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Quantum error correcting codes have been shown to have the ability of making quantum information
resilient against noise. Here we show that we can use quantum error correcting codes as diagnostics to
characterize noise. The experiment is based on a three-bit quantum error correcting code carried out on a
three-qubit nuclear magnetic resonance �NMR� quantum information processor. Utilizing both engineered and
natural noise, the degree of correlations present in the noise affecting a two-qubit subsystem was determined.
We measured a correlation factor of c=0.5±0.2 using the error correction protocol, and c=0.3±0.2 using a
standard NMR technique based on coherence pathway selection. Although the error correction method de-
mands precise control, the results demonstrate that the required precision is achievable in the liquid-state NMR
setting.
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I. INTRODUCTION

The idea of using quantum mechanical systems as infor-
mation processing devices was proposed more than two de-
cades ago �1�, and yet experimental realization of such de-
vices remains a challenge. Ultimately, all physical
realizations are faced with the presence of decoherence, or
noise, caused by uncontrollable interactions with the envi-
ronment �2�.

To prevent the loss of coherence in the quantum mechani-
cal processor, the theory of quantum error correction �QEC�
has been developed �3–6�. QEC works by encoding the state
of a system lying in a certain Hilbert space into a state in a
larger Hilbert space. The encoding is designed to make pos-
sible the recovery of the original information after noise has
acted on the overall system, through decoding and syndrome
measurement, as long as the noise level falls below a certain
threshold �7,8�. Many quantum error correction codes
�QECC� have been developed for specific classes of noise
models. For example, there are codes that can correct arbi-
trary single qubit errors �3–5,9� but fail to correct multiqubit
errors. This work shows how this failure can be used to
extract information about the noise of the system.

Most QECC are developed for independent, or uncorre-
lated, error models, meaning that the errors happening on
one qubit are assumed to be independent of the errors on
other qubits. Clearly, knowing whether or not there exist cor-
relations in the noise model plays an important role in choos-
ing the best QECC for a given system.

The noise model can be determined exactly by performing
process tomography �10,11�. However, the number of experi-
ments required for complete tomography grows exponen-
tially in the number of qubits. Often, process tomography is
not needed and important �but partial� information about the
noise can be extracted from fewer experiments. Here, we
demonstrate the use of a three-qubit QECC to extract the
two-qubit noise correlation factor under a transverse relax-
ation process in nuclear magnetic resonance �NMR� �e.g., T2
relaxation�.

Transverse relaxation is the main source of decoherence
in liquid state NMR. NMR was used to perform the first
experimental implementation of QEC �12�, where it was
shown that the three-qubit QECC could correct single-qubit
phase flip errors caused by T2 relaxation. Here, we will first
briefly review the fundamentals of NMR, then model the
noise present in such systems and show how noise correla-
tions can affect the fidelity of the QEC protocol. We will
describe a series of natural and engineered noise experiments
for determining the two-spin noise correlations present for
the 13C subsystem of acetyl chloride �dissolved in deuterated
chloroform�. The experimental results are in agreement with
those obtained using the standard NMR technique of coher-
ence selection. In light of the exquisite sensitivity of these
experiments to control imperfections, the results also demon-
strate the high degree of precision attainable in controlling
nuclear spins in liquid state NMR.

The results demonstrate that QEC can not only be used
for correcting the effects of decoherence, but can also help to
characterize the nature of those errors. Moreover, as QEC is
a requirement for scalable quantum information processing
�QIP�, this methodology is universal for probing noise cor-
relations in physical systems suitable for QIP.

II. NMR QUANTUM COMPUTING

Liquid state nuclear magnetic resonance has proven to be
a useful system for experimentally benchmarking small-scale
quantum information processing devices �12–16�. A NMR
quantum information processor consists of an ensemble con-
taining of order 1020 molecules with spin-1

2 nuclei dissolved
in a liquid solvent. Placed in a strong homogeneous magnetic
field, nuclear spins precess about the direction of the field,
defined conventionally as the z axis. The rate at which the
spins precess is the Larmor frequency, and nuclei with dis-
tinct Larmor �resonance� frequencies can be mapped to qu-
bits. In the liquid state, picosecond-scale rotation and trans-
lation of the molecules causes spins on separate molecules to
effectively decouple on the NMR time scale. Therefore, to a
very good approximation, all molecules of the same type
experience identical environments and the Hilbert space of*Email address: mlafores@iqc.ca
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the nuclear spin ensemble can be taken as that of a single
molecule. Moreover, the rotational degree of freedom causes
the internal dipolar interaction between the spins on each
molecule to vanish. At thermal equilibrium, the Boltzmann
distribution gives a slight excess of spins pointing along the
+z direction, so that an average magnetization is present
along +z.

Control of the qubits is achieved by a radio-frequency
�RF� Hamiltonian in which the frequency, phase, and dura-
tion of the RF can be controlled externally. Single-qubit ro-
tations are performed using RF pulses resonant with the Lar-
mor frequency of the targeted qubit. By varying the RF
duration and phase, rotations of arbitrary angle can be gen-
erated about any axis in the xy plane. Two-qubit operations
additionally use the natural coupling terms present in the
internal Hamiltonian, which will be elaborated below.

III. HAMILTONIAN AND NOISE MODEL

The nuclear spin Hamiltonian in liquid-state NMR is
composed of two types of terms, one corresponding to the
single-spin Zeeman interaction �the term leading to preces-
sion� and bilinear terms corresponding to the scalar spin-spin
coupling �J coupling�. For a molecule with N spin-1

2 nuclei,
the weak coupling Hamiltonian is given by

Ĥ =
1

2�
i=1

N

2��iẐi +
�

2 �
i�j

JijẐiẐj , �1�

where �i are the Larmor frequencies, Jij is the coupling

strength between spins i and j, and Ẑi is the z Pauli matrix for
spin i. Note that when the condition ��i−� j��Jij /2 does not
hold �strong coupling regime�, the scalar coupling operator

takes the more general form �� i ·�� j = X̂iX̂j + ŶiŶ j + ẐiẐj.
Despite the motional averaging that occurs in the liquid

state, the ẐẐ part of the intermolecular dipolar Hamiltonian

is capable of creating relaxation, while the X̂X̂+ ŶŶ part still
averages to zero due to the weak coupling approximation

�17�. This ẐẐ interaction couples with the molecular motion
and give rise to rapidly fluctuating local magnetic field,
which effectively presents itself as a variation of the Larmor
frequencies. This process is known as transversal relaxation.

Consider a single spin qubit surrounded by an environ-
ment E consisting of N other spins-1

2 . The dipolar coupling
between the qubit and its environment is described by the
unitary evolution

Û = �
j�E

e−ibjẐẐj , �2�

where bj is the interaction strength between the qubit and the
jth spin of the environment for a certain amount of time.

The global system can be assumed to initially be in the
state

�glob = �ini � �E, �3�

where �ini represents the initial state of the qubit and �E is the
state of the environment. After the interaction with its envi-

ronment, the final state of the qubit will be given by partially
tracing the environment system. Moreover, the interaction

strengths have a certain distribution of value q�b��, so that the
state affected by the noise has the form

� f =� db� q�b�� �
a�	0,1
N

�a��E�a�e−i	aẐ�inie
i	aẐ, �4�

where we have defined 	a=�mbm�−1�am, am being the mth
digit of a. In room temperature liquid state NMR, the devia-
tion of the state of the environment from the completely
mixed state is negligible, so that �a��E�a�=1/N. Because the

environment is isotropic, the distribution q�b�� is a symmetric
function of the bj’s. Therefore, the summation over a in Eq.

�4� can be absorbed in a new distribution of b� and by letting
a=0�N.

The final state is then represented by

� f =� d
 p�
�e−i
Ẑ�inie
i
Ẑ, �5�

where 
=�mbm and p�
� is the distribution of 
 which takes
into account the new distribution of the bj’s. The interaction
of the qubit with the environment causes an incoherent av-
eraging of z rotations, which is equivalent to a variation of
the Larmor frequency of the qubit. In liquid state NMR, N is
a large number and the central limit theorem indicates that 

has a Gaussian distribution. For a M qubit system, this model
generalizes to

� f =� d
� p�
� �e−i
� ·Ẑ
�

�inie
i
� ·Ẑ

�

, �6�

where 
� = �
1 , . . . ,
M�, Ẑ
�

= �Ẑ1 , . . . , ẐM�, and p�
� � is the mul-
tivariate Gaussian distribution �18�

p�
� � =
1

�2��M��̂�
e−�1/2�
� T·�̂−1·
� . �7�

�̂ is the covariant matrix, or the correlation matrix, which
takes the form

�̂ii = �
i
2� = �i

2, �8�

�̂ij = cij
�i� j , �9�

where �i
2 is the variance of 
i. cij is the correlation factor

between 
i and 
 j, which has the value

cij =
�
i
 j�

�
i
2��
 j

2�
. �10�

From the Cauchy-Schwarz inequality, 0�cij �1. For a
single qubit, such a noise model will affect the state as

�k��l� → e�−�2/2��1−kl��k��l� . �11�

From empirical results of transverse relaxation in NMR, the
state of a single spin decays in time as
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�k��l� → e−�1−kl��2t�k��l� , �12�

where 1/�2=T2 is the relaxation time constant. The variance
of the distribution of the interaction strength of a qubit with
its environment can thus be related to its relaxation time
constant by

�2 = 2�2t . �13�

For two qubits, the noise correlation factor will affect the
decay of their mutual state as follows:

�km��ln� → e−�1−kl��2
�1�t−�1−mn��2

�2�t−2c12t�kl�mn
�2

�2��2
�2�

��km��ln� , �14�

where �ij = �1/2���−1�i− �−1� j�. If correlations in the noise
affecting two qubits is present, the transverse relaxation will
be faster for a two spin double quantum coherence �e.g.,
�00��11� and �11��00�� and slower for a two spin zero quantum
coherence �e.g., �01��10� and �10��01��.

The correlation in the noise on two qubits can be under-
stood through distinguishability. If two nuclei precess at the
same Larmor frequency, they are magnetically equivalent
and thus see the same environment. The two spins will inter-
act identically with the environment, thus yielding a correla-
tion factor of 1. Two spins of different nuclear species are
distinguishable and the environment will act differently on
each of them. No correlation is expected the respective noise,
i.e., c12=0. If we consider two nuclei of the same species
with slightly different Larmor frequency, they are distin-
guishable enough to perform independent control, but they
are chemically “near indistinguishable.” The effect of the
environment is thus partially correlated, i.e., 0�c12�1.

IV. ENGINEERING THE NOISE FOR TWO
QUBITS

By explicitly expanding Eq. �7� for two qubits, the noise
model takes a discrete Kraus form,

� f = �
i

piÛi�iniÛi
†, �15�

where the unitary Kraus operators Ûi and their coefficients pi
are given in Table I. One can thus engineer the noise on two
qubits with a series of six separate experiments, each of them
implementing a different Kraus operator, and then adding the
results with the corresponding coefficient. This Kraus de-
composition demonstrates that the transversal relaxation in
NMR is equivalent to a phase flip error, where the qubits
undergo a phase flip given by the operator in the first column
of Table I with a probability given by the second column.

V. DETERMINING THE CORRELATION FACTOR

This section will explain how the noise correlation factor
between two spins can be extracted using standard NMR
techniques and how quantum error correction can be used to
achieve similar results. The details and results of the experi-
mental implementation, as well as a summary of the advan-
tages of this technique will then conclude this section.

A. NMR techniques

In NMR, measurement of transversal relaxation times
�T2’s� is a standard technique and is implemented through
single coherence decay and spin echo �19�. The same tech-
nique is applicable to double coherences to extract the noise
correlation factor between two spins. Consider the following
pulse sequence:

�

2
→ �1�2 →

�

2
, �16�

where � is a certain time delay and �i correspond to a �
pulse on nuclei i around any axis in the xy plane. They are
used to refocus the field inhomogeneities via spin echo. If we
apply such a pulse sequence to a state of the form

�ini = �00��11� , �17�

which can be created using standard NMR techniques of co-
herence selection such as phase cycling �20� or field gradi-
ents, the noise model developed earlier predicts that the am-
plitude of such a state should decay as

�00��11� → e−�2
�1�t−�2

�2�t−2c12t�2
�1��2

�2�
�00��11� . �18�

In NMR, only a single coherence state can be detected. A
final � /2 pulse is thus needed on one of the spins to detect
such a state. By repeating the experiment for various values
of �, one obtain a decay curve. Once the values of T2 are
measured using single coherence decay experiments, it is
possible to deduce the value of c12.

B. Three qubit quantum error correction code

The three qubit quantum error correction code �12� can
protect one qubit of information ��� against single qubit er-
rors about one Pauli axis. The quantum circuit for this code
can be found in Fig. 1. If errors happen during the noise
period, it can be shown that this code corrects any single

qubit phase error, i.e. errors of the form Ẑ1, Ẑ2 or Ẑ3, but fails

at correcting multiple phase errors, i.e., Ẑ1Ẑ2, Ẑ1Ẑ3, Ẑ2Ẑ3, and

Ẑ1Ẑ2Ẑ3.

TABLE I. Kraus decomposition for the correlated noise on two
qubits.

Ûi pi

1 1

4
�1+e−�2

�1�
t+e−�2

�2�
t+e−�2

�1�
t−�2

�2�
t−2c12t�2

�1�
�2

�2�
�

Ẑ1
1

4
�1−e−�2

�1�
t+e−�2

�2�
t−e−�2

�1�
t−�2

�2�
t−2c12t�2

�1�
�2

�2�
�

Ẑ2
1

4
�1+e−�2

�1�
t−e−�2

�2�
t−e−�2

�1�
t−�2

�2�
t−2c12t�2

�1�
�2

�2�
�

Ẑ1Z2
1

4
�1−e−�2

�1�
t−e−�2

�2�
t+e−�2

�1�
t−�2

�2�
t−2c12t�2

�1�
�2

�2�
�

e−i��/4��Ẑ1+Ẑ2� 1

2
e−�2

�1�
t−�2

�2�
t sinh�2c12t�2

�1��2
�2��

ei��/4��Ẑ1+Ẑ2� 1

2
e−�2

�1�
t−�2

�2�
t sinh�2c12t�2

�1��2
�2��
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As seen above, the natural noise present in NMR consists
of a phase flip. A valid measure to quantify the effect of the
noise on the system is to consider the fidelity of entangle-
ment FE �21�, which corresponds to averaging the state cor-

relation for the density matrix states X̂, Ŷ, and Ẑ. In other

words, the state correlation f Â for an initial state Â consists of
the amount of polarization in the output relative to the input.
The fidelity of entanglement is then given by

FE =
1

4
�1 + f X̂ + f Ŷ + f Ẑ� . �19�

If the decoherence is caused solely by the transversal relax-
ation, the fidelity of entanglement over time of such a proto-
col is given by

FE =
1

4
�2 + e−�2

�1�t + e−�2
�2�t + e−�2

�3�t

− e−�2
�1�t−�2

�2�t−�2
�3�t cosh�2c12t�2

�1��2
�2��� , �20�

where it has been assumed that the noise affecting qubit 3
was uncorrelated with the other qubits �because qubit 3 is
represented by a separate nuclear species in our experiment�.
The correlation factor can be extracted from the deviation of
the fidelity from unity, due to the failure of the code.

As demonstrated in Sec. IV, it is possible to engineer the
correlated noise on two spins using six different experiments.
If we want to engineer the noise for a third uncorrelated
qubit, it is done with twelve experiments, using the union of
two sets of Kraus operators or coefficients given by

	Ûk�,pk�
 = 	Ûi
1,2,�1 − q�pi

1,2
 � 	Ûj
1,2Ẑ3,qpj

1,2
 �21�

for k=1. . .12 and i , j=1. . .6 and where q= �1/2��1−e�2
�3�

t�
corresponds to the probability of the uncorrelated qubit to

undergo a phase flip and Ûi
1,2 and pi

1,2 are the correlated
noise Kraus operators or coefficients given in Table I.

Therefore, we can implement the QECC using those
twelve noise operators and obtain the fidelity decay for vari-
ous value of c12 and t.

C. The experiment

The theory laid down in the previous section assumed that
the system is composed of two noise correlated qubits and
one uncorrelated qubit. As seen in Sec. III, such a system can
be found in a molecule containing two spins of the same

species with different Larmor frequency and one of a differ-
ent kind. For this experiment, we have chosen the
13C-labeled acetyl chloride dissolved in deuterated chloro-
form and used a 700 MHz Bruker Avance NMR spectrom-
eter with dual inverse cryoprobe. The structure, chemical
shifts, and J-coupling strengths of the molecule are given in
Fig. 2. For this molecule, the assumption of weak coupling
used throughout Sec. III is fulfilled due to the large chemical
shift difference between the two carbons.

The T2’s for each nuclei have been determined using a
series of spin echo experiments for various delays and their
values are given in Table II. To implement the quantum error
correction code on this molecule, the circuit in Fig. 1 was
first converted into gates implementable in NMR, which con-
sist of single qubit rotations about any axis in the xy plane or
around the z axis, and J-coupling evolutions. A J coupling of
length �=1/2J is locally equivalent to a controlled-NOT
gate. Moreover, the z rotations can be done instantaneously
by changing the phase of subsequent pulses. This ideal NMR
pulse sequence was then fed into a homemade compiler
which estimates the first order phase and coupling errors dur-
ing the pulses and then tracks the phase of the subsequent
pulses and optimizes the refocusing scheme and J-coupling
delays to minimize overall coupling errors �15�. Spatial av-
eraging �15� was used to initialize the states �00��00�12 � X3,
�00��00�12 � Y3, and �00��00�12 � Z3 from the thermal state of
a liquid state NMR system.

The quantum error correction code was first implemented
using engineered errors in twelve experiments. The purpose

TABLE II. T1 and T2 values for the acetyl chloride. It can be
seen that for the maximal duration of the experiment ��300 ms�,
the effect caused by T1 relaxation can be neglected.

Nucleus T1 T2

M 4.0±0.1 1.2±0.1

C1 7.9±0.4 2.1±0.1

C2 15.2±0.8 0.24±0.03

DecodingEncoding
Error

CorrectionNoise

H

H

H

H

H

H

0

0

ψ

FIG. 1. The quantum circuit of the three qubit quantum error
correction code. The two qubit gates are controlled-NOT gates and
the three qubit gate is a Toffoli gate.

M

C1

C2

M
C1

C2

-1884.63

132.72

-7.44

-5949.48

56.2 -29998.18
M C1 C2

FIG. 2. �Color online� The 13C-labeled acetyl chloride molecule.
The diagonal elements of the table gives the chemical shift �differ-
ence in Larmor frequency� for each nucleus with respect to a refer-
ence frequency �700.13 MHz for the hydrogens and 176.05 MHz
for the carbons�. The three hydrogens forming the methyl group are
indistinguishable and form a spin-1

2 and 3
2 subspace. The spin-1

2
subspace was selected using a three-step pulse sequence and
“crusher” field gradients �22�.
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of analyzing engineered noise is to be able to generate dif-
ferent fidelity of entanglement decay curves corresponding to
different values of correlation factors. It is done by adding
each experiment weighted by the corresponding coefficient
given in Table I. Once a fidelity decay curve is obtained for
the natural noise, it is possible to extract the correlation fac-
tor by comparing to which engineered noise fidelity decay
curve the natural noise curve corresponds.

The natural noise fidelity decay curve was obtained by
implementing the identity map during the noise section of
Fig. 1. To perform this implementation the spins could not be
simply decoupled from one another using multiple � pulses
�e.g., the Hadamard refocusing scheme �23��. Under such a
refocusing scheme for a time t, the double coherence terms
in a density matrix spend as much time in zero quantum
coherence as in double quantum coherence. Therefore, from
Eq. �14�, the correlation factor term in the exponential decay
cancel and do not affect the decay of the double coherence
term.

If we let the natural noise act on the system for a period
�=n /JC1C2

,n�N, the overall evolution is an identity and the
terms of the density matrix containing a double coherence
for the two carbons have remained in double coherence dur-
ing the entire delay. The field inhomogeneities can be refo-
cused by applying simultaneous � pulses on the carbons
which leaves the J-coupling evolution untouched.

The fidelities of our experiments have been extracted by
fitting every peak of the NMR spectra using Lorentzian
shape curves. The resulting values can be seen in Fig. 3,
where the curves for the fidelity of entanglement for engi-
neered noise are shown for correlation factors of 0, 0.5, and
1. Ten values of the fidelity decay obtained by applying natu-
ral noise are shown, from which we extracted a correlation
factor of c12=0.5±0.2.

This experiment needs a high degree of precision, since
within the time interval used to implement natural noise
�from 0 to 320 ms�, the maximum difference between the
c12=0 and c12=1 curves is 3%. Integrating the square of the
noise of a spectrum over a region corresponding to the width
of a signal peak estimates the signal to noise ratio to be of

the order of 1%. Therefore, the fluctuation of the measured
fidelities due to the noise explains the large uncertainty on
the measured correlation factor.

Using the usual NMR technique of double coherence de-
cay, the noise correlation factor between C1 and C2 was de-
termined to be c12=0.3±0.2. The interval using QECC
agrees with the value obtained using the traditional double-
quantum coherence decay technique, to within experimental
error.

D. Discussion

By comparing the above two techniques to extract the
noise correlation factor between two spins, one could argue
that the QECC technique is much more involved than the
standard NMR technique, while yielding the same conclu-
sion. The goal of the present experiment was to demonstrate
that the use of QEC to probe the noise present in a system is
feasible and that the control necessary to get the error infor-
mation is achievable. From there, it is possible to generalize
this technique to any physical system with a more complex
noise model. If the noise contains not only phase errors, but
also bit errors and/or a combination of the two, the same
technique could be applied using more complex QECC, such
as the five qubit code �9�.

Other technical advantages arise from the signal detec-
tion. Using the NMR technique, there is an doubly exponen-
tial decay in the signal amplitude for a double coherence
decay �see Eq. �14��. From the nature of the QECC tech-
nique, the signal decays slower, thus allowing better statistics
and analysis. If the system under analysis contains three
spins of the same type, there would be a possibility of three
different correlation factors: c12, c23, and c13. Using standard
NMR technique, three different experiments with different
initial states would be needed to extract those three values.
Using the QECC technique, only the noise portion of the
pulse sequence would need adjustment by changing the re-
focusing scheme in order to refocus the unwanted correla-
tion, e.g., a � pulse on qubit 1 would cancel the correlations
c12 and c13 for the reasons explained earlier.

Finally, this technique could be used to validate our as-
sumption that the noise is effectively Gaussian. In the case
where the system contained three noise correlated spins, our
Gaussian assumption ensures that the noise is only pairwise
correlated, i.e., c123=0. If it is so, a triple coherence decay
curve should be described using only the T2 values and the
pairwise correlation factors. This curve can be obtained us-
ing the NMR technique of triple coherence decay, but would
yield a curve that decays triply exponentially. On the other
hand, a curve affected by a triple correlation factor could be
obtained by the same QECC pulse sequence by letting all the
noise correlations act during the noise part of the pulse se-
quence. In the case where that curve would not be described
properly using only the pairwise correlations, it would be an
indication of the failure of the noise model.

VI. CONCLUSION

In this work, we have demonstrated that QEC can be used
to probe a physical system and extract partial, but important
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FIG. 3. Experimental results. The lines correspond to the fidelity
decay for noise correlation factors of 0, 0.5, and 1 as a function of
time simulated from the measured T2’s and the experimental fideli-
ties obtained by implementing engineered noise. The points are the
fidelities when the system is affected by natural noise for a various
amount of time.
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information about the noise model without having to perform
full quantum process tomography. The technique was imple-
mented successfully in a liquid-state NMR quantum informa-
tion processor, but is applicable to any QIP device in which
standard quantum error correction can be carried out.
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