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We present two linear optical schemes using nonideal photodetectors to demonstrate the inseparability of
W-type N-partite entangled states containing only a single photon. First, we show that the pairwise entangle-
ment of arbitrary two modes chosen from N optical modes can be detected using the method proposed by Nha
and Kim �Phys. Rev. A 74, 012317 �2006��, thereby suggesting a full inseparability among N parties. In
particular, this scheme is found to succeed for any nonzero quantum efficiency of photodetectors. Second, we
consider a quantum teleportation network using linear optics without auxiliary modes. The conditional tele-
portation can be optimized by a suitable choice of the transmittance of the beam splitter in the Bell measure-
ment. Specifically, we identify the conditions under which maximum fidelity larger than the classical bound 2/3
is achieved only in cooperation with other parties. We also investigate the case of on-off photodetectors that
cannot discriminate between the number of detected photons.
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I. INTRODUCTION

Entanglement plays a key role in quantum information
processing, and it is crucial to characterize entanglement in
both theory and experiment. Earlier works on entanglement
were extended to multipartite systems beyond bipartite ones,
but our knowledge is still far from complete in many re-
spects. Remarkably, it has been shown that only two in-
equivalent classes of pure states exist in tripartite systems
under stochastic local operations and classical communica-
tions �SLOCC�: namely, Greenberger-Horne-Zeilinger
�GHZ� class and W class �1�. Some experiments were re-
cently performed to generate and characterize the multipar-
tite entangled states—e.g., the GHZ states �2,3�. There have
also been several proposals and experimental reports to gen-
erate tripartite W states particularly using polarization en-
tangled photons �4,5� or a trapped-ion system �3�.

In this paper, we will consider general N-partite W states,
particularly in the form of mode entanglement containing a
single photon �6�, in contrast to the particle entanglement in
Refs. �3–5�. We are concerned here with a demonstration of
the inseparability of single-particle entangled states using
only linear optics with nonideal photodetectors. For this pur-
pose, we recall that W states possess a robust two-party en-
tanglement even after all the other N−2 parties are traced out
�1�. We first show that a recent proposal by Nha and Kim
enables one to detect two-party entanglement in a simple
linear optical setup measuring only a few observables �7�.
Thus, one does not need to employ the quantum tomographic
method as in Refs. �3–5�, which may be practically demand-
ing in general. Particularly, it is shown that the proposed
scheme can successfully detect pairwise entanglement, re-
gardless of the photodetector efficiency, of arbitrary two
modes chosen from N modes. This proves the genuine mul-
tipartite inseparability of the W state.

Second, we consider a linear optical quantum teleporta-
tion without introducing auxiliary modes in a network setting

�8�. Specifically, we investigate the conditions under which
the teleportation fidelity can exceed the classical limit 2

3 �9�.
Linear optical quantum teleportation of vacuum and single-
photon qubits—i.e., of the state a �1�+b �0�—was previously
proposed �10–12� and its experimental demonstration also
followed �13�. It is well known that linear optics alone can-
not discriminate all four Bell states so that only a nondeter-
ministic teleportation may be possible �14,15�. In this paper,
we consider a conditional two-party teleportation where Al-
ice and Bob are assisted by m other parties �0�m�N−2�.
The cooperating parties perform measurements in the com-
putational basis to send 1-bit information, and the teleporta-
tion protocol proceeds only when these m optical modes are
measured in vacuum states. We analytically obtain the opti-
mal transmittance of the beam splitter in the Bell measure-
ments and the requirement of photodetector efficiency to
achieve fidelity �

2
3 . Particularly, we derive the conditions

under which fidelity �
2
3 can be achieved only in cooperation

with other parties, thereby indicating multipartite entangle-
ment to some extent. Furthermore, we will also investigate
the case of on-off photodetectors that cannot discriminate
between the number of detected photons.

This paper is organized as follows. In Sec. II, we first
present how to prepare an arbitrary N-partite W state with a
single photon. In Sec. III, we briefly introduce a separability
condition that can be used to detect non-Gaussian entangled
states. Particularly, this condition is refined to include the
effect of nonideal photodetectors and then employed to de-
tect arbitrary two-party entanglement in the single-photon W
states. In Sec. IV, we introduce a quantum network telepor-
tation and obtain conditions under which quantum fidelity
can exceed the classical limit. In Sec. V, the main results of
this paper are summarized.

II. GENERATION OF SINGLE-PHOTON W STATES

We first present an optical scheme to prepare an arbitrary
N-partite W state with a single photon. A general W state of
the form*Electronic address: phylove00@gmail.com
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�W� = �1�1,0, . . . ,0� + �2�0,1, . . . ,0� + ¯ + �N�0,0, . . . ,1�
�1�

can be obtained by injecting a single photon into an array of
beam splitters as shown in Fig. 1. The jth beam splitter trans-
forms two adjacent modes �aj ,aj+1� into �aj� ,aj+1� � as

	 aj�

aj+1�

 = 	 sin � j − cos � j

cos � j sin � j

	 aj

aj+1

 , �2�

where cos �i�sin �i� denote the transmissivity �reflectivity� of
the beam splitter �16�. The coefficients �i at the output are
then given by

�1 = sin �1,

�2 = cos �1sin �2,

�

� j = ��i=1
j−1cos �i�sin � j ,

�

�N = ��i=1
N−1cos �i� . �3�

If a phase shifter is placed in addition at each output with � j
the phase shift at the jth mode, the coefficients become �̃ j
=� je

−i�j �i=1, . . . ,N�.

III. TWO-PARTY ENTANGLEMENT

In this section, we consider two-mode entanglement of
the W state in Eq. �1�. Two modes i and j arbitrarily chosen
are, after the other modes are traced out, reduced to the state

�ij = pij��ij���ij� + �1 − pij��00��00� , �4�

where ��ij�= 1
pij

�ai �10�+aj �01�� and pij = �ai�2+ �aj�2. The
above state is entangled, which can be easily checked by the
negativity under partial transposition �17�, but the issue at
hand is how to detect the two-mode entanglement in experi-
ment. Note that �ij in Eq. �4� represents a non-Gaussian state
from the viewpoint of continuous variables. Recently, several

authors obtained separability conditions that can be used to
detect entanglement for non-Gaussian states �7,18,19�, and it
was particularly shown that the inequality derived by Agar-
wal and Biswas is optimal in a specific class of inequalities
based on su�2� and the su�1,1� algebra involving up to
fourth-order moments �7�. The optimal separability condition
reads as

�1 + 4�	Jx�2��1 + 4�	Jy�2� 
 �1 + �N+��2, �5�

where Jx= 1
2 �a†b+ab†�, Jy = 1

2i �a
†b−ab†�, and N+=a†a+b†b.

We will apply this inequality to detect entanglement for �ij in
Eq. �4�.

Particularly, in Ref. �7�, we proposed a linear optical
scheme to test the inequality �5� as shown in Fig. 2. At the
output, one measures the total photon number N+=c†c+d†d
=a†a+b†b and the photon number difference c†c−d†d,
which becomes 2Jx�2Jy� for the phase shift �=0 ��= �

2
�. We

now investigate how such a scheme can yield 	Jx, 	Jy, and
N+ when the photodetectors have efficiency ��1. A non-
ideal photodetector with quantum efficiency � can be mod-
eled as an ideal one but with a beam splitter of transmittance
� in front of it. That is, the actually measured mode c� can
be expressed as c�=�c+1−�v, where an auxiliary mode
v is in vacuum state. The measured variance of the number
difference is then given by 	2�c�

†c�−d�
†d��=�	2�c†c−d†d�

+��1−���c†c+d†d�. In other words, the variances of Jx and
Jy are observed in experiment as

4�	Ji,��2 = 4��	Ji,o�2 + ��1 − ��N+,o �i = x,y� , �6�

where the subscript o refers to the original input state. The
total photon number is of course measured to be N+,�
=�N+,o. Using these relations for the two-mode state �ij in
Eq. �4�, we obtain

�1 + 4�	Jx,��2��1 + 4�	Jy,��2�
�1 + �N+,���2 = 	1 −

4�2�Re2�ai
*aj��

1 + �pij



	1 −
4�2�Im2�ai

*aj��
1 + �pij


 .

�7�

The above quantity is always less than unity, which implies

FIG. 1. Experimental scheme of generating an arbitrary single-
particle W state in Eq. �1�. A single photon at one input is injected
into an array of beam splitters with the transmissivity of the jth
beam splitter given by cos � j.

FIG. 2. Experimental scheme for measuring Jx= �a†b+ab†� /2
and Jy = �a†b−ab†� /2i. BS: 50:50 beam splitter. PS: phase shifter.
Jx�Jy� can be detected, with the phase shift �=0 ��= �

2
�, by mea-

suring the photon-number difference c†c−d†d at the output.
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violation of the inequality �5�, regardless of any parameter
values. Therefore, the linear optical scheme in Fig. 2 can
detect entanglement of two arbitrary modes for any nonzero
quantum efficiency. This means that one can prove the genu-
ine multipartite inseparability of the W state indirectly in the
following fashion. One takes all the different N�N−1� /2
pairs of two modes among N modes and detects the two-
party entanglement for each pair �Eq. �7��. When one finds a
violation of the inequality �5� for every pair, one can con-
clude that the W state possesses genuine multipartite insepa-
rability. If, on the other hand, there exists any separable form
possible with respect to different partitions of the modes as
�=�lpl�1¯i

�l�
� �i+1¯j

�l�
� ¯ � �k+1¯N

�l� , there must be at least
one pair of modes that is reduced to a separable state, which
will contradict our experimental observation.

IV. QUANTUM NETWORK TELEPORTATION

In this section, we discuss a quantum network teleporta-
tion via the W state, particularly a symmetric one with aj

=1/N for all j=1, ¯ ,N in Eq. �1�, using linear optics with-
out auxiliary modes. The symmetric W state is generated by
choosing the reflectivity of the beam splitter as

sin � j =
1

N − j + 1
�j = 1, ¯ ,N� . �8�

In our scheme, two parties—say, Alice and Bob—perform
the quantum teleportation of an unknown state ���=a �1�
+b �0� �20,21� and other m parties are in cooperation with
them �0�m�N−2�; m parties carry out measurements in
the computational bases �0� and �1� to send 1-bit information
to Alice and Bob. Only if all the m parties are measured in
�0� do Alice and Bob agree to do the teleportation. Note that
if all the other m=N−2 parties are measured in vacuum
states, Alice and Bob may be in a maximally entangled Bell
state ��+�=1/2��10�+ �01��. With nonideal photodetectors,
however, it is likely that no photons are detected even in the
presence of a single photon, thereby degrading the entangle-
ment of the remaining two-mode state.

Detection of k photons at a photodetector with quantum
efficiency � can be represented by a positive operator-valued
measure �POVM� operator �k ��k�k= I� as

�k = �l
k
�

lCk�
k�1 − ��l−k�l��l� , �9�

where lCk= l!
k!�l−k�! counts the number of events where k de-

tected photons are chosen out of l photons �22�. Now the
unnormalized two-mode state on the condition that all m
parties be measured in �0� is given by

�AB
c = tr3¯N��0

�m�W��W��0
�m�

=
2

N
��+���+� + 	N − �m − 2

N

�00��00� , �10�

which is a mixture of the Bell state and the vacuum state. We
now investigate quantum teleportation using the conditional
state in Eq. �10� and consider first the Bell measurement at
Alice’s station.

A. Bell measurement

In the Bell measurement, Alice must distinguish the four
Bell states

��±� =
1
2

��10� ± �01�� =
1
2

�u† ± a†��00� ,

��±� =
1
2

��11� ± �00�� =
1
2

�u†a† ± Î��00� , �11�

where u�a� is the annihilation operator for the unknown-state
mode �Alice’s mode�. In our scheme, a beam splitter that
transforms the two modes u and a into c and d as

	c

d

 = 	 cos � sin �

− sin � cos �

	u

a

 �12�

is used in the Bell measurement and Alice detects photons at
the output modes c and d. Let us denote by Dmn the detection
event in which m�n� photons are detected at the mode c�d�.
Alice has only six different detection events: i.e., D00, D10,
D01, D20, D11, and D02. Among them, only the two events
D10 and D01 are advantageous. For instance, with the choice
of �=� /4 in Eq. �12�, the event D10�D01� corresponds to the
Bell state ��+� ���−�� unambiguously. On the other hand, the
other events cannot discriminate between ��+� and ��−� for
any values of �. In fact, we can show by an analysis similar
to the ones in the next subsections that teleportation fidelity
cannot ever exceed the classical limit 2/3 via the four detec-
tion events D00, D20, D11, and D02. Therefore, a conditional
scheme to single out only D10 and/or D01 is favorable to
achieve the highest possible fidelity �23�. We will thus con-
sider only those two events in the following.

B. Case of a D10 event

If the detector at mode c�d� measures one �zero� photon,
the unnormalized Bob’s state is given by

�B
�10� = trcd��1 � �0������ � �AB

c �1 � �0� , �13�

where ���=a �1�+b �0� is an unknown state to teleport and
�AB

c is the conditional state in Eq. �10�. Note that the POVM
operator �1 � �0 in Eq. �13� refers to the output modes c and
d in Eq. �12� after the beam splitter action. We obtain �B

�10� as

�B
�10� =

�

N
��������� + �a�2R����0��0�� , �14�

where

���� = a cos ��1� + b sin ��0� ,

R��� = �N − �m − 2�cos2 � + 1 − � . �15�

The probability of D10 event is calculated as

P�10� = tr��B
�10�� =

�

N
��a�2cos2 � + �b�2sin2 � + �a�2R���� .

�16�

Note that the state ���� in Eq. �14� is the one left to Bob after
the Bell measurement when Alice and Bob initially possess
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the Bell state ��+� in Eq. �10�. We now see that Bob is left
with the state ���� or �0� after a D10 event. Bob can only
perform a phase shift in the linear optical scheme, and the
phase shift does not change the �0� state at all. Therefore, to
maximize the fidelity, especially ��� �����2, Bob performs a
zero ��� phase shift if the transmissivity of Alice’s beam
splitter is in the range of ���0, �

2
� �� �

2 ,���. From now on, it
suffices only to consider the case ���0, �

2
�. We now obtain

the unnormalized fidelity P�10�F�10� as

P�10�F�10� = ����B
�10����

=
�

N
���a�2cos � + �b�2sin ��2 + �a�2�b�2R���� .

�17�

We will now suppress the use of the superscript �10� in this
subsection. Finally, we consider as a figure of merit the fi-

delity averaged over all possible input states—that is, F̄
= �d�PF

�d�P , where �d�= 1
4� �sin �id�id�i denotes the average

over the input states in the Bloch sphere with a=cos
�i

2 e−i�i

and b=sin
�i

2 . The averaged fidelity F̄ is then given by

F̄N,m��� =
1

3
�1 +

1 + sin 2�

1 + R��� � �18�

and the averaged success probability P̄=�d�P by

P̄N,m��� =
�

2N
�1 + R���� . �19�

The fidelity in Eq. �18� reaches a maximum value

F̄N,m
max =

1

3
�1 +

N − ��m + 2� + 2

�2 − ���N − �m − ��� �20�

for the choice of the beam splitter transmissivity at Alice’s
station as

cos � =
�2 − ��

�2 − ��2 + �N − �m − ��2
. �21�

For such a choice, the averaged probability is given by

P̄N,m =
��2 − ��

2N
�1 +

�2 − ���N − �m − 2�
�2 − ��2 + �N − �m − ��2� . �22�

Equations �20�–�22� are the main results of Sec. IV, and we
will discuss them in Sec. IV E.

C. Case of a D01 event

In the case of a D01 event, all the previous results in Sec.
IV B remain the same, but only with the replacement of �
→�+� /2. In addition, Bob must now perform a � phase
shift when Alice’s beam splitter is in the range of �
��0, �

2
�.

D. Combination of D10 and D01 events

One can also consider the conditional teleportation
scheme to include both the events D10 and D01. We then

obtain the maximum of the averaged fidelity F̄

=
�d��P�10�F�10�+P�01�F�01��

�d��P�10�+P�01�� as

F̄N,m
max =

1

3
�1 +

4

N − ��m + 2� + 2
� �23�

for the choice of �= �
4 and the averaged success probability

P̄=�d��P�10�+ P�01�� as

P̄N,m =
�

2N
�N − ��m + 2� + 2� . �24�

It turns out that the fidelity in Eq. �23� is always smaller than
or equal to that in Eq. �20�. Therefore, as long as the goal is
to attain the maximum possible fidelity even at the expense
of success probability, the conditional scheme to single out
only one event D10 or D01 becomes the best one �23�. Note
that for N=2 �m=0� with ideal photodetector �=1, the fidel-

ity F̄2,0 becomes unity with success probability P̄=1/2 from
Eqs. �23� and �24�, which recovers the case previously con-
sidered in Refs. �11,12�.

E. Fidelity �
2
3

Let us investigate under what conditions the maximum
fidelity in Eq. �20� can be larger than the classical limit 2

3 .
For a fixed N, the fidelity monotonously increases as the
cooperation number m increases; i.e., it is always advanta-
geous to have more parties in cooperation with Alice and
Bob for any values of �. If the photodetectors are all ideal,

�=1, the quantum fidelity in Eq. �20� becomes F̄N,m
max= 1

3
�1

+ N−m
N−m−1

��
2
3 for any m; that is, no cooperation is needed to

overcome the classical bound.
In general, the quantum efficiency � must be large

enough, ���c, to have fidelity �
2
3 , and we obtain the criti-

cal efficiency �c as

�N,m
c =

N + m − �N − m − 2�2 + 4�m + 1�
2�m + 1�

. �25�

Let us now consider two cases of small number N.
�i� Case of N=2 �maximally entangled Einstein-Podolsky-

Rosen �EPR� pair�. From Eqs. �20� and �21�, we have F̄2,0
max

= 1
3

�1+ 2
2−�

��
2
3 at �= �

4 for any ��0; therefore, the manifes-
tation of quantum entanglement is always successful.

�ii� Case of N=3. In this case, from Eq. �25�, we obtain
�3,0

c = 3−5
2 �0.382 and �3,1

c = 2−2
2 �0.293. Thus, the quantum

efficiency � of the photodetectors must be at least larger than

�3,1
c �0.293 to achieve F̄max�

2
3 . In particular, for �

� ��3,1
c ,�3,0

c �, the quantum fidelity can exceed 2
3 only when

the third party is in cooperation with Alice and Bob, thereby
manifesting tripartite entanglement.

In general, the critical value �N,m
c increases as a function

of N, and for a fixed N, it decreases with increasing m. That
is, the requirement of quantum efficiency becomes less
demanding as more parties are in cooperation with Alice
and Bob. In particular, we have �N,N−2

c =1− 1
N−1

and
�N,N−3

c = 2N−3−4N−7
2N−4 . When � lies in the range of �
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� ��N,N−2
c ,�N,N−3

c �, the teleportation fidelity can exceed the
classical limit only when all the other N−2 parties are in
cooperation, which thus manifests N-partite entanglement.
Of course, this interpretation may hold good in a somewhat
limited context: Instead of seeking other parties’ cooperation,
Alice and Bob may choose to purify their mixed state to a
maximally entangled one �24� or to adopt an error-correcting
teleportation scheme �12�. Such schemes, however, usually
require more resources, and we have restricted our attention
in this paper to linear optics without auxiliary modes.

F. On-off photodetectors

In the previous sections, we assumed that the photodetec-
tors might be able to count the number of photons despite the
nonideal efficiency ��1. If, on the other hand, the detectors
can only discriminate two events—namely, no photon or
some photons—the POVM operators corresponding to these
events are given by �0 and �s� I−�0, where �0 is given by
Eq. �9�. Now, the detection event Ds0, instead of D10 previ-
ously considered, is represented by the POVM operator �s
� �0, and after some calculation, we find the averaged fidel-
ity as

F�̄N,m��� =
1

3
�1 +

1 + sin 2�

1 + R��� + R����� �26�

and the averaged success probability as

P̄N,m��� =
�

2N
�1 + R��� + R����� . �27�

We see that a new term R�����2� sin2 � cos2 � appears in
the above equations �cf. Eqs. �18� and �19��. Therefore, the

fidelity is smaller than that in the previous case, F�̄N,m

� F̄N,m, and the critical efficiency of the photodetectors is
increased. We can maximize the fidelity in Eq. �26� numeri-
cally by adjusting the parameter � and obtain the critical
efficiencies, e.g., for N=3, as �3,1� c�0.435 and �3,0� c

�0.583 �cf. Sec. IV E�.
Note, however, that the result of Sec. III is unchanged

even in the case of on-off photodetectors, because the W
state in Eq. �1� has at most one single photon.

V. SUMMARY

In this paper, we presented two linear optical schemes
using nonideal photodetectors to detect the inseparability of
single-particle W states. In the first scheme, it was shown
that arbitrarily chosen two-party entanglement can be de-
tected, thereby proving multipartite inseparability, regardless
of photodetector efficiency. In the second scheme of condi-
tional teleportation based on a network setting, we investi-
gated the experimental conditions under which the teleporta-
tion fidelity can be made larger than the classical limit 2/3
assisted by other parties, which manifests multipartite en-
tanglement to some extent. We also discussed the effect of
using on-off photodetectors in both schemes. These schemes
seem to be experimentally realizable within current technol-
ogy, considering particularly the experimental achievement
in Refs. �13,21�.
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