c��, which is
unity for a perfect device �9�.

Optical quantum information processors, which might be
composed of thousands of postselectors, require extremely
high fidelities. The improvement of photodetectors to such
levels is unrealistic, but there have been proposals for novel

detection schemes to improve fidelity. For example, photon-
added homodyne detection �10� does this, but with a high
cost to the probability of detecting the required state �re-
duced by more than 100-fold if the fidelity is to be greater
than 0.99�. Another proposed approach is to use a nonlinear
optical material formed by atoms in a dielectric waveguide to
perform quantum nondemolition detection of photon number
�11�. This scheme has the appealing feature that the detected
photons can be reused. Despite this, both schemes are much
more complicated than direct detection, and the former
requires photon number states as a resource.

Here a scheme is proposed which uses inefficient direct
photodetection preceded by a phase-insensitive optical am-
plifier. Amplifiers are not typically used in quantum optical
experiments as they add noise photons �12�, which swamp
any quantum characteristics of the amplified state �13�. They
have been used to offset detector inefficiency, improving the
signal-to-noise ratio for direct detection autocorrelation mea-
surements of laser light �14�, but never for quantum states.
However, there have been recent improvements to amplifiers
for quantum systems �15�. Also, it has been shown, using
retrodictive quantum theory �16�, that the state transforma-
tion made by an amplifier of gain G forward in time is
the same as that made by an attenuator with transmission
1/G backward in time and vice versa �17�, which leads to
seemingly strange input photon number expectation values
�18�.

In the next section the retrodictive conditional probability
is introduced as a measure of fidelity appropriate for optical
postselecting devices. Then results are provided for postse-
lection based on recording zero or one photocount, followed
by a simple explanation. An analysis of the cost of amplifi-
cation follows, in terms of a reduction in the photocount
probability. In the final section the results are discussed and
conclusions presented.
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FIG. 1. A general postselecting device.
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II. DEVICE FIDELITY BASED ON PREAMPLIFIED
DETECTION

A. Conditional probability as a fidelity measure

For a pure-state postselector with perfect internal compo-
nents, based on detecting photon number states, substitution
of �̂c and �̂c� allows the fidelity to be expressed as a sum of
terms �19�

F = Pr�c�c� + �
j

Pr�ij�c�Tr1��̂c�̂ij� . �1�

Here Pr�c �c� is the retrodictive conditional probability that
the number of photons in the measurement arm �2� is the
same as that indicated by the detector, and Pr�ij �c� is one of
the set of probabilities that the number of photons is different
from that indicated by the detector. The first term, which we
denote Fr, has been proposed as a simple measure of fidelity
�19�. It has advantages over F. First it depends only on mea-
surement arm properties: the “prior” probabilities �20� of de-
tectable states in the measurement arm and the properties of
the mixing performed there. Second, it is the natural quantity
to maximize in order to enhance fidelity �if Fr is unity the
confidence in the detector result is perfect, as is F� �21�.
Often the overlaps between the correct output state and the
incorrect ones will be small. Furthermore, as the detection
scheme is improved, the probabilities that the measured state
is not that indicated by the detector diminish. Thus Fr forms
a close lower bound on F.

The detector is characterized by an efficiency �, and dis-
criminates between different photon numbers. This is not
typical, but detectors that discriminate between zero, one,
and more than one photon exist �22�, and here postselection
based solely on recording zero or one count is considered, as
this is the most prevalent. For practical purposes, then the
detector is equivalent to a perfect discriminating device pre-
ceded by an attenuator of transmission � �23�. The detection
system is completed by an ideal amplifier of gain G �Fig. 2�
which adds the minimum amount of noise. Discussion of
both extra amplifier noise and dark counts is postponed until
later. The fictitious attenuator and real amplifier jointly form
a compound mixing device preceding the perfect detector
�19�.

Retrodictive conditional probabilities can be found from
Bayes’ theorem. If the postselecting device is supposed to
produce the correct state when n photons are detected then Fr
is

Fr�n� =
pnPp�n�n�

�
m

pmPp�n�m�
, �2�

where pm is the prior probability of m photons in the mea-
surement arm, and Pp�n �m� is the predictive conditional
probability that n photons exit the compound mixing device
and are recorded as counts at the perfect detector, given that

m enter it. The required probabilities can be straightfor-
wardly calculated. The prior probabilities are the diagonal
elements, in the photon number basis, of the arm 2 state
formed by tracing the joint output state of the two arms over
arm 1. The conditional probabilities are well known from the
quantum theories of the amplifier and attenuator �18,24�,

Pp�n�m� = �
q=n

� �q

n
��n�1 − ��q−n�q

m
� �G − 1�q−m

Gq+1 . �3�

The denominator in Fr�n� is the probability that n counts are
recorded, which is also altered by the amplifier.

B. Postselection based on zero or one photocount

First postselection based on recording zero photocounts is
examined. The prior photon number probability distribution
will be fixed by the particular device under consideration,
but a distribution must be chosen for calculation purposes.

If all of the prior photon number probabilities are equal
Fig. 3 is obtained, which shows Fr�0� as a function of � and
G. The greater the gain, the greater is the improvement over
the no-amplifier, G=1 limit �25�. The device will show in-
crease in fidelity as the gain increases for any �p0�0� prior
probability distribution. A simple example might be a two-
photon state generator formed by a single-photon input into
each input arm of a 50-50 beam splitter. If no photons are

FIG. 2. An amplifier precedes the imperfect detector, modeled
by an attenuator in front of a perfect detector.
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FIG. 3. Fidelity against G and � for postselection based on 0
counts, for each photon number in the measurement arm having
equal prior probability.
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FIG. 4. log10�1−Fr�0�� against � for the two-photon state gen-
erator. The lines are for �from top to bottom� G=1, 2, 4, 8, and 16.
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detected in one output arm then two are produced in the
other. For this device all of the prior probabilities vanish
except p0= p2=1/2.

A plot of the logarithm of the difference between the fi-
delity and 1 against � is shown in Fig. 4 for various amplifier
gains. Here as G is increased the fidelity tends to 1 even
more rapidly, a function of the particular prior probability
distribution. It is possible to reach extremely high fidelities
even for relatively modest gain.

For postselection based on one count, with equal prior
photon number probabilities, fidelity can be increased for
low G only if � is below about 0.7. The situation is different,
however, if the measurement arm contains at least one
photon, which is illustrated by Fig. 5. Increasing the gain
increases the fidelity to arbitrarily close to unity. Any prior
distribution for which p0 vanishes will show improvement in
fidelity as the gain increases for all values of �.

C. Simple explanations for fidelity increase

A clarification of the physics behind the effect is found by
considering the measurement arm states corresponding to the
measurement results. For a perfect detector these are the pure
states indicated by the detector, but for an imperfect detector
they are mixed �8�.

Figure 6 shows histograms of the photon number prob-
ability distribution of the mixed state corresponding to detec-
tion of zero photons by an imperfect detector. The effect of
the amplifier �lower histogram� is to “attenuate” the state
such that the mean photon number in the projected state is
1 /G times the mean photon number in the projected state
with no amplifier present �upper histogram� �17,18�. This
causes probability to “pile up” at lower photon numbers, and
in particular on zero.

The same effect is responsible for fidelity increase based
on one count. For high enough gain the most likely photon
number, if one is counted, is zero, then one, then two, etc.
The prior distribution then becomes important. Excluding the
possibility of zero photons entering the detector amounts to
omitting the zero-photon component of the projected state
and then renormalizing, so that one photon is the lowest

possible photon number in the distribution. Otherwise the
fidelity decreases with increasing G for high �.

An alternative view is that the amplifier shifts the photon
number of the n-photon component of its input �the state
represented by the prior distribution� from exactly n to a
mean of �n+1�G−1. In other words it separates photon num-
bers by a factor G and adds G−1 photons �although the
random nature of the process means that there is some over-
lap between the shifted distributions for different initial pho-
ton numbers�. For reasonable values of � it is very unlikely
that zero counts will be obtained from a shifted one- or two-
photon state, as it is very unlikely that so many photons will
be lost at the attenuator. If zero counts are obtained, it is
therefore more likely that no photon was present.

D. Photocount probability cost

There is a cost associated with the large fidelity increases
which are possible using preamplification, and this is seen in
the photocount probabilities. The ratio of the probability that
the detector records zero counts to this same probability for
perfect detection quantifies this cost, and is shown in Fig. 7
�for equal prior probabilities�.

The curve is insensitive to �. The relative probability is
reduced, but not excessively so. Even for G=10 the probabil-
ity is only reduced to 1/8 of its value for perfect detection.
The fidelity obtained for �=0.8, G=10 is 0.975, but this is
for a flat prior photon number distribution �the corresponding
figure for �=0.9 is close to 0.99�. For states with distribu-
tions with small or vanishing probabilities of higher photon
numbers the improvement can be vast, as Fig. 4 shows.
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FIG. 5. log10�1−Fr�1�� against � for equal prior probability of
each nonzero photon number in the measurement arm. The lines are
for �from top to bottom� G=1, 2, 4, 8, and 16.
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FIG. 6. Photon number probability histograms for detection of 0
photons by a detector with �=0.5. The upper histogram is the mea-
sured state if there is no amplifier present, and the lower one is for
G=10.

PREAMPLIFIED PHOTODETECTORS FOR HIGH-FIDELITY… PHYSICAL REVIEW A 75, 012335 �2007�

012335-3



III. CONCLUSIONS

In this paper it has been shown that an optical preamp-
lifier can significantly improve the fidelity of postselectors
based solely on imperfect direct photodetection. A further
advantage is that the amplifier does not drastically decrease
the probability of device operation. Even this modest
decrease in probability could be offset by including other
detection results as a signature of the required number of
photons in the measurement arm �e.g., if G��1 and
one count is obtained the most likely photon number in the
measurement arm is zero�.

The scheme works best if the detected photon number is
the minimum number possible in the measurement arm. Thus
it is especially useful for improving the fidelity based on
detecting zero photons. For detecting single photons the im-
provement is almost as great, but the benefit of the method
rests on the ability to produce measurement arm states which
do not contain a significant vacuum component. This is a
matter of postselector design and photon production tech-
nique, which is rapidly improving under the impetus of the
quantum information challenge �26,27�. For postselectors
with detections in more than one output arm, such as the

quantum scissors �3�, amplifiers can be placed in front of
each detector, and similar improvements in fidelity can be
found.

Up to this point the amplifier has been assumed to add the
minimum number of noise photons. The main effect of extra
noise photons is to decrease the fidelity obtained for a par-
ticular gain. As was stated earlier the amplifier shifts and
separates different input photon numbers, and spreads the
output distributions. Extra noise spreads the distributions
more, so that different photon number components of the
input are not so distinguishable. This decrease in fidelity can
sometimes be partially offset by increasing G, or the effect
itself may be small because of the particular prior photon
number distribution in the measurement arm. One might
think that detector dark counts would cause a similar de-
crease in fidelity but this is not the case. Fidelity based on
zero counts is unaffected by dark counts �no counts obtained
⇒ no dark counts obtained�. Fidelity based on one count can
be improved slightly by a nonzero dark count rate. These
effects will be explored more fully in later work.

Optical amplifiers are overlooked in quantum information
experiments, largely because of the necessary added noise
photons, but it should be noted that these “noise” photons are
indistinguishable from amplified signal photons. Provided
that the noise photons added into nonsignal modes can be
excluded from the detection process, the photons added in
the signal mode can play a useful role, and can sometimes be
regarded as an additive component to the multiplicative gain
G. For direct detection in postselectors both the quantum
nature and the phase of the detected signal state are unim-
portant, but the result of the detection process and the con-
fidence in that result are paramount. Amplifiers will not help
the first two quantities, but can significantly improve the last.
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