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We apply the techniques introduced by Kraus et al. �Phys. Rev. Lett. 95, 080501 �2005�� to prove security
of quantum-key-distribution �QKD� schemes using two-way classical post-processing as well as QKD schemes
based on weak coherent pulses instead of single-photon pulses. As a result, we obtain improved bounds on the
secret-key rate of these schemes. For instance, for the six-state protocol using two-way classical post-
processing we recover the known threshold for the maximum tolerated bit error rate of the channel, 0.276, but
demonstrate that the secret-key rate can be substantially higher than previously shown. Moreover, we provide
a detailed analysis of the Bennett-Brassard 1984 �BB84� and the SARG protocol using weak coherent pulses
�with and without decoy states� in the so-called untrusted-device scenario, where the adversary might influence
the detector efficiencies. We evaluate lower bounds on the secret-key rate for realistic channel parameters and
show that, for channels with low noise level, the bounds for the SARG protocol are superior to those for the
BB84 protocol, whereas this advantage disappears with increasing noise level.
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I. INTRODUCTION

A fundamental problem in cryptography is to enable two
distant parties, traditionally called Alice and Bob, to commu-
nicate in absolute privacy, even in presence of an eavesdrop-
per Eve. It is a well-known fact that a secret key, i.e., a
randomly chosen bit string held by both Alice and Bob, but
unknown to Eve, is sufficient to perform this task �one-time
pad encryption�. Thus, the problem of secret communication
reduces to the problem of distributing a secret key.

Classical key distribution protocols are typically based on
unproven computational assumptions, e.g., that the task of
decomposing a large number into its prime factors is intrac-
table. In contrast to that, the security of quantum-key-
distribution (QKD) protocols merely relies on the laws of
physics, or, more specifically, quantum mechanics. This ulti-
mate security is certainly one of the main reasons why so
much theoretical and experimental effort is undertaken to-
wards the implementation of secure QKD protocols �1,2�.

Typically �3–5�, in the first step of a QKD protocol, Alice
chooses a random bit string and encodes each bit into the
state of a quantum system, which she then sends to Bob
�using a quantum channel�. Bob applies a certain measure-
ment on the received quantum system to decode the bit
value. In a second step, called sifting, Alice and Bob publicly
exchange some information about the encoding and decoding
of each of the bits which allows them to discard bit pairs
which are not �or only weakly� correlated.

After this sifting process, Alice and Bob hold a pair of
classical correlated bit strings, in the following called raw
key pair. Alice and Bob can determine the quality of the raw
key pair by comparing the values of some randomly chosen
bit pairs �using an authenticated classical communication
channel�. This so-called parameter estimation gives an esti-
mate for the quantum bit error rate (QBER), i.e., the ratio of
positions for which the values of the bits held by Alice and

Bob do not coincide. A fundamental principle of QKD is that
this error rate also imposes a bound on the amount of infor-
mation an adversary can have on the raw key: The smaller
the QBER, the more secret-key bits can be extracted from
the raw key. If the QBER is above a certain threshold, then
no secret key can be generated at all, and Alice and Bob must
abort the protocol �6�.

The purpose of the remaining part of the protocol, called
classical post-processing, is to transform the raw key pair
into a pair of identical and secret keys. In this paper, we
consider classical post-processing which consists of the fol-
lowing three subprotocols: �i� local randomization �also
called preprocessing�, where Alice randomly flips each of
her bits with some given probability q, �ii� error correction,
where Alice and Bob equalize their strings, and �iii� privacy
amplification, where Alice and Bob apply some compression
function to their bit string with the aim to reduce Eve’s in-
formation on the outcome. Steps �i�–�iii� described above
only require �classical� one-way communication from Alice
to Bob. However, in practical implementations, the error cor-
rection is sometimes done with two-way protocols �e.g., the
cascade protocol �7��.

In Refs. �8,9�, an information-theoretic technique to ana-
lyze QKD protocols of the type described above has been
presented. In contrast to most previously known methods
�e.g., Ref. �10��, the technique does not require a transforma-
tion of the key distillation protocol into an entanglement pu-
rification scheme, which makes it very general. It has been
applied to prove the security of various schemes such as the
Bennett-Brassard 1984 �BB84�, the six-state, the Bennett
1992 �B92�, and the SARG protocol �11–14� �see Refs. �8,9�
for an analysis of the first three protocols and Ref. �15� for an
analysis of the latter�. In particular, it has been shown that
the local randomization, i.e., step �i� described above, in-
creases the bounds on the maximum tolerated QBER by
roughly 10%–15%.
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In this paper, we extend the technique of Refs. �8,9� �Sec.
II� and apply it to two classes of QKD protocols which have
not been covered in Refs. �8,9�. The first �Sec. III� is the
class of so-called two-way protocols. These use an additional
subprotocol, called advantage distillation, which is invoked
between the parameter estimation and the classical post-
processing step described above. In contrast to the classical
post-processing considered in Refs. �8,9�, advantage distilla-
tion uses two-way communication between Alice and Bob.
Second, we study protocols which use weak coherent pulses
instead of single-photon pulses �Sec. IV�. For both scenarios,
we show that local randomization increases the secret-key
rates.

II. INFORMATION-THEORETIC ANALYSIS
OF QKD SCHEMES

In this section we first review the results presented in
Refs. �8,9� and then show how they can be generalized.
Throughout this paper we use subscripts to indicate the sub-
systems on which a state is defined. Alice’s and Bob’s quan-
tum systems are labeled by A and B, respectively. Similarly,
the classical values obtained by measuring their quantum
systems are denoted by X and Y, respectively. Typically, we
write �AB, or �n, to denote the state of all the qubits held by
Alice and Bob, whereas �AB is a two-qubit state. We will
often consider two-qubit Bell-diagonal states, i.e., states that
are diagonal in the Bell basis, ��ij�= ��0,0+ i�+ �−1� j�1,1
+ i�� /�2. P��� denotes the projector onto the state ���. Fur-
thermore, we denote by h�x�=−x log2�x�− �1−x�log2�1−x�
the binary entropy function.

A. Review of the technique

The information-theoretic technique proposed in Refs.
�8,9� directly applies to a general class of quantum-key-
distribution protocols using one-way classical communica-
tion. However, it is required that the protocol can be repre-
sented as a so-called entanglement-based scheme, as
described below.

Generally, a QKD protocol uses a set of so-called encod-
ing bases. We consider the special case where each basis j is
defined by two states �� j

0� and �� j
1�, which are used to encode

the bit values 0 and 1, respectively. In a prepare-and-
measure scheme, Alice repeatedly chooses at random a bit i
and a basis j, prepares the state �� j

i�, and sends the state to
Bob. Bob then measures the state in a randomly chosen basis
k. This measuring process can be seen as some filtering op-
eration Bk= �0���1,k

� �+ �1���0,k
� �, where ��i,k

� � is some state or-
thogonal to ��k

i �, followed by a measurement in the compu-
tational basis.

In an entanglement-based view, the above can equiva-
lently be described as follows: Alice prepares the two-qubit
states Aj��00�, where ��00� denotes the Bell state
1 /�2��0,0�+ �1,1�� and Aj is an encoding operator �for de-
tails see Ref. �8�� such that �i�Aj��00�= �� j

i�. She then sends
the second qubit to Bob and prepares Bob’s system at a
distance by measuring her system in the computational basis.

Bob’s measurement is described in the same way as in the
prepare-and-measure scheme.

Note that, in an experimental realization of a QKD proto-
col, one might prefer to implement a prepare-and-measure
scheme. However, when analyzing the security of a protocol,
it is usually more convenient to consider its entanglement-
based version.

As an illustration, consider the BB84 protocol, which uses
the z basis and the x basis for the encoding. Using the above
notation, we have ��0

i �= �iz� and ��1
i �= �ix�, for i=0,1. Hence,

the operators applied by Alice are A0=1 and A1=H, where H
denotes the Hadamard transformation. Because the bases are
orthonormal, the same operators describe Bob’s measure-
ment as well.

For the following, we assume that Alice and Bob apply a
randomly chosen permutation to rearrange the order of their
qubit pairs, in the following denoted by PS, and, additionally,
apply to each of the qubit pairs at random either the identity
or the operation �x � �x. �Note that the symmetrization op-
erations commute with the measurement and can therefore
be applied to the classical bit strings.� Then, as shown in Ref.
�8�, the state �AB describing the N qubit pairs shared by Alice
and Bob can generally �after the most general attack by Eve,
a so-called coherent attack� be considered to be of a simple
form, namely

�AB = 	
n1,. . .,n4

�n1,n2,n3,n4
PS�P��00�

�n1 � P��01�
�n2 � P��10�

�n3 � P��11�
�n4 � .

�1�

The sum runs over all non-negative n1 , . . . ,n4 such that n1
+n2+n3+n4=N. The set of possible values of the coefficients
�n1,n2,n3,n4

depends on the specific protocol and the param-
eters estimated by Alice and Bob �e.g., the QBER of the raw
key�. Furthermore, one can assume without loss of generality
that Eve has a purification of this state, i.e., the situation is
fully described by a pure state ���ABE such that �AB
=trE�P���ABE�. �However, as we shall see, dropping this as-
sumption might lead to better estimates of the key rate.� Af-
ter this distribution of quantum information Alice and Bob
measure their systems. Thus they are left with classical bit
strings.

Consider now any situation where Alice and Bob have a
classical pair of raw keys Xn and Yn consisting of n bits
whereas Eve controls a quantum system E. The secret-key
rate, i.e., the rate at which secret-key bits can be generated
per bit of the raw key, for any one-way protocol �with com-
munication from Alice to Bob�, is given by

r = lim
�→0

lim
n→�

1

n
sup

Un←Xn
S2

��UnEn� − S0
��En� − H0

��Un�Yn� . �2�

Here, S	
� ,H	

� denote the smooth Rényi entropies �also called
min-entropy if 	=� and max-entropy if 	=0� �16�. More-
over, the supremum runs over all classical values Un that can
be computed from �the classical value� Xn.

For a QKD protocol as described above �where the dis-
tributed state is of the form of Eq. �1��, formula �2� can be
lower bounded by an expression which only involves two-
qubit systems. More precisely �8�,
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r 
 sup
U←X

inf
�AB��Q

S�U�E� − H�U�Y� , �3�

where �Q is the set of all two-qubit states �AB �after the
filtering operation� which can result from a collective attack
�17� and which are compatible with the parameters estimated
by Alice and Bob �in particular, the QBER�. Here, S and H
denote the von Neumann entropy and its classical counter-
part, the Shannon entropy, respectively. Moreover, X and Y
denote the classical outcomes of measurements of �AB �on A
and B, respectively� in the computational basis, and E is any
system that purifies �AB. Similarly to the above formula, the
supremum runs over all mappings from X to U �18�.

B. Local randomization

The local randomization step described above has been
considered in Refs. �8,9� and later been improved in Ref.
�19�. In Ref. �20�, the local randomization is nicely explained
in the context of entanglement purification.

To get an intuition why the local randomization can help
to increase the secret-key rate, it is useful to describe the
process as a quantum operation �as in �20��. Let �AB be the
state of a qubit pair held by Alice and Bob and let ���ABE be
a purification of �AB. The state after Alice randomly flips her
bit value A with probability q can be described by
���AA�BE=�1−q���ABE�0�A�+�q�x

A���ABE�1�A�, where A� is
an auxiliary system on Alice’s side. The measurement of
system A gives the raw key. Note that ���AA�BE results from
the application of a controlled-NOT operation on system AA�,
where system A� is prepared in the state �1−q�0�A�
+�q�1�A�. The randomization of Alice thus entangles her sys-
tem to some auxiliary system �which is not under Eve’s con-
trol�. This, in turn, reduces the entanglement between Alice’s
relevant system �A� and Eve’s systems �monogamy of en-
tanglement�, as Eve does not have a purification of the state
on the systems A and B, since now she only has the purifi-
cation of the state �AA�B. Note that Bob’s information on A is
also reduced by the randomization process, but—for certain
values of the parameter q—he is less penalized than Eve.
From this point of view, it can be easily understood that the
local randomization can help to increase the secret-key rate.

C. Comparison to known bounds

For protocols based on qubit pairs, where the raw key pair
is obtained by orthogonal measurements of Alice and Bob on
some Bell-diagonal state �AB=	i,j�ijP�ij

�e.g., the BB84 or
the six-state protocol�, it follows from �3� that the secret-key
rate r �even without the local randomization� is bounded by

r 
 1 − S��AB� 
 1 − h�eb� − h�ep� .

Here, eb=�10+�11 is the QBER and ep=�01+�11 the phase
error rate, i.e., the probability that Alice and Bob get differ-
ent bits when measuring in the z and the x basis, respectively.
Because the QBER and the phase error rate are not changed
by applying at random �x or �z, which makes any state Bell
diagonal, the bound 1−h�eb�−h�ep� holds for arbitrary states
�AB. Note that the above bound implies any of the lower

bounds on the one-way secret-key rate derived in previous
works �10,21�.

D. Generalization of the lower bound

Because we assume above that Eve controls a system that
purifies the state �AB held by Alice and Bob, the bound �3� is
fully determined by �AB. However, this assumption on Eve
might overestimate her possibilities, in which case the bound
is not optimal. In the following we drop this assumption to
derive better lower bounds on the secret-key rate.

Suppose that the state distributed in an entanglement-
based scheme is of the form PS��DAB � 1��n��ABE

0 ��, where
PS again denotes the map that randomly permutes the order
of the qubit pairs, DAB is some completely positive map on
two-qubit states, and �ABE

0 is some tripartite state. Then, it is
an immediate consequence of Lemma A.4 in Ref. �9� that the
bound �3� on the secret-key rate can be generalized to

r 
 sup
U←X

inf
�̃ABE��̃Q

S�U�E� − H�U�Y� . �4�

Here, the infimum ranges over the set �̃Q of all states �̃ABE
which can result from a collective attack and are compatible
with the parameters estimated by Alice and Bob �e.g., the
QBER�.

We refer to Appendix C for an application of this result to
improve the analysis of the one-way SARG protocol for
single-photon pulses.

Consider now the general situation where the state de-
scribing the Alice, Bob, and Eve system is the reduced den-
sity operator of a state ���ABER=	n	n��n�ABE�n�R, where

�n�� forms an orthonormal basis of the Hilbert space of an
auxiliary system R, i.e., none of the three parties has the
auxiliary system at their disposal. Starting from �4� and using
the concavity of the entropy, we find that the secret-key rate
is bounded by

r 
 sup
U←X

inf
�̃ABE��̃Q

�	
n=0

�

�	n�2S�U�E,n� − H�U�Y� , �5�

where S�U �E ,n�=S�UE �n�−S�E �n� is the entropy of U con-
ditioned on E and the event that the measurement of the
auxiliary system R in the basis 
�n�� yields n.

One might also improve the bound using the following
observation which has also been used to derive the bound
given in Eq. �3�. Let us consider the situation where some
auxiliary system is at Alice’s and/or Bob’s disposal, but not
at Eve’s �this could be for instance some additional qubits�.
Suppose that the state shared by ABE and some auxiliary
system R �which is not under Eve’s control� is given by
���ABER=	n	n��n�ABE�n�R, where 
�n�� is an orthonormal ba-
sis of HR, the Hilbert space corresponding to system R. The

state ��̃�ABER=	n	nUn
AB��n�ABE�n�R, with Un

AB unitary opera-
tors diagonal in the z basis leads to the same measurement
outcome for any measurement by Alice and Bob in the com-
putational basis as ���ABER, that is

�k,l�AB�k,l��ABE�k,l�AB�k,l� = �k,l�AB�k,l��̃ABE�k,l�AB�k,l� ,

where
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�ABE = trR�P���ABER
�

and

�̃ABE = trR�P��̃�ABER
� .

Assuming that Eve has a purification of the state �̃AB can
only provide her with more power compared to the situation
where she has a purification of the state �ABR, since this is
equivalent to giving her the system R, which she could sim-
ply measure, leading to the same result as before �for details
see also Ref. �8��. Thus, we can consider the situation where
Alice and Bob share the state �̃AB and Eve has a purification
of it. This can only increase Eve’s power. We will use this
observation in Appendix B, in order to determine a good
lower bound on the secret-key rate for a QKD protocol using
the so-called XOR process.

III. QKD PROTOCOLS WITH TWO-WAY
POST-PROCESSING

In the following, we will consider QKD protocols where,
before the post-processing of the raw key as described above,
Alice and Bob additionally invoke a so-called advantage-
distillation subprotocol, which requires two-way communi-
cation between Alice and Bob. The notion of advantage dis-
tillation has been investigated in the context of classical key
agreement �22� and later been generalized to QKD �23,24�.

The advantage-distillation protocol we consider here has
the following form: Alice publicly announces to Bob the
position of a block of m bits which have all the same value
�of course, she does not tell him which value�. Then Bob
tells Alice whether for the given position, his corresponding
bits are all identical as well. If this is the case, they both
continue using the first bit of the block as a new raw-key bit,
otherwise they discard the whole block. We emphasize here
that our analysis below works for any fixed value of the
block size m �not only asymptotically for large m�. This is
important for realistic protocols, where m is usually small
�e.g., m=3�.

To simplify the study of such protocols, we first show that
it suffices to analyze the action of the advantage distillation
process on two-qubit Bell-diagonal states. More precisely,
Lemma 1 below implies that the state �̄n̄ obtained by apply-
ing a blockwise operation E �for blocks of size m� to a sym-
metric state �n �see Eq. �1�� has virtually the same statistics
as if E was applied to a state ��m.

Lemma 1. Let �n be a state on n particle pairs of the form

�n = PS�P��00�
�n1 � P��01�

�n2 � P��10�
�n3 � P��11�

�n4 �

and let � be a two-qubit Bell-diagonal state with eigenvalues
n1

n , . . . ,
n4

n . Moreover, let E be an operation which maps Bell
states of blocks of m particle pairs to Bell states of one single
particle pair. Finally, let

�̄n̄ = 	
n̄1,. . .,n̄4

�̄n̄1,n̄2,n̄3,n̄4
PS�P��00�

� n̄1 � P��01�
� n̄2 � P��10�

� n̄3 � P��11�
� n̄4 �

be the state describing n̄= n
m particle pairs defined by

�̄n̄ªE� n̄��n� and let �̄1 , . . . , �̄4 be the eigenvalues of

�̄ªE���m�. Then, for any �
0,

	
�n̄1,. . .,n̄4��B���̄1,. . .,�̄4�

�̄n̄1,n̄2,n̄3,n̄4

 1 − 2−�n̄�2�+O�log2 n�,

where B���̄1 , . . . , �̄4� denotes the set of all tuples �n̄1 , . . . , n̄4�
such that � n̄1

n , . . . ,
n̄4

n
� is �-close to ��̄1 , . . . , �̄4� and �n̄�2� is

asymptotically the same as n̄�2, up to a constant factor.
The lemma is a direct consequence of the exponential

quantum de Finetti theorem �16�. It states that, for any
n-partite quantum state �n which is invariant under permuta-
tions of the subsystems, any part �m=trn−m��n� consisting of
m subsystems is exponentially �in n−m� close to a convex
combination of states that virtually are of the form ��m. For
completeness, we give a direct proof of Lemma 1 �without
referring to de Finetti’s theorem� in Appendix A.

In order to analyze protocols with advantage distillation
using Lemma 1, we use the following quantum mechanical
description of the advantage-distillation subprotocol:
Alice and Bob both apply the operation Xad

m = �0��0, . . . ,0�
+ �1��1, . . . ,1� on m qubits. It is straightforward to check that

�Xad
2 ��2���i,j���k,l�� =

1
�2

�i,k��i,j+l� , �6�

where the sum j+ l of indices is understood to be modulo 2.
Hence, applying advantage distillation to m identical Bell-
diagonal qubit pairs with eigenvalues � �25� leads to a Bell-
diagonal state with eigenvalues �� given by

�i,j� =
1

T
���i,0 + �i,1�m + �− 1� j��i,0 − �i,1�m� , �7�

where T=2��1−Q�m+Qm� and where Q=�10+�11 is the
QBER before the advantage distillation. The QBER Q� after
the advantage distillation is thus given by Q�=�10� +�11�
= Qm

�1−Q�m+Qm and �1−Q�m+Qm is the probability that the ad-

vantage distillation is successful �i.e., Alice and Bob end up
with a new raw-key bit�. If Alice and Bob apply, after the
advantage distillation, the one-way classical post-processing
described above, the lower bound on the secret-key rate is
given by Eq. �3�, where the eigenvalues of �AB are given by
the �’s in �7� �26�. For instance for the six-state protocol one
obtains a positive key rate for any QBER�0.276 �for m
→��. Note that for the six-state protocol it has been shown
that the tolerable QBER cannot be larger than 0.276, if the
first step in the post-processing is advantage distillation �27�.
As mentioned before, the bound on the secret-key rate is not
only valid, for m→�, but for any value of the block size on
which advantage distillation is applied.

In Ref. �24�, Chau considered the secret-key rate obtained
when applying the above-described advantage distillation
followed by the XOR transformation, where Alice and Bob
locally compute new raw-key bits by taking the XOR of a
block of given bits. �For the sake of completeness we dem-
onstrate in Appendix B how the XOR protocol can be in-
cluded in our analysis.� Both procedures were analyzed in
the asymptotic limit for infinitely large block sizes. The re-
sult found there is that the six-state protocol tolerates a
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QBER of up to 0.276. Surprisingly, the same threshold for
the QBER can be obtained, as shown above, by a simpler
protocol where the XOR transformation is replaced by a lo-
cal randomization on single bits on Alice’s side. Moreover,
the rate of this modified protocol is much larger than that of
Chau’s protocol, as local randomization consumes less bits
than the XOR transformation. Note that, as shown recently
by Bae and Acin �28�, if one omits the local randomization
completely, the protocol still tolerates a QBER of up to
0.276, but the secret-key rate for large values of the QBER
might be smaller.

IV. PROTOCOLS USING WEAK COHERENT PULSES

A. Preliminaries

We now consider protocols where Alice does not send
single photons to Bob, but uses weak coherent pulses in-
stead. This scenario is practically motivated by the fact that,
with current technologies, it is difficult to create single-
photon pulses. In fact, many of today’s implementations of
QKD rely on weak coherent pulses.

We start with a description of a prepare-and-measure
scheme and then translate it to an equivalent entanglement-
based scheme, for which we will prove security.

In the prepare-and-measure scheme, Alice encodes the bit
values into phase randomized coherent states �29�. More pre-
cisely, she randomly chooses a basis j and encodes the bit
value k into the state � j

k=	n
0pn�� j
k��� j

k��n, where �� j
k��� j

k��0

denotes the vacuum for any value of j and k and pn
=e−��n /n!, with � the mean photon number �for a Poisso-
nian source �30��.

The description of Bob’s measurement depends on the
experimental setup. We focus on the situation where Bob’s
detectors do not distinguish between the cases where they
receive one or more than one photon, since with current tech-
nology, it is difficult to count the number of photons. The
POVM describing the photon detector is thus given by the
operators 
D0

†D0 ,D1
†D1�, with D0=	n
0�pn.d.�n�P�n� and D1

=	n
0�1− pnd�n�P�n�, where pnd�n� is the probability of not
detecting any photon in case n photons arrived at the detec-
tor. This probability is given by pnd�n�= �1− pd��1−��n,
where pd is the probability of a dark count, and � is the
detection efficiency, i.e., overall transmission factor. The
POVM element D0 corresponds to the case where no photon is
detected, whereas D1 corresponds to the detection of one or
more photons. In the prepare-and-measure scheme Bob
would randomly choose a basis j and measure the arriving
photons in that basis.

In the following, we consider the so-called untrusted-
device scenario, where it is assumed that Eve exchanges
Bob’s detectors with perfect ones �having perfect efficiency
and no dark counts� and introduces all errors herself �31�.
Clearly, security under this assumption implies security in a
situation where Eve might not be able to corrupt Bob’s de-
tectors. Additionally, we assume that Bob’s detector is con-
structed in such a way that, whenever a pulse consisting of
more than one photon arrives, then the detector output cor-
responds to the measurement of one of the photons in the
pulse chosen at random �32�.

In the described scenario, we can without loss of general-
ity assume that Eve only sends single photons to Bob. This
follows directly from the fact that the situation obtained by
sending a multiphoton pulse is the same as if Eve randomly
selected one photon from the pulse and sent this single pho-
ton to Bob. Bob’s measurement can therefore simply be de-
scribed by the operators Bj = �0���1,j

� �+ �1���0,j
� � as defined

previously.
Alice and Bob can estimate the following parameters re-

lated to their raw key: �i� the total sifting rate R�ª	nRn, for
RnªpnYn where Yn is the probability for Bob to find a con-
clusive result in case Alice sent n photons; �ii� the average
QBER Q�=	n

Rn

R�
Qn, where Qn denotes the QBER for the

pairs where Alice sent an n-photon pulse. These two param-
eters will determine the amount of key that can be extracted
from the particular raw key.

We use similar techniques as in Refs. �8,9� to describe the
same protocol in the entanglement-based scheme. The states
prepared by Alice are

�� j�ABR1
= 	

n
0

�pn�� j
n�AB�n�R1

, �8�

where �� j
n�AB=1/�2��0�A�� j

0�B
�n+ �1�A�� j

1�B
�n�. Here, we have

introduced an auxiliary system R1 containing the photon
number �which is neither controlled by Alice nor Bob�. If
Alice measures her qubit in the computational basis and re-
ceives outcome k, the state Bob is left with in the noiseless
case �without interaction of Eve� is �B=2 trR1

�P�k � �j�ABR1
�

=	n
0pnP��j
k��n, which corresponds to the coherent state

�with randomized phase� sent by Alice in the prepare-and-
measure scheme �33�. The operation on Bob’s side is given
by the operators Bj, as described above.

The state describing the situation after Bob’s operation is
given by

���ABER1R2
= 	

j

BjUEB��� j�ABR1
��j�R2

,

where j corresponds to the basis chosen by Alice and UEB is
a unitary describing the attack of Eve. Note that this state is
not necessarily normalized, but its weight tr������ � � corre-
sponds to the sifting rate.

Restricted to Alice’s and Bob’s systems, ���ABER1R2
is a

two-qubit state. We can thus apply the techniques presented
in Sec. II to analyze the security of the protocol. More pre-
cisely, we need to evaluate the rhs of �5� to get a lower bound
on the secret-key rate. First we do not take the local random-
ization into account; i.e., we choose U=X. The case includ-
ing local randomization will be treated in the next section.
We thus obtain for the key rate

r 
 inf
���R�,Q�

	
n=0

�

RnS�X�E,n� − R�S�X�Y� . �9�

The set �R�,Q�
contains all states which can result from a

collective attack by Eve and are compatible with the average
sifting rate R� and the QBER Q�, as estimated by Alice and
Bob.
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Because the �conditional� entropy of a classical variable
cannot be negative, the right-hand side �rhs� of �9� can be
lower bounded by restricting to any of the terms in the sum
over n. Note that, in �9�, the average over n is only taken
over the term for the entropy conditioned on Eve’s system,
but not on the term for the entropy conditioned on Bob’s
system. This is because Eve might be able to measure the
photon number, whereas this is not the case for Bob.

B. Protocols with local randomization

So far we did not consider the possibility for Alice to
apply some local randomization on her classical bits. The
randomization can easily be included in the analysis: if the
randomization is acting on single bits, U←X �bit flip with
probability q�, �9� simply writes

r 
 inf
���R�,Q�

	
n=0

�

RnS�U�E,n� − R�S�U�Y� . �10�

Bob’s uncertainty is now given by S�U �Y�=h�Q�
q �, where

Q�
q = �1−q�Q�+q�1−Q��. Since R�=	nRn, �10� can also be

written as

r 
 inf
���R�,Q�

	
n=0

�

Rn�S�U�E,n� − h�q�� − R��h�Q�
q � − h�q�� .

�11�

Note that, for any n
0, the term S�U �E ,n� on the rhs of this
inequality can be bounded by S�U �E ,n�
S�U �X�=h�q�
�since U is only computed from X�, and therefore the rhs of
�11� can again be lower bounded by restricting the sum to
any of its terms.

As we will see, the local randomization allows us to get
better lower bounds for the secret-key rate as well as better
lower bounds for the maximum distance for which the rate is
positive.

C. Examples: the BB84 and the SARG protocols

Using the results above, in particular �9�, we now com-
pute the lower bound on the secret-key rate of the BB84 as
well as the SARG protocols. In Section IV E we compare the
results we derive here with previous results, in particular
with the ones presented in Refs. �34,35�.

In contrast to the single-photon case, where the lower
bound on the secret-key rate was a function of the QBER, we
are aiming here for a lower bound that depends on the only
two measurable quantities R� �the total sifting rate� and Q�

�the total QBER�. For simplicity, we will in the following not
explicitly include the local randomization, except in the final
results �see Figs. 1 and 2�. We remind the reader that, in
order to include the local randomization, �9� simply must be
replaced by �11�.

Our computation of the bound given by �9� is subdivided
into two steps: First, for any n
0 and for any Qn, we com-
pute Sn�Qn�ª inf�n��Qn

S�X �E ,n�, where �Qn
is the set of all

states �n which can result from a collective attack on a

n-photon pulse causing a QBER of Qn. In a second step, we
compute the infimum

inf

Rn,Qn���̃R�,Q�

	
n=0

�

RnSn�Qn� , �12�

where �̃R�,Q�
denotes the set of all parameters 
Rn ,Qn� which

are compatible with R� and Q�. All the technical details can
be found in Appendix D.

1. BB84

For the BB84 protocol, it is easy to verify that for
any pulse consisting of n
2 photons, Eve has full in-
formation on Alice’s measurement outcome X, i.e.,
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FIG. 1. �Color online� Lower bound on the secret-key rate per
pulse and optimal � for Poissonian sources as a function of the
distance, for the BB84 and SARG protocols, when Alice and Bob
share a quantum channel with perfect visibility V=1. The other
experimental parameters are 	=0.25 dB/km, �det=0.1, and pd

=10−5. The thick lines are the results we obtain when Alice per-
forms an optimal bitwise local randomization; the thin lines are the
same, without randomization �q=0�.
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inf�n��Qn
S�X �E ,n�=0 ∀n
2. The lower bound is thus given

by �36� �see also Ref. �46��

r 
 inf

R1,Q1���̃R�,Q�

R1S1
BB84�Q1� − R�h�Q�� , �13�

where S1
BB84�Q1�ª1−h�Q1� �see Appendix D or Refs. �8,9��.

As shown in Appendix D, the conditions in the untrusted-
device scenario for R1 and Q1 to be compatible with R� and
Q� are the following:

R1 �
1
2 p1,

R1 
 R� −
1

2 	
n
2

pn,

R1Q1 � R�Q�. �14�

Let R1
min=R�− 1

2	n
2pn. If R1
min�0, then R1 can be set equal

to zero, and the lower bound on r is negative; i.e., Alice and
Bob must abort the protocol. If R1

min�0, let Q1
max

=min�R�Q� /R1
min , 1

2
�. Due to the decreasing of S1

BB84�Q1� for
Q1�1/2, we then get

r 
 R1
min�1 − h�Q1

max�� − R�h�Q�� . �15�

Note that this bound has been derived in Ref. �37� using a
different technique. This bound can be interpreted as follows:
For an optimal attack, Eve should make R1 as small as pos-
sible �i.e., block as many single-photon pulses as possible�
and, at the same time, make Q1 as large as possible �i.e.,
introduce as many errors as possible on the single-photon
pulses that she forwards, which reduces her uncertainty on
Alice’s system as much as possible�.

To get an idea of how good this bound is, we evaluate the
rate for the situation where there is no Eve present, instead,
the errors are introduced due to a realistic channel. The chan-
nel we consider is a lossy depolarizing channel with visibil-
ity V �or fidelity F= 1+V

2 and disturbance D= 1−V
2 �, and a

transmission factor t=10−	�/10 at distance � �	 is the attenu-

ation coefficient�. Furthermore, we consider the situation
where Bob’s detectors have an efficiency �det and a probabil-
ity of dark counts pd. An explicit calculation �see Appendix
D� shows that under these assumptions, the rates that Alice
and Bob would get are

R� = 1
2 �1 − p̄d

2e−��� ,

R�Q� = 1
4 �1 + p̄de−�F� − p̄de−�D� − p̄d

2e−��� ,

where �= t�det, p̄d=1− pd. When we insert these values in
�15� for experimentally reasonable values of 	, pd, and �det,
and optimize for different distances over the mean photon
number � �which Alice is free to choose�, we get the results
illustrated in Fig. 1 for �for V=1� and Fig. 2 �for V=0.95�.
We find that the optimal � is proportional to the transmission
factor t, and our bound on the secret-key rate is proportional
to t2 �at least for short distances, i.e., in the regime where
dark counts are not dominant�; this was already observed in
Refs. �38,37�.

2. SARG

A major difference between the SARG protocol and the
BB84 protocols is that Eve cannot get full information on
Alice’s value even if the pulse contains two photons. In order
to take this into account, we include the contribution of the
two-photon components in our formula for the secret-key
rate; i.e., we compute �39�:

r 
 inf
R1,Q1,R2,Q2� R1S1
SARG�Q1� + R2S2

SARG�Q2� − R�h�Q�� .

�16�

In Appendix D we describe how to compute S1
SARG�Q1� and

S2
SARG�Q2� �see also Appendix C and Ref. �35��, and we de-

rive the following conditions for R1, Q1, R2, and Q2 to be
compatible with R� and Q�:

R1�1 − Q1� �
1
4 p1,

R2�1 − Q2� �
1
4 p2,

R1�1 − Q1� + R2�1 − Q2� 
 R��1 − Q�� −
1

4 	
n
3

pn,

R1Q1 + R2Q2 � R�Q�. �17�

If R��1−Q��− 1
4	n
3pn�0, one can see in �16� that Eve’s

optimal choice is to set R1 and R2 as small as possible, and
Q1 and Q2 as large as possible �S1

SARG�Q1� and S1
SARG�Q2� are

decreasing�: she should therefore set the equality in the third
constraint.

However, contrary to BB84, we have not been able to
give a simpler analytical expression for the infimum in �16�;
we therefore resort to numerical computations.

Again, in order to estimate the previous bound in a prac-
tical implementation of the protocol, we compute the typical
values of the parameters R� and Q� when Alice and Bob use
a Poisson source and a lossy depolarizing channel �see Ap-
pendix D�:
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FIG. 2. �Color online� Same plot as in Fig. 1 �top�, but for a
quantum channel with nonperfect visibility, V=0.95.
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R� =
1

2
�1 − p̄d

2e−�� +
p̄d

2
e−�F� −

p̄d

2
e−�D� ,

R�Q� =
1

4
�1 − p̄d

2e−�� + p̄de−�F� − p̄de−�D�� .

Similarly to the BB84 protocol, inserting these values in
Eq. �16�, and optimizing for different distances over the
mean photon number �, provides the results illustrated in
Figs. 1 and 2.

For V=1, we find an optimal � proportional to t1/2, and
therefore our bound on the secret-key rate scales like t3/2 �see
also Ref. �40��, which is more efficient than for BB84 �where
we had r� t2�. For V=0.95 however, we find that the SARG
protocol is less efficient than the BB84, and our lower bound
for the secret-key rate of SARG also scales like t2, the same
as for BB84. However, it should be noted that we determine
here only lower bounds on the rates.

D. Decoy states

The relevant set �R�,Q�
in �9� over which the infimum

must be taken to obtain the lower bound on the secret-key
rate is quite big, since Alice and Bob can only estimate the
total sifting and total error rate. They do neither have a good
estimation of the error rates, Qn, nor of the corresponding
yields, Yn. Hwang, Lo, and co-workers pointed out a method
to improve the lower bound on the secret-key rate by making
some additional measurements �Refs. �34,41�, see also Ref.
�42��. The idea of the so-called decoy states is to change the
intensity of the pulses sent by Alice in order to be able to
estimate more quantities. This allows them to deduce more
information about the possible attack of an eavesdropper
�like the estimate of the QBER does�. For practical purpose
one assumes that Alice is always sending weak coherent
pulses, varying only the mean photon number. We will show
here how this particular idea can be included in our analysis.

Let us first of all consider the case where Alice uses two
different intensities, i.e., one with mean photon number �0
�we call it signal pulse in the following� and the other �decoy
pulse� with mean photon number �1. Using more decoy
states is a straightforward generalization of this case. We
describe the states sent by Alice by ���ABR1R2

= ��s�ABR1
�0�R2

+ ��c�ABR1
�1�R2

, where ��s�ABR1
���c�ABR1

� denotes the �unnor-
malized� signal �decoy� pulse �see Eq. �8��. System R2 is
again some auxiliary system, introduced to keep track of the
signal and decoy pulses. In this case this system is in Alice’s
hands, as she chooses the intensity of the signals. Since Alice
is going to measure the auxiliary system R2 in the computa-
tional basis, we can consider the state �= ps�s � P�0�R2

+ �1
− ps��c � P�1�R2

, where �s ��c� are Alice’s and Bob’s signal

�decoy� systems after Eve’s intervention, respectively. Bob’s
measurement is described in the same way as before. Again,
Alice and Bob can only measure the total sifting rate R�

=	nRn=	npnYn and estimate the total error rate Q�

=	nRnQn /R�=	npnYnQn /R�. However, now they are in the
position to obtain more information about their qubit pairs,
as they are capable of measuring these quantities for differ-

ent values of � �recall pn=e−��n /n!�, i.e., they can measure
the values R�0

,Q�0
and R�1

,Q�1
. We can again use �9� to

compute a lower bound on the secret-key rate. In this case,
the infimum is taken over the set �
R�i

, Q�i
�i

of all Bell-

diagonal two-qubit states of the form ps�s+ pc�c, with �s
��c� denoting the Bell-diagonal states corresponding to the
signal �decoy� bits, which are compatible with all estimated
total sifting rates R�i

and total error rates Q�i
.

Let us now consider the case where Alice uses many dif-
ferent intensities for her decoy states. Due to the definition of
R� it is clear that, by varying �, one can obtain information
about the quantities Yn. Knowing Yn and 
Q�� one can then
determine Qn. Note that in order to determine Yn and Qn one
needs infinitely many decoy intensities; however, already a
small number of such decoy intensities suffices to restrict the
values of Yn and Qn �see for instance Ref. �42��. The results
of the analysis above are illustrated in Figs. 3 and 4. In order
to evaluate the lower bounds we consider the situation where
Alice and Bob share a lossy depolarizing channel with vis-
ibilities V=1, V=0.95, respectively.

E. Related work

In Ref. �35�, a similar comparison between the BB84 and
SARG protocols has been done, and lower bounds on the
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FIG. 3. �Color online� Lower bound on the secret-key rate per
pulse and optimal � for Poissonian sources as a function of the
distance, for the BB84 and SARG protocols using decoy states,
when Alice and Bob share a quantum channel with perfect visibility
V=1. The other parameters are the same as in Fig. 1. The thick lines
are the results we obtain when Alice performs an optimal bitwise
local randomization; the thin lines correspond to the protocol with-
out randomization �q=0�.
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secret-key rates were computed. For BB84, our results are
very similar to those of Ref. �35� �see also Ref. �34��, but we
could slightly increase the rates and the limiting distances
with using the local randomization process �43�.

For the SARG protocol, taking into account the two-
photon contribution in the lower bound allows one to in-
crease the lower bound. In the case of SARG without decoy
states, we could thus improve significantly the bound of Ref.
�35�. Our conclusion is therefore different: we find that the
SARG protocol performs better than BB84 for high visibility
V�1 �see Fig. 1�. However, the SARG is more sensitive to
the loss of the channel, and for V=0.95 for instance, BB84 is
more efficient �Fig. 2�.

In the case of SARG with decoy states, the two-photon
contribution had already been taken into account in Ref.
�35�, and we again get similar results. However, we could
slightly improve the rate with the improved calculation of
S1

SARG�Q1� �see Appendix C�, and with the local randomiza-
tion process. Nevertheless, our conclusion is the same as in
Ref. �35�, namely that when decoy states are used, the SARG
is outperformed by the BB84 protocol.

V. FURTHER APPLICATIONS, AND OPEN PROBLEMS

There are still several possibilities to improve the lower
bounds on the secret-key rate of QKD protocols. One way to
look at this problem is to analyze the properties of the set �
over which one must optimize in order to obtain the lower
bound �see, e.g., Eq. �3��. Concerning the single photon

QKD protocols, one might try to find the conditions on the
encoding �and decoding� operations which would lead to a
properly restricted set �Q, such that a high QBER can be
tolerated.

In a protocol based on weak coherent pulses, it might be
advantageous to take the detected double clicks into account.
As mentioned above, this would �most likely� impose further
restrictions on the set of possible attacks and thus result in an
improvement of the secret-key rate. In addition, it would be
interesting to generalize the ideas developed in this paper to
a scenario, where not only the intensity of light is used but
where also the coherence of the light is checked �similar to
the decoy states�. One protocol taking this into account has
for instance been proposed in Ref. �3�. Another possibility is
to consider protocols based on weak coherent pulses that use
two-way post-processing, as studied by Lo �44�. We also
note here that the techniques presented here can also be ap-
plied to protocols based on squeezed states.

In this work, we considered the so-called untrusted-device
scenario, where the adversary might arbitrarily modify the
efficiency of Bob’s detector. If one considers the reasonable
situation, where Eve cannot influence Bob’s device, one
might obtain larger values for the key rate.

ACKNOWLEDGMENTS

The authors would like to thank Nicolas Gisin, Antonio
Acin, and Valerio Scarani for helpful discussions. This
project is partly supported by SECOQC and by the FWF.
One of the authors �R.R.� acknowledges support by HP Labs,
Bristol and one of the authors �B.K.� by the FWF through the
Elise-Richter project.

APPENDIX A: PROOF OF LEMMA 1

In this appendix we prove the lemma presented in Sec. III.
The operator ��n is symmetric and can thus be written as

��n = 	
n1�,. . .,n4�

�n1�,n2�,n3�,n4�

�PS�P��00�
�n1� � P��01�

�n2� � P��10�
�n3� � P��11�

�n4� � ,

for appropriate coefficients �n1�,n2�,n3�,n4�
. Hence, with the defi-

nition pª�n1,n2,n3,n4
, we have

��n = p�n + �1 − p��̃n,

where �̃n is a symmetric quantum state on n subsystems.
Moreover, it is easy to see that the coefficient p cannot be
smaller than 1

n .
By linearity, we get the following expression for the state

after the operation E� n̄ has been applied to ��n:

�̄� n̄ = E� n̄���n� = pE� n̄��n� + �1 − p�E� n̄��̃n� . �A1�

Because �̄� n̄ is symmetric, it can be written as

�̄� n̄ = 	
n̄1,. . .,n̄4

�̄n̄1,n̄2,n̄3,n̄4
�

�PS�P��00�
� n̄1 � P��01�

� n̄2 � P��10�
� n̄3 � P��11�

� n̄4 � ,

for some coefficients �̄n̄1,n̄2,n̄3,n̄4
� . Furthermore, by the law of
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FIG. 4. �Color online� Same plots as in Fig. 3, but for a quantum
channel with nonperfect visibility, V=0.95.
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large numbers, the sum of the coefficients �̄n̄1,n̄2,n̄3,n̄4
� for

tuples n̄1 , n̄2 , n̄3 , n̄4 which are not contained in B���̄1 , . . . , �̄4�
is exponentially small, i.e.,

	
�n̄1,. . .,n̄4��B���̄1,. . .,�̄4�

�̄n̄1,n̄2,n̄3,n̄4
� � 2−�n̄�2�. �A2�

Finally, because of �A1�,

�̄n̄1,n̄2,n̄3,n̄4
� 
 p�̄n̄1,n̄2,n̄3,n̄4

,

where �̄n̄1,n̄2,n̄3,n̄4
are the coefficients of �̄n. Since p


1
n ,

�̄n̄1,n̄2,n̄3,n̄4
� n�̄n̄1,n̄2,n̄3,n̄4

� .

Combining this with �A2�, we conclude

	
�n̄1,. . .,n̄4��B���̄1,. . .,�̄4�

�̄n̄1,n̄2,n̄3,n̄4
� n2−�n̄�2�.

�

APPENDIX B: ADVANTAGE DISTILLATION USING
THE XOR PROCESS

In this appendix we explain how the XOR process applied
to many qubit pairs can be easily included within this for-
malism. Alice selects randomly a set of bits and informs Bob
about this set. Then, Alice and Bob compute both the XOR
of those bits and keep only the result, discarding all the oth-
ers. Our goal is to find a simple description of the remaining
logical bits, Eve’s system, and the classical information sent
from Alice to Bob �note that Eve knows the randomly chosen
set which is used by Alice and Bob�. We demonstrate here
how this can be achieved with the example of three qubit
pairs. The idea can be easily generalized to any number of
pairs.

Quantum mechanically the XOR operation can be de-
scribed by a controlled-NOT operation, denoted by Uc. Three
copies of the state ���ABE=	i,j

��i,j��i,j�AB��i,j�E transform,
under the transformation UcA

3→1UcA
2→1

� UcB
3→1UcB

2→1 to the
state

	
i,j,k,l,m,n

��i,j�k,l�m,n��i+k+m,j�A1B1

���k,l+j�A2B2
��m,n+j�A3B3

��i,j,k,l,m,n�E, �B1�

where ��i,j,k,l,m,n�E= ��i,j���k,l���m,n�. Since Alice and Bob
are not going to use the systems 2 and 3 anymore, we want
to consider a state that describes only Alice’s and Bob’s first
systems. More importantly, we want to give Eve a purifica-
tion of this state. If we would assume that Eve has a purifi-
cation of the state describing systems A1 and B1, this would
be equivalent to assume that Eve has Alice’s and Bob’s sec-
ond and third pair after this transformation. It is evident that
we assume then that she has more power than she actually
has. In order to avoid to give her too much power we use the
idea mentioned in Sec. II D �see also Ref. �8��, by consider-
ing the systems A2 ,B2 ,A3 ,B3 as auxiliary system R �45�. For
the unitary transformations, Uk,l,m,n, we choose Ui,j,k,l,m,n

=�z
A1 for l+ j=n+ j=1 and the identity otherwise. It can be

easily verified that the state describing Alice’s and Bob’s first
system is then the partial trace over E,R of the state

��̃�A1B1RE = 	i,j,k,l,m,n
��ij�kl�mn��i+k+m,j+�l+j,1�n+j,1

�A1B1

��� j,k,l,m,n�R��i,j,k,l,m,n�E,

where �� j,k,l,m,n�R denotes the state ��k,l+j�A2B2
��m,n+j�A3B3

. As
explained in Sec. II D, providing Eve with a purification of
the state that describes the systems A1,B1 never underesti-
mates her power. The eigenvalues of the two-qubit Bell-
diagonal state describing Alice’s and Bob’s remaining sys-

tems, denoted by �̃i,j, are

�̃i,j = �i,j
2 ��i,j + 3�i,j+1� + 3�i+1,j

2 ��i,j + �i,j+1�

+ 6�i,j�i+1,j�i+1,j+1. �B2�

The intuition for this choice of unitary transformations is
the following. The state ���ABE under consideration is sup-
posed to lead to a secret bit. Thus, the coefficients �i,j are
such that it is very likely that if both l+ j=1 and n+ j=1 then
j=1, which means that within the remaining qubit pair there
is a phase-flip error. The unitaries are chosen such that this
error is corrected.

Using the new eigenvalues of the state describing Alice’s
and Bob’s remaining bits, it is straightforward to compute
the lower bound on the secret-key rate �Eq. �3��.

APPENDIX C: AN IMPROVED ANALYSIS OF THE SARG
PROTOCOL WITH SINGLE PHOTONS

In the SARG protocol the bit value 0 �1� is encoded in the
z basis �x basis�, respectively. During the sifting phase Alice
announces a set containing two states, the one which she sent
and one in the other basis. There are four different encoding
and decoding operators. For instance A1= �0��0z�+ �1��0x� and
B1= �0��1x�+ �1��1z� describe the situation where Alice sends
one of the two states 
�0z� , �0x�� and tells Bob that the sent
state is within this set. Let us for the moment consider a
single qubit sent by Alice �for more details see Ref. �15��.
The state shared by Alice, Bob, and Eve after the sifting is
given by ���ABER1

=	 jAj � Bj���ABE�j�R1
, where ���ABE is the

state shared by Alice, Bob, and Eve after Eve’s intervention.
Now, we apply some symmetrization to the state, which does
not change any security consideration, as explained in Sec.
II. Let us consider the state ��̃�ABER1R2

= ���ABER1
�0�R2

+�z
A

� �z
B���ABER1

�1�R2
. It is straightforward to show that the re-

duced state describing Alice’s and Bob’s system is equal to

D̃2D1�D2��0��, with �0=trE�P��. Here, D̃2���=1/2��+�z

� �z��z � �z�, D1���=	 jAj � Bj�Aj
†

� Bj
† is given by the pro-

tocol and D2 denotes the depolarizing map, i.e.,

D2��� = 1/4�� + �x � �x��x � �x

+ �y � �y��y � �y + �z � �z��z � �z� .

Furthermore, the action of D1 on a Bell-diagonal state is the
same as A1 � B1 on that state. Thus, we only need to consider
the situation where Eve has a purification of the state D2��0�,
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i.e., the state before the action of D1 and D̃2. Using
the results of Refs. �8,9� this implies that the state we
must to use in order to compute the lower bound on the

secret-key rate is �ABE=D̃2
AB�PA1�B1���ABE�, where ���ABE

=��00��00�AB��00�E+��01��01�AB��01�E+��10��10�AB��10�E

+��11��11�AB��11�E, i.e., a purification of the Bell-diagonal
state D2��0�.

Using this description it is straightforward to compute the
state describing Alice’s and Bob’s system, which is, in con-
trast to former considerations, no longer Bell diagonal. In the
following we consider the situation where Bob accepts only
if the probability for him to obtain the bit values 0 is the
same as detecting 1. This is a first step in the parameter
estimation. Note that this condition imposes �01=�10. The
QBER, Q, can be easily determined and one finds Q= ��01

+�11� / �1/2+�01+�11�. Using the normalization condition
we find that the coefficients in the state ���ABE are given by
�00=1−Q / �1−Q�+�11, �01=Q / �2�1−Q��−�11, �10=�01.
Thus, for a fixed QBER there is only one parameter,
�11� [0,Q / �2�1−Q��], over which one needs to minimize to
obtain the lower bound on the secret-key rate given by for-
mula �4�. Without the local randomization one finds that the
lower bound on the secret-key rate is positive as long as Q
�0.1167. Including the local randomization allows one to
increase the tolerable QBER to 0.1308 compared to the pre-
viously known bounds of 0.0968 without and 0.1095 with
local randomization, respectively �15�.

APPENDIX D: CALCULATIONS RELATED
TO THE ANALYSIS OF PROTOCOLS

BASED ON COHERENT PULSES

This appendix contains some calculations related to the
evaluation of the lower bound �9� on the secret-key rate for
the BB84 and SARG protocols with weak coherent pulses
�see Sec. IV�.

For this purpose, we first compute the infimum Sn�Qn�
ª inf�n��Qn

S�X �E ,n� for any given Qn, and then optimize

�from Eve’s point of view� over the parameters Rn, Qn. These
parameters must be compatible with the measurable quanti-
ties R�, Q�: in the case of protocols which do not use decoy
states, this leads to particular constraints for each protocol,
which we derive here. �Note that for protocols with decoy
states, Alice and Bob can estimate all rates Rn ,Qn: Eve can
no longer optimize over these parameters.�

Recall that we work in the untrusted-device scenario,
where Eve has full control over Bob’s detectors. Dark counts
do not occur, and therefore R0=0, as Eve should obviously
not send any photon to Bob when she receives an empty
pulse from Alice. Moreover, we consider protocols where
Bob treats all double clicks as if only one randomly chosen
detector clicked.

In a second step, in order to give estimations of our
bounds, we compute the typical values of the yields and error
rates if no adversary is present, i.e., if the channel between
Alice and Bob is a depolarizing channel with fidelity F �or
disturbance D=1−F� and with a transmission factor t. In
addition, we suppose in that case that Bob’s detectors have

an efficiency �det and a probability of dark counts pd. We
will use the notations �= t�det for the overall transmission
factor and p̄d=1− pd.

1. BB84 protocol

a. Eve’s uncertainty on the one-photon pulses

For BB84, the set �Q1
contains all states with diagonal

entries �in the Bell basis� �00=1−2Q1+�11 and �01=�10
=Q1−�11, for any �11� �0,Q1� �8,9�.

One can easily prove that S�X �E ,n=1� takes its minimum
when �1,1=Q1

2. Then, a straightforward calculation shows
that S1

BB84�Q1�=inf�1��Q1
S�X �E ,n=1�=1−h�Q1�. Note that

S1
BB84�Q1� is decreasing for 0�Q1�1/2: as expected, the

higher the error Eve introduces, the more she reduces her
uncertainty.

b. Constraints on the yields and error rates

In the BB84 protocol, the probability that Alice and Bob
choose the same basis for their preparation and measure-
ment, respectively, is 1 /2 �this is the sifting factor�. There-
fore we have Yn�

1
2 for all n, which implies the following

bounds:

R1 = p1Y1 �
1
2 p1, �D1�

R1 = R� − 	
n
2

pnYn 
 R� −
1

2 	
n
2

pn. �D2�

These are the first two constraints announced in �14�. The
third constraint follows from the definition of Q�, R�Q�

=	nRnQn.

c. Yields and error rates for depolarizing channels

When implementing the BB84 protocol, Alice and Bob
would estimate the quantities Q�, R� and then compute the
rate as explained above. In order to get an idea how good the
obtained bounds on the rate are we evaluate here these quan-
tities for the situation where there is no Eve present and
Alice and Bob share a lossy depolarizing channel.

In BB84, when Alice sends n photons, the probability that
Bob chooses the same basis as Alice and gets a single or a
double click is

Yn = 1
2 �1 − p̄d

2�1 − ��n� .

Bob gets a wrong bit if only the wrong detector clicks, or
if the two detectors click, but he randomly chooses a wrong
bit. This happens with probability

YnQn =
1

2	
k=0

n

Cn
kFkDn−k��p̄d�1 − ��k��1 − p̄d�1 − ��n−k�

+
1

2
�1 − p̄d�1 − ��k��1 − p̄d�1 − ��n−k�

=
1

4
�1 + p̄d�1 − F��n − p̄d�1 − D��n − p̄d

2�1 − ��n� .
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When Alice uses a Poissonian source �i.e., pn= �n

n! e−��, the
overall yield and error rate are then

R� =
1

2
�1 − p̄d

2e−��� ,

R�Q� =
1

4
�1 + p̄de−�F� − p̄de−�D� − p̄d

2e−��� .

2. SARG protocol

a. Eve’s uncertainty on the one-photon pulses

In order to compute Eve’s uncertainty on the one-photon
pulses, we use the method presented in Appendix C. We
do not have an analytical expression for S1

SARG�Q1�
=inf�1��Q1

S�X �E ,n=1�, but we compute it numerically.

Note that we find S1
SARG�Q1� is decreasing only for 0�Q1

�0.338, and does not reach zero.

b. Eve’s uncertainty on the two-photon pulses

We follow the calculations of Ref. �35� to compute Eve’s
uncertainty on the two-photon pulses. The set �Q2

contains
all states with the following diagonal entries �in the Bell
basis�:

�00 = 1 − Q2 − �01,

�10 = Q2 − �11,

�01 + �11 � xQ2 + g�x�, ∀ x , �D3�

where g�x�=
1

6
�3−2x+�6−6�2x+4x2� �35�. When minimiz-

ing xQ2+g�x� over x, we get

�00 = 1 − Q2 − �01,

�10 = Q2 − �11,

�01 + �11 � B�Q2� , �D4�

where B�Q2�= 1
2 + 1

2
�Q2

�1−
3Q2

2
�−

�2
4 �1−3Q2�.

One can show that for Q2�
1
6 , B�Q2��

1
2 and the optimal

choice of the parameters �ij for Eve is �01+�11=B�Q2� �i.e.,
Eve should make the phase error as high as possible, up to
1
2 �, and �11=Q2B�Q2�. Then, a straightforward calculation
gives S2

SARG�Q2�=inf�2��Q2
S�X �E ,n=2�=1−h�B�Q2��. Note

that S2
SARG�Q2� is decreasing for 0�Q2�

1
6 , and S2

SARG� 1
6

�
=0.

c. Constraints on the yields and error rates

In the case of SARG, because of the nonorthogonality of
the quantum states that are used to encode the classical bit
values, it is a little bit more tricky to find the constraints that
the yields and error rates must satisfy. Here, we will derive a
constraint on the yields without errors �or probability that

Bob gets a right conclusive result�, i.e., on pright=Yn�1−Qn�
�for any n�N�.

To this aim, let us suppose in a first step that Alice sends
photons in the state �+z�, that Eve attacks the pulse and
decides either to forward one photon to Bob in the state �B,
or to block the pulse. In this case, Bob gets a right conclusive
result if �i� Alice announces the set 
�+z� , �+x�� �which she
does with probability 1 /2�, Bob chooses to measure �x
�probability 1 /2� and �only� the detector corresponding to
�−x� clicks; or �ii� Alice announces the set 
�+z� , �−x��, Bob
chooses to measure �x, and the detector corresponding to
�+x� clicks. Therefore, Bob’s probability to get a right con-
clusive result when Alice sends �+z� is bounded by

pright�+z �
1
4 �− x��B� − x� + 1

4 �+ x��B� + x� �D5�

�
1
4Tr��B� = 1

4 . �D6�

This result actually does not depend on the state sent by
Alice, and we therefore have

pright = Yn�1 − Qn� �
1
4 . �D7�

The first three constraints announced in �17� then follow

R1�1 − Q1� �
1
4 p1, �D8�

R2�1 − Q2� �
1
4 p2, �D9�

R1�1 − Q1� + R2�1 − Q2� 
 R��1 − Q�� �D10�

−
1

4 	
n
3

pn. �D11�

As before, the last constraint follows from the definition of
Q�.

d. Yields and error rates for depolarizing channels

As for the BB84 protocol, we evaluate here the lower
bound on the secret-key rate for the situation where there is
no Eve present and Alice and Bob share a lossy depolarizing
channel, in order to get an idea of how good the obtained
bounds on the rate are.

In order to calculate the yields and error rates for the
SARG protocol, let us suppose that Alice sends n photons in
the state �+z�, and announces 
�+z� , �+x��. By symmetry, the
following still holds for any state sent by Alice, and any
announcement. Similar calculations can be found in Ref.
�15�.

If Bob measures �z, he gets a �wrong� conclusive click on
the detector corresponding to �−z�, or a double click with
probabilities

p�−z��z = 	
k=0

n

Cn
kFkDn−k�p̄d�1 − ��k��1 − p̄d�1 − ��n−k�

= p̄d�1 − F��n − p̄d
2�1 − ��n,

p2 clicks�z = 1 − p̄d�1 − F��n − p̄d�1 − D��n + p̄d
2�1 − ��n.
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Similarly, if Bob now measures �x, he gets a �right� con-
clusive click on the detector corresponding to �−x�, or a
double click with probabilities

p�−x��x = p̄d�1 −
�

2
n

− p̄d
2�1 − ��n,

p2 clicks�x = 1 − 2p̄d�1 −
�

2
n

+ p̄d
2�1 − ��n.

Since Bob randomly chooses the basis he measures, with
equal probabilities, and since he randomly chooses one out-
come in the case of double clicks �conclusive or not�, then
the probability that Bob’s result is conclusive when Alice
sends n photons is

Yn = 1
2�p�−z��z + 1

2 p2 clicks�z� + 1
2�p�−x��x + 1

2 p2 clicks�x� ,

and the error rate on these pulses is

YnQn = 1
2�p�−z��z + 1

2 p2 clicks�z� .

We find

Yn =
1

2
�1 +

p̄d

2
�1 − F��n −

p̄d

2
�1 − D��n − p̄d

2�1 − ��n ,

YnQn =
1

4
�1 + p̄d�1 − F��n − p̄d�1 − D��n − p̄d

2�1 − ��n� .

For a Poissonian source, the overall yield and error rate
are then

R� =
1

2
�1 +

p̄d

2
e−�F� −

p̄d

2
e−�D� − p̄d

2e−�� ,

R�Q� =
1

4
�1 + p̄de−�F� − p̄de−�D� − p̄d

2e−��� .
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