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We investigate the time evolution of a Gaussian wave packet �GWP� in a tight-binding chain with a uniform
nearest-neighbor hopping integral. Analytical investigations and numerical simulations show that fractional
revivals of the quantum state occur in this system, i.e., at appropriate times, a GWP can evolve into many
copies of the initial state at different positions. The application of this quantum phenomenon to quantum
information transfer in solid-state systems is discussed.
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I. INTRODUCTION

Fractional revivals of a quantum state occur when the
wave function evolves in time to a state, at a specific instant
between two full revivals, which can be described by a su-
perposition of states with equal amplitudes, each of which
has the same shape as that of the initial wave packet, yet with
different spatial distributions. The fractional revival is an in-
teresting phenomenon in quantum mechanics, which has no
analog in classical physics. It has been studied extensively,
both theoretically �1–5� and experimentally �6–9�. Most of
the studies have been devoted to continuous systems, such as
the Coulomb potential and the infinite square well. In this
paper, we will focus on the phenomenon of fractional revival
in a discrete solid-state system. As an illustration, a simple
tight-binding chain with a uniform nearest-neighbor �NN�
hopping integral is investigated analytically and numerically.
Such a model is used to describe the Bloch electronic system
in condensed matter physics and now the qubit array relevant
to quantum information applications due to its equivalence
with the XY spin chain. It is found that fractional revivals of
a Gaussian wave packet �GWP� occur in a discrete system.
This opens up the possibility of performing high-fidelity
quantum information transfer �QIT� and creating long-range
entanglement by employing this feature of the time evolution
in this solid-state system.

Quantum information processing in solid-state systems
has attracted widespread attention because of the potential
scalability of devices. Within this context, quantum state
transfer �QST� from one place to another in such a system
becomes a crucial issue and has been analyzed theoretically
�10–14,16–22�. A great advantage of this approach is that no
dynamical controls are needed after one prepares the quan-
tum state. In one of the pioneering works �10�, Bose consid-
ered a regular one-dimensional spin chain with Heisenberg
interactions, which is able to transfer a quantum state over a
reasonable distance with the aid of a distillation process.
Since then, a number of interesting proposals have been
made for quantum communication through spin systems to

improve the fidelity of the QST. One of them is to choose the
proper modulation of the coupling strengths as suggested in
�16–18�. In such a system, although an arbitrary local quan-
tum state will spread as the time evolves, after a period of
time the dispersed amplitudes will “refocus” at the receiving
location of the chain. So, perfect state transfer can be real-
ized. Another approach makes use of gapped systems. The
advantage of these schemes is that the intermediate spins are
only virtually excited. In this case, the two separated qubits
are coupled and realize the entanglement of two points �11�.
This ensures that the transfer of the single-qubit state is
achieved with a very high fidelity.

It should be pointed that QST and QIT are two different
concepts. QST means a local quantum state changes its lo-
cation. It usually corresponds to the translation or reflection
of the initial wave function. On the other hand, typical quan-
tum information means the way �or mode� of the superposi-
tion of two orthogonal states. A complete QST can achieve
perfect QIT. However, it is sufficient but not necessary.

So far, almost all the proposed schemes for QIT are based
on the fact that a properly designed qubit array can provide a
unitary evolution operator U�t� which can accomplish the
task of transferring the local state ��A� at position A to the
target state ��B� located at B via the process of time evolution
��B�=U�t� ��A�.

The phenomenon of quantum revival is an example of this
process, which transmits the complete local state over the
distance if ��B �U�t� ��A�=1 �see Fig. 1�a��. In this case, we
can say that perfect QST and QIT are both achieved. How-
ever, theoretically, if the data bus guarantees the partial re-
vival, i.e., U�t� ��A�=uB ��B�+uC ��C� with ��B ��C�=0 �see
Fig. 1�b��, the quantum information encoded in the target
state ��B� can be also extracted from the final state U�t� ��A�.
In this case, the quantum state cannot be transferred per-
fectly, but perfect QIT is accomplished. We will show that
such a scheme can be realized based on the fractional revival
of a quantum state.

In general, there are two ways to employ the tight-binding
model as a data bus for the QIT: �1� The qubit array is usu-
ally described by a Heisenberg spin chain system �10�.
Within the context of quantum state transfer, only the dy-
namics of a single magnon are relevant. Thus in the single-
magnon invariant subspace, this model can be mapped into
the single spinless fermion tight-binding model. The quan-
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tum information is encoded in the superposition of the single
and zero particle states. �2� On the other hand, the quantum
information can also be encoded in the polarization of the
Bloch electron �Fig. 1�. If the spin state of the Bloch electron
is a conserved quantity for the Hamiltonian of the medium,
the spin state cannot be influenced during the propagation,
no matter how the spatial shape of the wave function
changes �23�. In this case, the locality of the final state is
crucial. We will discuss the two schemes in detail in Sec. IV
based on the formalism of the fractional revival in the tight-
binding model.

This paper is organized as follows. In Sec. II the model is
presented. In Sec. III we formulate the general theory for the
fractional revivals of a GWP in the tight-binding model. In
Sec. IV we show numerical results that substantiate the ana-
lytical results. Section V is devoted to the application of the
theory for QST and QIT. Section VI is the summary and
discussion.

II. MODEL HAMILTONIAN

For completeness, we consider a noninteracting spin-1/2
fermion system on a one-dimensional lattice, which is a
simple tight-binding N-site chain with uniform NN hopping
integral −J. The Hamiltonian can be written as

He = − J �
j=1;�=↑,↓

N−1

�cj,�
† cj+1,� + H.c.� , �1�

where cj,�
† denotes the fermion creation operator at jth site

with spin �= ↑ ,↓. Because this Hamiltonian does not contain
a spin-spin interaction, the polarization of the spin of an
electron is not changed as time evolves. Then the problem
about the transfer of the spin state can be reduced to the issue
of charge transfer. In this sense, we can concentrate on the
spinless fermion model

H = − J�
j=1

N−1

�aj
†aj+1 + H.c.� , �2�

where aj
† denotes the spinless fermion creation operator at

jth site, and the open boundary condition is applied. In Sec.
V, the spin degree of freedom will be reconsidered for the
discussion of QIT. Introducing the Fourier-transformed fer-
mion operator

ãk
† =	 2

N + 1�
j=1

N

sin�kj�aj
†, �3�

where k=n� / �N+1�, n=1,2 , . . . ,N, the Hamiltonian �2� can
be diagonalized as

H = �
k

�kãk
†ãk,

�k = − 2J cos k , �4�

with the single-particle eigenstate

�k̃� = 	2/�N + 1��
j=1

N

sin�kj��j� , �5�

where �k̃�= ãk
† �0�, �j�=aj

† �0�.
In the large-N limit, a discrete coordinate system ap-

proaches a continuous one. Correspondingly, state �5� is a
standing wave which is the eigen wave function of the infi-
nite square well. What is more, in lower energy region k

0, the spectrum is �k�−2J�1−k2�
2Jk2, which is very
close to that of the infinite square well. This indicates that for
low energies, the physics of the tight-binding chain is ap-
proximately the same as that of the infinite square well. Ac-
cordingly, for an initial state which can be expanded by the
lower eigenstates, its time evolution should be similar to that
of the infinite square well approximately, which is the typical
paradigm to illustrate fractional revivals �3�. It implies that,
for a wave packet with low energy, the well-defined frac-
tional revival formalism should be valid in such a discrete
coordinate system.

III. FRACTIONAL REVIVALS OF GAUSSIAN WAVE
PACKET

In this section, we investigate the time evolution of a
GWP in the tight-binding system analytically. Although the
formalism presented in this paper has been well established
for continuous systems, we derive it exactly to show that this
formalism can be extended to discrete systems for some spe-
cial states such as GWPs.

A. General formalism

We consider an initial state in the low-energy range,
which can be expanded by the lower eigenstates. A typical

=
=

FIG. 1. �Color online� Schematic illustrations
of quantum information transfer implemented by
the revivals of a polarized electronic wave
packet: �a� at instant t=Trev, the initial wave
packet at A is in full revival at B; �b� at instant
t=Trev /2, it is in half revival at B.
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state meeting this condition is the zero-momentum GWP,
which can be expressed as

���N0�� =
1

	�1
�
j=1

N

e−�2�j − N0�2/2�j� , �6�

where �1=� j=1
N e−�2�j−N0�2

is the normalization factor; N0 de-
notes the center of the GWP, and 1+� /2�N0�N−� /2 en-
sures that the entirety of the GWP is situated within the chain
approximately. The factor � determines the half width

� =
2	ln 2

�
�7�

of the GWP in real space and also the range of the spectrum
related to its eigenstate expansion.

First, we study the revival of a GWP in the framework of
the spectrum-parity matching condition �SPMC� �22,24�,
which is the basis for the investigation of the fractional re-
vival. Actually, using the Fourier transformation �3�, the
GWP �6� can be written as

���N0�� =
1

	�2
�

k

sin�kN0�e−k2/2�2
�k̃� , �8�

where �2=�k sin2�kN0�e−k2/�2
is the normalization factor.

For a system which has mirror symmetry, we have �P ,H�
=0, where P is the reflection operator defined as P � j�= �N
+1− j�. For the model Hamiltonian �2�, which has the mirror

symmetry, the eigenstate �k̃� satisfies P � k̃�= pk � k̃� with pk
= ±1. So the mirror counterpart of the GWP �6� has the form

P���N0�� = ���N + 1 − N0��

=
1

	�2
�

n

�− 1�n+1sin�kN0�e−k2/2�2
�k̃� , �9�

with the relation k=n� / �N+1�. For the GWP �6� with a large

enough �, it can be expanded by the eigenstate �k̃� with the
eigenvalue 	k and parities pk in the following way:

	k = n2�E, pk = �− 1�n2
, �10�

where �E=2J�2 / �N+1�2 is the greatest common divisor of
all the possible level differences. Obviously, the dispersion
relation and the corresponding parity �10� satisfy the SPMC,
which leads to the following conclusion: for an initial state
�
�N0 ,0��= ���N0��, at the instant t=Trev=� /�E, it evolves
into

�

N0,
�

�E
�� = P�
�N0,0�� . �11�

Here we define Trev as the revival time, at which the wave
packet revives as the mirror reflection of the initial one. This
is the same as in an infinite square well, and is usually called
a full revival.

In the following, we will show that fractional revival of
the GWP also occurs in the tight-binding model. We start our
investigation with the time evolution of the GWP ���N0�� in
the system �2�. At the time t, the initial state �
�N0 ,0�� has
evolved into

�
�N0,t�� = e−iHt�
�N0,0��

�
ei2Jt

	�2
�

k

sin�kN0�e− k2/2�2− i2Jk2t�k̃� . �12�

Here, we take H�−2J�k�1−k2�ãk
†ãk as the small-k approxi-

mation for GWP. Neglecting the overall phase ei2Jt, we have

�
�N0,t�� �
1

	�2
�

k

sin�kN0�e−k2/2�2− i2Jk2t�k̃� . �13�

The shape of �
�N0 , t�� in real space as the result of the

interference of the standing waves �k̃� depends on the time t
and N0. In general, the feature of revival is characterized by
the autocorrelation function A�t�= �
�N0 ,0� �
�N0 , t��. In this
paper, we choose another quantity, the mirror fidelity

F�t� = �
�Np0,0��
�N0,t�� �14�

where Np0=N+1−N0 denotes the mirror position of N0,
since the revival of the wave packet at different locations is
desirable for the task of quantum state transfer and the gen-
eration of entanglement. The fidelity is a quantity to charac-
terize the QST.

Now we focus on the special instants �= pTrev /q, where p,
q are two mutually prime integers. In the framework of quan-
tum information, F���=1 indicates perfect quantum state
transmission. At the moment �, the fidelity of QST can be
expressed explicitly

�F���� = ��
n

�− 1�n+1�an�2e−ipn2�/q� , �15�

where an=	1/�2 sin�kN0�e−k2/2�2
is the expansion coeffi-

cient, which is the starting point of our discussion. Obvi-
ously, when p=q, we have �=Trev and F���=1. This result is
in agreement with the prediction from the SPMC, and can be
employed to perform the perfect QIT. As discussed in the
introduction, it may be possible to accomplish QIT in the
case that the quantum state is not transferred completely.

In the following, we will demonstrate it in the framework
of the well-defined formalism of fractional revivals. It is easy
to see that exp�−ipn2� /q� is a periodic function with period
l, i.e.,

e−ip�n + l�2�/q = e−ipn2�/q, �16�

where l is determined by q

l = �2q �odd q� ,

q �even q� .
�17�

Performing the Fourier transformation, we have

e−ipn2�/q = �
r=0

l−1

bre
−i2n�r/l, �18�

where
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br =
1

l
�
n=0

l−1

ei�2n�r/l−pn2�/q�. �19�

A straightforward calculation shows that br satisfies the rela-
tion

br = bl−r,�r = 1,2, . . . ,l/2 − 1� . �20�

Then at the instant �, the state �
�N0 ,0�� evolves into

�
�N0,��� =
1

	�2
�

n

an�
r=0

l−1

bre
−i2n�r/l�k�

= b0���N0�� − bl/2P���N0��

+ �
r=1

l/2−1

br����Nr
+�� + ���Nr

−��� , �21�

where Nr
±=N0±2�N+1�r / l. It is clear that, at the time �

= pTrev /q, the initial GWP at N0 has evolved into l sub-
GWPs. Each of them closely reproduces the shape of the
initial one but at the positions Np0, Nr

± �r=0,1 ,2 , . . . , l /2
−1� and the probability of the sub-GWP at Nr

±�Np0� is
�br�2��bl/2�2�. Equation �21� shows that the evolved state at
time � is the superposition of as many as l “clones” of the
initial wave packet with amplitude br�r=0,1 , . . . , l /2−1� and
different spacial positions. The final state �
�N0 ,��� is
formed in the following process. First, split the original wave
packet into l copies of the initial wave packet, each with the
probability �br�2. Then translate the copies to the positions
Ns

±=N0±2�N+1�s / l , �s=0,1 , . . . , l /2�. For the sub-GWPs
with Ns

± beyond the chain, i.e., Ns
+�N or Ns

−
0, we have
���Ns

+��=ei�P ���Ns
+−N�� and ���Ns

−��=ei� ����Ns
− � �� from

Eq. �8�. This indicates that ���Ns
±�� will be reflected with �

shift when Ns
± is beyond the chain, and there are always two

sub-GWPs at the initial position N0 and its mirror place Np0,
respectively.

Defining the function

f�NA,NB� = �
�NA,0��
�NB,0�� , �22�

thus the corresponding fidelity is

F��� = �
�Np0,0��
�N0,��� = − bl/2 + �
r=1,�=±

l/2−1

brf�Np0,Nr
�� .

�23�

Here, term �
�N0 ,0� �
�Np0 ,0�� has been ignored since we
are only interested in the case with �Np0−N0 � ��. Further-
more, from the relation

br = e−i2��r/l+p/q�br� �24�

where r�=r+2pl /q, we have

�br�2 =
1

q
, �25�

i.e., the probability of each subpacket is 1 /q. However, Eq.
�21� shows that the final l sub-GWPs may be not orthogonal
due to the reflection and then their superposition determines
the shape of the final state. On the other hand, the overlap of

two neighbor GWPs should affect the shape of the final state
if the sub-GWPs are too numerous. We will discuss this in
Sec. V with the aid of numerical simulation. Actually, the
above conclusion is also valid for an arbitrary initial state
which satisfies the low-energy condition.

B. Application of the formalism

In the following, our aim is to apply the formalism devel-
oped above to several special cases, which should be useful
for the transmission of quantum information. From the above
analysis, we have �F��� � =1 at �=Trev, which shows that the
initial GWP can be revived completely at this instant. How-
ever, according to the formalism, Trev is not the shortest pe-
riod to perform perfect state transfer. If a proper N0 is cho-
sen, a shorter period can be obtained. Here we investigate the
case with N0=N /3 to illustrate this point. When we consider
the case p /q=1/3, the corresponding period of the Fourier
transformation in Eq. �17� is l=6. Then at time �=Trev /3, we
have

�

N

3
,
Trev

3
�� = e−i�/3P��
N

3
�� . �26�

It shows that at �=Trev /3 the initial GWP recurs totally at its
mirror counterpart.

This result can also be explained in the framework of the
SPMC. Actually, for the eigenstate expansion of the initial
GWP ���N /3��, it is easy to find that the expansion coeffi-
cients of the levels n=3m �m is the integer� vanish. Then the
greatest common divisor of the effective levels for the state
���N /3�� is �Eef f= 6J�2 / �N+1�2=3�E, and the correspond-
ing recurrence period Trev� =Trev /3. A similar analysis can be
applied to the case of the initial state ���N /2��. In this case,
the expansion coefficients of the levels n=2m vanish, and the
corresponding recurrence period Trev� =Trev /8.

Except these special cases, the greatest common divisor
for the effective levels of all GWPs at other positions re-
mains �E. Nevertheless, if the number of the levels, which
determines the greatest common divisor to be �E is few, an
“effective” greatest common divisor should govern the recur-
rence time dominantly. For example, if we take N0=N /m
�m�3�, we also notice large partial revivals at �=Trev /m.
For N0=N /4, at �=Trev /4 the wave packet evolved into

�

N

4
,
Trev

4
�� = �b0 − b1���
N

4
�� + �b1 − b2�P��
N

4
�� ,

�27�

which represents four cloned small GWPs at positions N /4
and 3N /4. Note that the superposition leads to �b0−b1�2= �2
−	2� /4�0.146 and �b1−b2�2= �2+	2� /4�0.854, which in-
dicates that at the time �=Trev /4 the initial GWP splits into
two sub-GWPs, and the one at Np0 is the large partial revival.

Another example to illustrate this mechanism is when the
initial state is a superposition of two GWPs with N0=NA, NB,
respectively, i.e.,
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���NA,NB�� =
1
	2

����NA�� + ���NB���

= �
k

e−k2/2�2

	2�2

�sin�kNA� + sin�kNB���k� . �28�

The levels with vanishing expansion coefficients are deter-
mined by

n�NA + NB� = 2Nk

or n�NB − NA� = �2k − 1�N . �29�

One of the solutions is NB=2NA=2N /3. The vanishing levels
are n=2k and n=3�2k−1� with k=1,2 , . . .. Then the greatest
common divisor is 24�E. The wave packet will be revived at
multiples of Trev /24 for this case, as shown in Fig. 4�b�.

IV. NUMERICAL SIMULATIONS

The analysis above is based on the assumption that the
spectrum of the system is quadratic. However, this is only
approximately true in the lower-energy range. In order to
demonstrate the fractional revival in the tight-binding system
and to show how exact the approximation is, in this section
we will exhibit numerical simulations for finite-size systems.

We start our investigation from the revival and fractional
revival in the general case. We consider the time evolution of
an initial GWP with �=24 and N0=50 in the system with
N=500. According to the formalism we have Trev= �N
+1�2 / �2�J��4.0�104/J, which is taken as the unit of time
t in the numerical results. The fidelity �F�t��2 over the interval
t� �0,6Trev� is plotted in Fig. 2�a�. It shows that the fidelity
has peaks around the instants �=Trev ,3Trev ,5Trev , . . ., which
is in agreement with the formalism in Sec. II. Interestingly,
there exist many regular small peaks between two neighbor
big peaks. We present the small peaks in Fig. 2�b� to show
the details of the small peaks. According to the general for-
malism, for local GWP, at instants � /Trev=1,1 /2 ,
1 /3 ,1 /4 ,1 /5 , . . ., the corresponding �F����2 should be equal
to the values of � /Trev. The plot in Fig. 2�b� is in agreement
with the analytical results with high accuracy. In order to
demonstrate the mechanism of the fractional revival more
explicitly, we calculate the profile of the evolved state

�
i�N0,��� = ��i�
�N0,���� �30�

at � /Trev as a function of the position i and plot it in Fig. 3.
From the analytical results, at instants � /Trev=1/5, 1/4,1/
3,1/2, and 1, the cloned sub-GWPs have the probabilities of
1/5, 1/4, 1/3, 1/2, and 1, which result in the maximum values
of the corresponding sub-GWPs to be 0.089, 0.099, 0.114,
0.140, and 0.198. The numerical results, the number and the
shapes of the sub-GWPs are in good accord with the theo-
retical prediction approximately. Now we turn our numerical
investigation to the special cases. Let us look at a wave
packet initially localized at N0=N /3. The result introduced
in Eq. �26� shows that the initial GWP recurs totally at its
mirror part at time �=Trev /3. The numerical result in Fig.
4�a� shows that the theoretical analysis is in agreement with

the result of numerical simulation represented by
�F�Trev /3��2=1, which has also been well explained from the
SPMC. On the other hand, we also demonstrate the evolution
of ���N /3 ,2N /3�� in Eq. �28� numerically. In Fig. 4�b�, it
shows that the first revival time is around Trev /24 which is in
agreement with the analytical result. It also indicates that the
proper choice of initial wave packet can revive in a shorter
time, which can be used to transfer long-range entangled
GWPs in the discrete system. Numerical simulation is also
performed in the same system but with N0=N /4. The theo-
retical calculation shows that such an initial GWP should
revive at Np0=3N /4 after the time Trev /4 with a relatively
higher fidelity 0.854. The numerical results presented in
Figs. 5�a� and 5�b� depict the characteristics of the time evo-
lution of the initial wave packet ���N /4�� via the fidelity
�F�t��2 and the profile of the wave function �
i�N /4 ,Trev /4��.
From the analytical result of Eq. �21�, the behavior in Figs.
5�a� and 5�b� can be explained. Actually, at the instant
Trev /4, the initial GWP splits into four sub-GWPs, with two
of them being at Np0 and two at N0. The final shape of the
wave function should be two cloned initial wave packets
with probabilities of 0.854 and 0.146, respectively. These
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FIG. 2. �Color online� Plots of the square of fidelity, �F�t��2, for
the initial GWP with �=24,N0=50 in the system with N=500. �b�
is a part of �a� over one revival time. The dashed line indicates that
the square of the fidelities at � /Trev=1/2 ,1 /3 ,1 /4 , . . . are approxi-
mately in a line.
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will result in the two maxima of the wave functions, 0.183
and 0.076, around the positions 3N /4 and N /4.

Based on the numerical results presented in this section,
we conclude that the fractional revival phenomena for local
wave packets can be observed in the discrete system.

V. FRACTIONAL FIDELITY OF QUANTUM
INFORMATION TRANSFER

In general, there are two ways to employ the tight-binding
model as a data bus for quantum information transfer: �1�

The qubit array is usually described by a Heisenberg spin
chain system �10�. Within the context of quantum state trans-
fer, only the dynamics of the single magnon is relevant. Thus
in the single magnon invariant subspace, this model can be
mapped into a single spinless fermion tight-binding model.
The quantum information is encoded in the superposition of
the single and zero particle states. �2� On the other hand, the
quantum information can also be encoded in the polarization
of the Bloch electron �Fig. 1�. If the spin state of the Bloch
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FIG. 3. The illustrations of the fractional revival via the time
evolution of a GWP with �=24,N0=50 in the system with N
=500. �a� �=0, �b� �=Trev /5, �c� �=Trev /4, �d� �=Trev /3, �e� �
=Trev /2, �f� �=Trev. It shows that at �=Trevp /q, the GWP splits into
several sub-GWPs at corresponding positions with the same shape
as the initial one.
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electron is a conserved quantity for the Hamiltonian of the
medium, the spin state cannot be influenced during the
propagation, no matter how the spatial shape of the wave
function changes �23�. In this case, the locality of the final
state is crucial. We will discuss the two schemes in detail in
the following based on the formalism of the fractional re-
vival in the tight-binding model.

A. Scheme A: qubit array

It is well known that, by employing the Jordan-Wigner
transformation �15�, the one-dimensional tight-binding chain
with NN hopping is equivalent to a simple XY chain. Such a
system is usually used to depict the physics of the qubit
array. In this paper, the basis of the XY chain is in the form

� j � ñ� j with ñ=0̃ , 1̃, i.e., �1̃� j = �↑ � j and �0̃� j = �↓ � j. In general,
the transmission of a qubit state from the location A to B can
be regarded as the following process. The initial qubit state

��A�=u � 1̃�A+v � 0̃�Ais prepared at A. If one can find an opera-
tion UAB to realize

UAB��A� = u�1̃�B + ei�ABv�0̃�B, �31�

where �AB is the known phase for a given system, we say
that the qubit state is transferred from A to B perfectly. Then
the perfect QIT is accomplished. Bose �10� proposed that the
operation UAB can be achieved in the qubit array by the time
evolution of the system based on the fact that the saturated

ferromagnetic state � j � 0̃� j is an eigenstate of the model. Fur-
thermore, it is found that perfect state transfer can be imple-
mented if the system meets the SPMC. Unfortunately, for an
array to satisfy the SPMC, it requires modulation �16–18,22�
of the couplings between qubits, which is difficult to
preengineer in experiments.

Nevertheless, we can consider the transferred state to be
not a single-qubit state at a certain site but a superposition of
single-qubit states localized in a small range of the coordi-
nate space. Together with the saturated ferromagnetic state,
the quantum information can be encoded in such a single
magnon Gaussian wave packet at N0,

��N0
� =

1
	�1

�
i

e−�2�i − N0�2/2�u�1̃�i + v�0̃�i��
j�i

�0̃� j . �32�

This state contains the same quantum information as that
of the single qubit state ��A�. So if the GWP �32� appears
completely at another place, perfect QIT is accomplished. In
the following, we will show that if the GWP �32� appears
partially, perfect QIT can also be accomplished.

According to the formalism of the fractional revival, we
note that at �= pT /q there always exists a cloned sub-GWP
of the initial state at the mirror position, with the probability
�bl/2�2. From the point of view of quantum information, theo-
retically, the information of initial state encoded in the initial
state by factors u and v has been transferred to its counter-
part completely, although the fidelity of QST F��� may be far
from 1.

In order to depict this fact, we introduce the fractional
fidelity, which is expressed as

�Ff���� =
1

�bl/2�
�F���� =

1

�bl/2
�− bl/2 + �

r=1,�=±

l/2−1

brf�Np0,Nr
��� ,

�33�

and is unity if the retrieved sub-GWP is the exact clone of
the initial state. Then the QIT can be transferred perfectly,
even the QST is not completely.

To demonstrate the new definition of the fidelity and
verify how much the initial state and the sub-GWP are alike,
numerical simulation is performed in a finite system. The
square of the fractional fidelity �Ff�t��2 for the propagation of
a GWP with �=24 from N0=N /6, N /10 to Np0=5N /6,
9N /10 in the system with N=500 within �0,Trev� is plotted
in Fig. 6. It is obvious that at many instants �=Trevp /q, the
square of the fractional fidelity approximately equal to 1,
while �Ff����2 is still far from 1 for many possible Trevp /q.
We also notice that the initial position affects the results
strongly. These phenomena can be explained as follows.

As discussed in Sec. III A, the final state should be the
superposition of the l cloned sub-GWPs. Although there al-
ways exists a cloned sub-GWP at the position Np0, the over-
lap of these sub-GWPs affects �Ff����. If the l cloned sub-

FIG. 6. �Color online� Plot of the square of the fractional fidelity �Ff�t��2 for the GWP over one revival time with �=24 in the system with
N=500 for �a� N0=N /6, �b� N0=N /10. It shows that �Ff�t��2 is close to 1 at several specified instants.
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GWPs are well separated, i.e., f�Np0 ,Nr
±�=0, then we have

�Ff��� � =1 directly from the Eq. �33�. On the other hand, the
orthogonality of the l cloned sub-GWPs is determined by
their number and positions, which depend on the factors q
and N0. Obviously the smaller l is, the more perfect the frac-
tional revival is. However, in the case that the initial position
N0 and l satisfy the condition

�N + 1 − 2N0�l = integer � 2�N + 1� , �34�

the fractional revival should be still perfect. Equation �34�
guarantees that the final state consists of several well-
separated cloned GWPs. This is in agreement with the nu-
merical simulations. Figure 6�a� shows that �Ff����2
1 at �
=Trevp /12 �p=1,2 , . . . ,11�, while it occurs at �=Trevp /10
�p=1,2 , . . . ,9� in Fig. 6�b�.

B. Scheme B: Flying qubit

There is another scheme for QIT when the spin degree of
freedom is considered. We can imagine an electronic wave
packet with spin polarization as an analog of a photon “fly-
ing qubit,” i.e., a polarized photon where the quantum infor-
mation is encoded in its two polarization states. We define
the solid-state flying qubit, at the location A in a quantum
wire, as the superposition of two orthogonal Bloch electronic
GWPs �↑ �A and �↓ �A, where

�� = ↑,↓�A =
1

	�1
�

j

e−�2�j − NA�2/2cj,�
† �0� . �35�

Obviously, the two orthogonal states evolve independently.
Then an arbitrary state

���0��A = u�↑�A + v�↓�A �36�

will evolve to

���t�� = u�
�↑ ,t�� + v�
�↓ ,t�� , �37�

where �
�� , t��=� j f�j , t�cj,�
† �0� with f�j , t� being a spin-

independent function. The quantum information encoded in
the spin state of the initial state �35� is carried along by the
electron and unaffected by the transfer. Therefore, the initial
state will be transferred to another location if f�j , t� is known
and is still a localized function. Of course, the simplest case
is that f�j , t� is a mirror or translation of the initial GWP
�23�. In fact, if f�j , t� is partially local at several places, the
quantum information can be transported to multiple receiv-
ers. This fact indicates that such a system can be used for a
“quantum fanout,” which was recently proposed by Green-
tree, Devitt, and Hollenberg �25�. In our work, we only em-
ploy a simple open chain without any dynamic control. In
this sense, it acts as a solid-state based splitter, entangler
�26�, and quantum fanout.

C. Validity of the schemes

In Sec. III, the analytical conclusion is only valid for
lower energy GWPs. For an arbitrary GWP, the factor �
determines the behavior of the final state as time evolves. As
pointed out above, for the GWP with narrow width at k
0

in momentum space, the effective dispersion relation is qua-
dratic approximately. Then the width � of GWP in real space
should affect the fractional fidelity of the fractional revival.
Numerical simulation was employed to investigate the rela-
tionship between the fractional fidelity Ff��=Trev /2� and �
with the GWP transferring from N0=50 to N0p=N−50. The
numerical results for N=300, 400, 500, 600, and 700 are
plotted in Fig. 7. It shows that when � tends to 24, Ff��
=Trev /2�
1 for different sizes of system. Thus it indicates
that when fractional revivals in the discrete system are em-
ployed for quantum information transmission, the width of
the chosen GWP should be more than 24 times the lattice
spacing.

VI. SUMMARY AND DISCUSSION

In summary, we have studied the phenomenon of frac-
tional revivals in a discrete system by theoretical analysis
and numerical simulations of the evolution of a GWP in a
tight-binding model. It is found that, for a proper chosen
initial state, its fractional revival states have the same formal-
ism as that in the infinite square well. On the other hand,
numerical simulations show that the formulas of the theoret-
ical analysis are very accurate for the GWP.

We also proposed the concept of the fractional fidelity
Ff�t� when the fractional revival phenomenon is exploited to
achieve QST in the solid-state system. We showed that the
fractional fidelity approximately equals to 1 at many instants.
With an appropriately chosen width, the GWP with a polar-
ized spin state can be regarded as a flying qubit in the solid-
state system to implement quantum information transmis-
sion.

It is worthwhile to discuss the applicability of the scheme
presented above. Experimentally, the tight-binding model
can be realized by a quantum dot array, superconducting
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FIG. 7. �Color online� The square of fractional fidelity
�Ff�Trev /2��2 versus � for systems with various lengths N
� �300,700�. It shows that enlarging � can enhance the fractional
fidelity.
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quantum interference device �SQUID� array, etc. In a real
system, quantum decoherence is the main obstacle to the
experimental implementation of quantum information. In our
scheme for quantum state transfer, the quantum decoherence
time limits the scale of the quantum wire. For coupled quan-
tum dots, experiments show that the coupling strength J

10 meV �27�. Therefore, for a N-site chain, the revival
period Trev= �N+1�2 / �J���1.6�10−11N2 ms. On the other
hand, the decoherence time of a quantum dot is �
1 ms
�28�. For example, considering a quantum dot array with N
=500, we have Trev�4�10−6 ms, which is much smaller
than �. Moreover, if we perform n times full revival within

the decoherence time �, the maximal size is 2.5�105/	n.
Therefore, for n
104, the size of the system should be lim-
ited to 103, which implies the applicability of the scheme in
practice.
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