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We introduce a technique that allows one to connect any two arbitrary �pure or mixed� superposition states
of an N-state quantum system. The proposed solution to this inverse quantum mechanical problem is analytical,
exact, and very compact. The technique uses standard and generalized quantum Householder reflections
�QHRs�, which require external pulses of precise areas and frequencies. We show that any two pure states can
be linked by just a single generalized QHR. The transfer between any two mixed states with the same dynamic
invariants �e.g., the same density matrix eigenvalues� requires in general N QHRs. Moreover, we propose
recipes for synthesis of arbitrary preselected mixed states using a combination of QHRs and incoherent
processes �pure dephasing or spontaneous emission�.
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I. INTRODUCTION

Quantum-state engineering in atoms and molecules tradi-
tionally uses three basic techniques for transfer of popula-
tion, complete or partial, from one bound energy state to
another, single or superposition state: resonant pulses of pre-
cise areas �e.g., � pulses in a two-state system or generalized
� pulses for multiple states� �1�, adiabatic passage using one
or more level crossings �2�, or stimulated Raman adiabatic
passage �STIRAP� and its extensions �3�. All these tech-
niques require the system to be initially in a single energy
state; such a state can be easily prepared experimentally, e.g.,
by optical pumping. Some of these techniques are “tuned” to
a specific initial condition: for example, STIRAP requires a
counterintuitive pulse sequence to transfer population from
state 1 to 3 in a 1-2-3 linkage, but it is largely irrelevant if
the system starts in states 2 or 3 �with some exceptions for
state 3� �3�. In other words, STIRAP is �very� useful in pro-
ducing only one column �the first� of the propagator. Similar
conclusions apply, to a large extent, also to the other two
techniques using pulse areas and level crossings.

These traditional techniques resolve only a small �al-
though important� part of the general problem of quantum-
state engineering: given the initial and final states of an
N-state system, find a physical set of operations that connect
them. This problem requires the construction of the entire
propagator, not just a single column or row.

In this paper we introduce a technique for full quantum-
state engineering, which produces, in a systematic manner, a
propagator that can connect any two preselected superposi-
tion states of an N-state quantum system, representing a
qunit in quantum-information terms �4�. The two states can
be pure as well as mixed, and the latter may have the same or
different sets of dynamic invariants �constants of motion�.
The solution consists of two steps: first, find a propagator
that connects the two states, and second, find a physical re-
alization of this propagator.

The first part is the mathematical solution of this inverse
problem in quantum mechanics, and the solution is different
for three types of problems: �i� pure-to-pure states; �ii�
mixed-to-mixed states with the same invariants; �iii� mixed-

to-mixed states with different invariants. The case �iii�, for
instance, contains the important problem of engineering an
arbitrary preselected mixed state and we pay special attention
to it. In this latter respect our exact analytic results are alter-
native to the �approximate� numeric optimization procedure
proposed by Karpati et al. �5�; moreover, our approach al-
lows one to engineer any preselected mixed state, whereas
the method of Karpati et al. �5� can only produce a class of
mixed states.

The second part of the solution is the physical realization
of the respective propagator. For this we use the recently
introduced physical implementation of the quantum House-
holder reflection �QHR� �6,7� and we show that the QHR is a
very powerful tool for quantum state engineering. Remark-
ably, in case �i� only a single QHR is needed to connect two
pure states. In case �ii�, a general U�N� propagator is neces-
sary in the general case, which requires N QHRs. In case
�iii�, some sort of incoherent process is required in order to
equalize the different dynamic invariants of the initial and
final mixed states, and the remaining coherent U�N� part is
realized by QHRs. We describe the use of two such incoher-
ent processes: pure dephasing and spontaneous emission.

The Householder reflection �8� is a powerful and numeri-
cally very robust unitary transformation, which has many
applications in classical data analysis, e.g., in solving sys-
tems of linear algebraic equations, finding eigenvalues of
high-dimensional matrices, least-squares optimization, QR
decomposition, etc. �9�. In its quantum-mechanical imple-
mentation �6,7� it consists of a single interaction step involv-
ing N simultaneous pulsed fields of precise areas and detun-
ings in an N-pod linkage pattern, wherein the N states of our
system are coupled to each other via an ancillary excited
state, as displayed in Fig. 1. We use two types of QHRs:
standard and generalized; the latter involves an additional
phase factor. The standard QHR can operate on and off reso-
nance, whereas the generalized QHR only off resonance.
Any unitary matrix can be decomposed into �and therefore
synthesized by� N−1 standard QHRs and a phase gate, or N
generalized QHRs; hence only N physical operations are
needed, which allows one to greatly reduce the number of
physical steps, from O�N2� in existing U�2� realizations �10�
to only O�N� with QHRs.
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This paper is organized as follows. In Sec. II we review
the standard and generalized QHR gates and their physical
implementations. In Sec. III we show how two pure states
can be connected by means of standard and generalized
QHRs. In Sec. IV we construct the propagator connecting
two arbitrary mixed states with the same dynamic invariants.
Engineering of an arbitrary preselected mixed qunit state is
presented in Sec. V. The conclusions are summarized in
Sec. VI.

II. QUANTUM HOUSEHOLDER REFLECTION

A. Definition

The standard QHR is defined as

M�v� = I − 2�v��v� , �1�

where I is the identity operator and �v� is an N-dimensional
normalized complex column vector. The QHR �1� is both
Hermitian and unitary, M=M†=M−1, which means that M is
involutary, M2=I. In addition, det M=−1. For real �v� the
Householder transformation �1� has a simple geometric inter-
pretation: reflection with respect to an �N−1�-dimensional
plane with a normal vector �v�. In general, the vector �v� is
complex and it is characterized by 2N−2 real parameters
�with the normalization condition and the unimportant global
phase accounted for�.

The generalized QHR is defined as

M�v;�� = I + �ei� − 1��v��v� , �2�

where � is an arbitrary phase. The standard QHR �1� is a
special case of the generalized QHR �2� for �=�: M�v ;��
�M�v�. The generalized QHR is unitary, M�v ;��−1

=M�v ;��†=M�v ;−��, and its determinant is det M=ei�.

B. Physical implementation

We have shown recently �6,7� that the standard and gen-
eralized QHR operators can be realized physically in a co-
herently coupled N-pod system shown in Fig. 1. The N de-

generate �in the rotating-wave approximation �RWA� sense
�1�� ground states �n� �n=1,2 , . . . ,N�, which represent the
qunit, are coupled coherently by N external fields to an an-
cillary, excited state �e���N+1� �6�. The excited state �e� can
generally be off resonance by a detuning ��t� �6�, which
must be the same for all fields. The Rabi frequencies
�1�t� , . . . ,�N�t� of the couplings between the ground states
and the excited state have the same pulse-shaped time depen-
dence f�t�, but possibly different phases �n and amplitudes
�n,

�n�t� = �nf�t�ei�n �n = 1,2, . . . ,N� . �3�

The full qunit+ancilla RWA Hamiltonian reads

H�t� =
�

2	
0 0 ¯ 0 �1�t�
0 0 ¯ 0 �2�t�
] ] � ] ]

0 0 ¯ 0 �N�t�
�1

*�t� �2
*�t� ¯ �N

* �t� 2��t�

 . �4�

The exact solution to the Schrödinger equation for the propa-
gator U�t�,

i�
d

dt
U�t� = H�t�U�t� , �5�

can be found in �6�.
The standard QHR M�v� is realized on exact resonance

��=0�, for any pulse shape f�t�, and for root-mean-square
�rms� pulse area

A = 2�2k + 1�� �k = 0,1,2, . . . � , �6�

where

A = �
−	

	

��t�dt , �7�

with ��t�= ��n=1
N ��n�t��2�1/2. Then the transition probabilities

to the ancilla state vanish and the propagator within the qunit
space is given exactly by the standard QHR M�v� �1�. The
components of the N-dimensional normalized complex vec-
tor �v� are the Rabi frequencies, with the accompanying
phases �7�

�v� =
1

�
��1ei�1,�2ei�2, . . . ,�Nei�N�T, �8�

where �= ��n=1
N �n

2�1/2. Hence the qunit propagator represents
a physical realization of the standard QHR in a single inter-
action step. Any QHR vector �8� can be produced on demand
by appropriately selecting the peak couplings �n and the
phases �n of the external fields.

The generalized QHR M�v ;�� can be realized in the same
N-pod system, but for specific detunings off resonance.
Again the transition probabilities to the ancilla state must
vanish; the corresponding rms pulse areas �7� in general de-
pend on the pulse shape and differ from the resonance values
�6�. The propagator within the qunit space is the generalized
QHR �2�, wherein the phase � depends on the interaction

FIG. 1. Physical realization of the quantum Householder reflec-
tion: N degenerate �in the rotating-wave approximation �RWA�
sense� ground states, forming the qunit, coherently coupled via a
common excited state by pulsed external fields of the same time
dependence and the same detuning, but different amplitudes and
phases.
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parameters. Although the parameters �i.e., the rms area and
the detuning� of any needed generalized QHR can be found
numerically for essentially any pulse shape, it is very conve-
nient to use a hyperbolic-secant pulse shape, for which there
is a simple exact analytic solution: the Rosen-Zener model
�11�,

f�t� = sech�t/T� , �9a�

��t� = �0. �9b�

For this pulse shape, the rms area �7� is A=��T. A general-
ized QHR transformation M�v ;�� �2� is realized when the
interactions satisfy again Eq. �8�, and the pulse area and the
detuning obey �6,7�

A = 2�l �l = 1,2, . . . � , �10a�

� = 2 arg 

k=0

l−1

��0T + i�2k + 1�� . �10b�

For any given �, there are l values of �0 that satisfy Eq.
�10b� �6�. This is also the case for �=�, i.e., for the standard
QHR, for which one of the solutions is �0=0. Hence the
standard QHR M�v� can be realized both on and off reso-
nance, whereas the generalized QHR M�v ;�� can only be
realized for nonzero �0. The advantage of tuning off reso-
nance is the lower transient population in the ancilla excited
state, which would reduce the population losses if the life-
time of this state is short compared to the interaction dura-
tion.

This implementation is particularly suited for a qutrit �N
=3� formed of the magnetic sublevels of an atomic level with
angular momentum J=1; then the ancilla state should be a
J=0 state. The three pulsed fields can be delivered from the
same laser by using beam splitters and polarizers, which
would automatically ensure that all of them have the same
detuning and pulse shape. Moreover, with femtosecond
pulses it would be possible to use pulse shapers �12�, which
can easily deliver pulses with the desired areas. Of course,
the use of femtosecond pulses offers another advantage: de-
coherence is irrelevant on such time scales.

C. Householder decomposition of a U„N… propagator

The standard QHR M�v� and the generalized QHR
M�v ;�� can be used for U�N� decomposition �7�. Any
N-dimensional unitary matrix U �U−1=U†� can be expressed
as a product of N−1 standard QHRs M�vn� �n=1,2 , . . . ,N
−1� and a phase gate,

��
1, . . . ,
N� = �
n=1

N

ei
n�n��n� = diag�ei
1, . . . ,ei
N� ,

�11�

as

U = M�v1�M�v2� ¯ M�vN−1���
1,
2, . . . ,
N� , �12�

or as a product of N generalized QHRs,

U = M�v1;�1�M�v2;�2� ¯ M�vN;�N� . �13�

These QHR decompositions of a general U�N� transfor-
mation make it possible to solve the important quantum-
mechanical problem of transferring an N-state quantum sys-
tem from one arbitrary preselected initial superposition state
to another such state, i.e., the inverse problem of quantum-
state engineering. The cases of pure and mixed states require
separate analyses.

III. TRANSITION BETWEEN PURE STATES

A. Transition by standard QHRs

A pure qunit state is described by a state vector ���
=�n=1

N cn�n�, where the vectors �n� represent the qunit basis
states, and cn is the complex-valued probability amplitude of
state �n�. Given the preselected initial state ��i� and the final
state �� f� of the qunit, we wish to find a propagator U, such
that

�� f� = U��i� . �14�

We shall show that one of the possible solutions of Eq.
�14� reads

U = M�v f�DM�vi� , �15�

where M�vi� and M�v f� are standard QHRs. Here D is an
N-dimensional unitary matrix, which, when acting upon a
single-qunit basis state �n�, only shifts its phase,

D�n� = ei
n�n� . �16�

For example, D can be an arbitrary N-dimensional phase gate
�11�. Alternatively, D can be an arbitrary N-dimensional gen-
eralized QHR M�v ;�� with vector �v� orthogonal to the
qunit state �n�, �v �n�=0. Finally D can be the identity D=I.

In order to prove Eq. �15� we first define the vector

�v�n� =
���� − ei��n�n�

�2�1 − �����n���
, �17�

where �n� is an arbitrarily chosen basis qunit state, ��n
=arg�n ����, and �= i or f . The QHR M�vin� acting upon
��i� reflects it onto the single-qunit state �n�,

M�vin���i� = ei�in�n� . �18�

The action of D upon �n� only shifts its phase �see Eq. �16��.
The action of M�v fn� upon �n� reflects this vector onto the
final state,

M�v fn��n� = e−i�fn�� f� . �19�

Equations �18�, �16�, and �19� imply that

M�v fn�DM�vin���i� = ei��in−�fn+
n��� f� , �20�

which, up to an unimportant phase, proves Eq. �15�.
The arbitrariness in the choice of the unitary matrix D,

and the intermediate basis state �n�, means that the solution
�15� for U is not unique. However, what is important is that
it always exists. In fact the availability of multiple solutions
offers some flexibility for a physical implementation. In par-
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ticular we can always choose D=I; then the physical realiza-
tion of the propagator U requires only two standard QHRs.

In several important special cases only a single standard
QHR is needed for a pure-to-pure transition.

�1� If the qunit is in a single initial basis state ��i�= �n�
then, as follows from Eq. �19�, only a single QHR M�v fn� is
sufficient to transfer it into an arbitrary superposition state
�� f�, with �v fn� given by Eq. �17�.

�2� Likewise, an arbitrary initial superposition state ��i�
can be linked to any single final state �� f�= �n� by only a
single QHR M�vin�, with �vin� given by Eq. �17�.

�3� If ��i� and �� f� are orthogonal ��� f ��i�=0�,
then again only a single standard QHR M�v�, with �v�
= �1/�2���� f�− ��i��, is sufficient to connect them.

�4� If ��i� and �� f� are superpositions with real coeffi-
cients, then again a single QHR M�v� links them, with �v�
= ��� f�− ��i�� /�2�1− �� f ��i��.

B. Transition by a generalized QHR

A generalized QHR is ideally suited for a pure-to-pure
transition because, as is easily seen, only one generalized
QHR is sufficient to reflect state ��i� onto �� f�,

U = M�v;�� , �21�

where

�v� =
�� f� − ��i�

�2�1 − Re�� f��i��
, �22a�

� = 2 arg�1 − ��i�� f�� + � . �22b�

In comparison with �15� the solution �21� is unique; there is
no arbitrariness in the choice of the QHR vector �v� �up to an
unimportant global phase� and the phase �.

C. Examples

As a first example, we consider a qutrit �N=3�, for which
the QHR implementation is particularly suitable. The single-
to-superposition transition

��i� = �1� →
�1� + �2� + �3�

�3
= �� f� �23�

is performed by a single QHR M�v�, with

�v� =
1

2
�1 +

1
�3

��3 − 1,− 1,− 1�T. �24�

Figure 2 shows the corresponding time evolutions of the
populations and the state mismatch, �not to be confused with
the arbitrary diagonal matrix D�

D�t� =

�
mn

�
mn�t� − 
mn
f �

�
mn

�
mn
i − 
mn

f �
, �25�

where 
mn are the elements of the qutrit density matrix 
.
This definition of D applies to pure and mixed states as well.

The behavior of D allows us to verify that both the popula-
tions and the phases of the probability amplitudes of the
target state �� f� are produced by the QHR. Indeed, as time
progresses, D approaches zero, which implies that ���t��
aligns with �� f�.

In another example, we transfer a two-state superposition
to a three-state superposition,

�1� + �3�
�2

→
�1� + ei�/3�2� + ei�/7�3�

�3
, �26�

by two standard QHRs, U=M�v f�M�vi�, with

�vi� = �− 0.383,0,0.924�T, �27a�

�v f� = �− 0.460,0.628ei�/3,0.628ei�/7�T, �27b�

or by one generalized QHR U=M�v ;��, with

�v� = �0.194e0.213�i,0.863e−0.454�i,0.467e−0.083�i�T, �28�

and �=0.574�. Figure 3 shows the time evolution of the
populations and the state mismatch �25� for a standard QHR
implementation, and Fig. 4 for generalized QHR. In both
cases, the mismatch D vanishes, indicating the creation of
the desired superposition �26�. The generalized QHR imple-
mentation is clearly superior because it creates the target
state in a single step.

In conclusion of this section, we have shown that any two
pure superposition qunit states can be connected by just a
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FIG. 2. �Color online� Time evolution of the pulsed fields �top�
and the populations and the state mismatch D �bottom� for the
transition �23� in a qutrit. We have assumed sech pulses, f�t�
=sech�t /T�, and rms pulse area A=4� ��T=4�. The individual cou-
plings �n �n=1,2 ,3� are given by the components of the QHR
vector �24�, each multiplied by �. The detuning is �0T=1.732
�which gives �=��.
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single generalized QHR, or by two standard QHRs. This sug-
gests that the QHR, and particularly the generalized version,
is a very convenient and efficient tool for pure-to-pure state
navigation in Hilbert space.

We now turn our attention to mixed states.

IV. COHERENT NAVIGATION BETWEEN MIXED STATES

A mixed qunit state can be described by its density matrix

, whose spectral decomposition reads


 = �
n=1

N

rn��n���n� . �29�

The eigenvalues rn of 
 satisfy �n=1
N rn=1, and ��n� are the

orthonormalized ���k ��n�=�kn� complex eigenvectors of 
.
The density matrix is Hermitian; hence it can be param-
etrized by N2−1 real parameters.

A Hermitian Hamiltonian induces unitary evolution be-
tween an initial mixed state 
i and a final state 
 f,


 f = U
iU
†. �30�

A unitary evolution does not change the eigenvalues �rn�n=1
N ,

which are therefore dynamic invariants, as is easily seen
from Eq. �30� �as an equivalent set of dynamic invariants one
can take the set �Tr
n�n=1

N �. Therefore, a unitary propagator U
can only connect mixed states with the same set of invariants
�rn�n=1

N . In order to connect mixed states with different invari-

ants we need an incoherent process; we shall return to this
problem in the next section. Here we shall find the solution
to the problem of linking two mixed states with the same
invariants.

Because the eigenvalues �rn�n=1
N of 
i and 
 f are the same,

we have the equality

Ri
†
iRi = R f

†
 fR f = 
0, �31�

where the unitary matrices Ri and R f diagonalize, respec-
tively, 
i and 
 f, and 
0=diag�r1 ,r2 , . . . ,rN�. By replacing
Eq. �31� into Eq. �30� we find


0 = D
0D†, �32a�

D = R f
†URi. �32b�

Because D is a unitary matrix we find 
0D=D
0. Since 
0 is
diagonal, D must be diagonal too. There are no other restric-
tions on D; hence D can be an arbitrary diagonal matrix; for
example, we can always choose D=I. It follows from Eq.
�32b� that the solution for U is

U = R fDRi
†. �33�

Hence, the transfer between two mixed states requires a gen-
eral U�N� propagator. The latter can be expressed as a prod-
uct of N−1 standard QHRs M�vn� �n=1,2 , . . . ,N−1� and a
phase gate ��
1 ,
2 , . . . ,
N�, Eq. �12�, or by N generalized
QHRs M�vn ;�n� �n=1,2 , . . . ,N�, Eq. �13� �7�.
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FIG. 3. �Color online� Time evolution of the pulsed fields �top�
and the populations and the state mismatch D �bottom� for the qutrit
transition �26�. We have assumed sech pulse shapes with rms pulse
area A=2� ��T=2� and detuning �=0. The individual couplings �n

�n=1,2 ,3� are given by the components of the standard QHR vec-
tors �27�, each multiplied by �.
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FIG. 4. �Color online� Time evolution of the pulsed fields �top�
and the populations and the state mismatch D �bottom� for the qutrit
transition �26�. We have assumed sech pulse shapes with rms pulse
area A=2� ��T=2�. The individual couplings �n�n=1,2 ,3� are
given by the components of the generalized QHR vector �28�, each
multiplied by �. The detuning is �T=0.791, which produces the
desired phase �=0.574�.
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We take as an example a qutrit, with the arbitrarily chosen
initial and final density matrices


i = 	 0.490 0.115e−0.789�i 0.158e0.107�i

0.115e0.789�i 0.336 0.018e−0.675�i

0.158e−0.107�i 0.018e0.675�i 0.175

 ,

�34a�


 f = 	 0.298 0.022e0.689�i 0.033e0.319�i

0.022e−0.689�i 0.180 0.177e0.909�i

0.033e−0.319�i 0.177e−0.909�i 0.523

 ,

�34b�

which have the same eigenvalues r1=0.6, r2=0.3, r3=0.1.
These density matrices can be connected by the unitary
propagator �33� with D=I: U=R fRi

†. The latter can be ex-
pressed as a product of two standard QHRs and one phase
gate U=M�v1�M�v2��, with

�v1� = �0.612e0.532�i,0.091e0.211�i,0.785e0.690�i�T,

�35a�

�v2� = �0,0.533e−0.181�i,0.846e0.859�i�T, �35b�

� = diag�e−0.468�i,e0.819�i,e−0.350�i� , �35c�

or by three generalized QHRs, U
=M�v1 ;�1�M�v2 ;�2�M�v3 ;�3�, with

�v1� = �0.721e0.659�i,0.080e−0.209�i,0.689e0.270�i�T,

�36a�

�v2� = �0,0.813e0.469�i,0.582e−0.261�i�T, �36b�

�v3� = �0,0,1�T, �36c�

�1 = − 0.841�, �2 = 0.969�, �3 = − 0.128� .

�36d�

Figure 5 shows the respective time evolution of the popu-
lations and the state mismatch �25� for the generalized QHR
realization. The first QHR M�v3 ;�3� does not cause popula-
tion changes because it is in fact a phase gate. As time
progresses, the mismatch decreases and the target density
matrix �34b� is approached.

V. SYNTHESIS OF ARBITRARY PRESELECTED MIXED
STATES

As was shown in the previous sections, by applying one
or more QHRs one can connect any two arbitrary pure states,
or two arbitrary mixed states with the same dynamic invari-
ants �rn�n=1

N . Mixed states with different invariants cannot be
connected by coherent Hermitian evolution because these in-
variants are constants of motion. Hence in order to connect
mixed states with different invariants we need a mechanism
with non-Hermitian dynamics, which can alter the dynamic
invariants.

In this section we shall describe two techniques for engi-
neering an arbitrary mixed state, starting from a single pure
state. This is the most interesting special case of the general
problem of connecting two arbitrary mixed states, because
the initial state can be prepared routinely by optical pump-
ing. Moreover, the general mixed-to-mixed problem can be
reduced to the single-to-mixed problem by optically pump-
ing the initial mixed state into a single state.

The two techniques use a combination of coherent and
incoherent evolutions. The coherent evolution uses QHRs,
whereas the incoherent non-Hermitian evolution is induced
either by pure dephasing or spontaneous emission. We shall
consider the two techniques separately.

A. Using dephasing

We assume that the qunit is initially in the single qunit
state 
i= �i��i�, and we wish to transform the system to an
arbitrary mixed state 
 f. Let us denote again the eigenvalues
of 
 f by rn �n=1,2 , . . . ,N�. We proceed as follows.

�1� First, using the prescription from Sec. III, we apply a
single QHR to transfer state �i� to a pure superposition state,
in which the populations are equal to the eigenvalues of 
 f:

nn=rn �n=1,2 , . . . ,N�. The phases of this superposition are
irrelevant.

�2� In the second step we switch the dephasing on and let
all coherences decay to zero. This can be done, for example,
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FIG. 5. �Color online� Time evolution of the pulsed fields �top�
and the populations and the state mismatch �bottom� for the transi-
tion between states �34a� and �34b� in a qutrit. We have assumed
sech pulse shapes and rms pulse area A=2� ��T=2�. The indi-
vidual couplings �n �n=1,2 ,3� are given by the components of the
generalized QHR vectors �36� each multiplied by �. The detunings
are �1T=−0.255, �2T=0.049, and �3T=−4.918, which produce the
phases �36d�.
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by using phase-fluctuating far-off-resonance laser pulses. In
the end of this process, the density matrix will be diagonal,
with the eigenvalues rn of 
 f on the diagonal, which implies
that it will have the same dynamic invariants as 
 f.

�3� The third step is to connect this intermediate state to
the desired state 
 f by a sequence of QHRs, as explained in
the previous Sec. IV.

In summary, we need three steps: a single QHR, a dephas-
ing process, and a sequence of QHRs. Figure 6 shows the
evolution of the populations and the state mismatch �25� dur-
ing the engineering of the mixed state �34b� by the dephasing
technique. The first step is the single QHR M�v�, with QHR
vector

�v� = �− 0.336,0.816,0.471�T, �37�

which transfers the single initial state �1� to the pure super-
position state


1 = 	 0.6 �0.18 �0.06

�0.18 0.3 �0.03

�0.06 �0.03 0.1

 . �38�

The second step is the pure dephasing process, which nulli-
fies all coherences and leaves the density matrix in a diago-
nal form,


2 = 	0.6 0 0

0 0.3 0

0 0 0.1

 . �39�

The third step is a sequence of two generalized QHRs, which
transfer 
2 into the desired final density matrix 
 f, Eq. �34b�.
The QHR components read

�v1� = �0.689e0.454�i,0.280e0.436�i,0.668e−0.477�i�T,

�40a�

�v2� = �0,0.793e0.740�i,0.609e0.025�i�T, �40b�

�1 = 0.954�, �2 = − 0.760� . �40c�

B. Using spontaneous emission

In the method, which uses spontaneous emission, we start
again in a single-qunit state 
i= �i��i�, and the target is the
arbitrary mixed state 
 f. The procedure now consists of only
two steps: incoherent and coherent. It is particularly well
suited for a qutrit, which we shall describe, although it is
readily extended to more states. This method requires a
closed qunit-ancilla transition; if the ancilla state can decay
to other levels then the fidelity will be reduced accordingly.

It is possible here to apply directly the incoherent step,
which produces a density matrix with the desired final dy-
namic invariants, without the need to prepare first a coherent
qunit superposition, as in the dephasing method above. The
idea is to use laser-induced spontaneous emission from the
ancilla excited state to prepare a completely incoherent su-
perposition of the qunit states with populations 
nn equal to
the eigenvalues rn of 
 f,


 = �
n=1

3

rn�n��n� . �41�

For this we apply a sequence of appropriately chosen laser
pulses from the qunit states to the excited state, which decays
back to the qunit states and redistributes the population
among them.

There are various scenarios possible, which can produce
the desired incoherent qunit superposition. Here we describe
a scenario which looks particularly simple and easy to
implement for the qutrit formed of the magnetic sublevels
M =−1,0 ,1 of a J=1 level and an ancilla excited level with
J=0 �this implies also equal spontaneous decay branching
ratios from the J=0 level to the M sublevels of the qutrit�.
For definiteness, and without loss of generality, we assume
that the eigenvalues of 
 f are ordered as r1�r2�r3. We need
three pulses: a short pulse from state �1�, a long pulse from
state �3�, and again a short pulse from state �1� �here short
and long are related to the lifetime of the excited state�.

The short pulse from the initially populated state �1�, with
excitation probability p1, transfers population p1 to the ex-
cited state, 1 /3 of which decays back to each of the qutrit
states. The ensuing density matrix reads
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FIG. 6. �Color online� Time evolution of the pulsed fields �top�
and the populations and the state mismatch �25� �bottom� for
mixed-state engineering in a qutrit. The qutrit starts in state �1� and
the target final state is given by Eq. �34b�. We have assumed sech
pulse shapes and rms pulse area A=2� ��T=2�. The individual
couplings �n �n=1,2 ,3� are given by the components of the gener-
alized QHR vectors �37� and �40�, each multiplied by �. The detun-
ings are �=0, �1T=0.072 and �2T=−0.396, which produce the
desired QHR phases �40c�. The dephasing rate is �=2/T.
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1 = diag�1 −
2

3
p1,

1

3
p1,

1

3
p1� . �42�

We then apply a sufficiently long pulse from state �3�, so that
its population is completely depleted and distributed among
states �1� and �2�. The resulting density matrix is


2 = diag�1 −
1

2
p1,

1

2
p1,0� . �43�

We now apply again a short pulse from state �1�, with a
different probability p2, and then wait for spontaneous emis-
sion from the excited state. The result is


3 = diag��1 −
1

2
p1��1 −

2

3
p2�,

1

2
p1

+
1

3
p2�1 −

1

2
p1�,

1

3
p2�1 −

1

2
p1�� . �44�

It is easy to show that in order to create the mixed state �41�
we should have the probabilities

p1 = 2�r2 − r3� , �45a�

p2 =
3r3

r1 + 2r3
. �45b�

Because we assumed that r1�r2�r3 the probabilities p1 and
p2 belong to the interval �0,1� and are well defined. Such
probabilities can be produced by resonant pulses with appro-
priate pulse areas. These pulses should be short compared to
the lifetime of the excited state in order to avoid spontaneous
emission during their action.

Once we have prepared the mixed qutrit state �41�, which
has the same invariants as 
 f, we can apply QHRs to transfer
this state into the desired final state 
 f, as described in
Sec. IV.

VI. CONCLUSIONS

In this paper we have proposed a technique that allows
one to connect any two quantum superposition states, pure or
mixed, of an N-state atom. The solution of this inverse prob-
lem in quantum mechanics contains two parts: �i� mathemati-
cal derivation of the propagator that links the desired initial
and final density matrices, and �ii� physical realization of this
propagator. In the general case of arbitrary mixed states, the
implementations combine coherent Hermitian and incoherent
non-Hermitian interactions induced by pulsed laser fields. In
general, the propagator is not unique, which reflects the mul-
titude of paths between two qunit states; this also allows for
some flexibility in the choice of the most convenient path.

The physical realization uses an N-pod configuration of N
lower states, forming the qunit, and an ancillary upper state.

It is particularly convenient for a qutrit, where the N=3
states are the magnetic sublevels of a J=1 level and the
ancilla state is a J=0 level. Then only a single tunable laser
is needed to provide the necessary polarized laser pulses.
Femtosecond pulses look particularly suitable because of the
high degree of control of the pulse shapes and areas by pulse
shapers, and the absence of any decoherence on these time
scales.

The Hermitian part uses a sequence of sets of short co-
herent laser pulses with appropriate pulse areas and detun-
ings. For each set, the propagator of the N-pod represents a
quantum Householder reflection. A sequence of at most N
suitably chosen QHRs can synthesize any desired unitary
propagator.

We have shown that any two arbitrary preselected pure
superposition states can be connected by a single QHR only,
because the respective propagator has exactly the QHR sym-
metry. Two mixed states, with the same set of dynamic in-
variants, require a general U�N� transformation, which can
be realized by at most N QHRs. This is a significant im-
provement over the existing setups involving O�N2� opera-
tions, which can be crucial in making quantum-state engi-
neering and qunit operations experimentally feasible.

The most general case of two arbitrary mixed states with
different dynamic invariants requires an incoherent step,
which equalizes the invariants of the initial density matrix to
those of the final density matrix. We have demonstrated how
this can be done by using pure dephasing or spontaneous
decay of the ancillary upper state. Once the invariants are
equalized, the problem is reduced to the one of connecting
two mixed states with the same invariants, which, as ex-
plained above, can be done by at most N QHRs. This method
has been described for a qutrit, but it is easily generalized to
an arbitrary qunit.

The present results can have important applications in the
storage of quantum information. For example, a qubit can
encode two continuous parameters: the population ratio of
the two qubit states and the relative phase of their ampli-
tudes. A qunit in a pure state can encode 2�N−1� parameters
�N−1 populations and N−1 relative phases�, i.e., by using
qunits information can be encoded in significantly fewer par-
ticles than with qubits. Moreover, a mixed qunit state can
encode as many as N2−1 real parameters. This may be par-
ticularly interesting if the number of particles that can be
used is restricted, e.g., due to decoherence �4�.
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