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The intrinsic relationship between the maximum-likelihood quantum-state estimation and the representation
of the signal is elaborated. A quantum analogy of the transfer function determines the space where a successful
reconstruction can be achieved. This provides a tool for reducing the number of dimensions of the observed
system based on physical characteristics of the reconstruction scheme rather than some ad hoc truncations. The
method is illustrated with two examples of practical importance: an optical quantum homodyne tomography
and a simple and robust tomography of an optical signal recorded by realistic binary detectors.
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I. INTRODUCTION

The development of effective, robust, and reliable meth-
ods of quantum state reconstruction is of utmost importance
for both fundamental and practical reasons. It is needed for
diagnostics of quantum systems—a crucial task in future ap-
plications of quantum information technology. Experimental-
ists may use quantum state reconstruction for analysis of
quantum processes, decoherence, and other changes occur-
ring between the input and output ports of the quantum de-
vices. Quantum state reconstruction is a formidable task re-
quiring a sophisticated measurement scheme, efficient
mathematical tools, and extensive computational effort for
practical realization. At the early stage of quantum state to-
mography �1,2� the main effort was aimed to answer the
question “how should the state be reconstructed?” Conse-
quently, various strategies for collection of the data and the-
oretical tools for data inversion have been developed. Con-
siderable progress has been achieved on this road. Nowadays
tomography is considered as a routine experimental tech-
nique. It has been successfully applied to probe the structure
of entangled states of light and ions, operations �quantum
gates� with entangled states of light and ions, and analysis of
the internal angular momentum structure of correlated
beams, just to mention a few examples �2�.

In spite of recent progress there are several open problems
associated with quantum tomography. Until now rather pass-
ing attention has been paid to the question “where may the
state be found?” For example, in the original quantum to-
mography scheme a region �field of view� should be chosen
in the phase plane where the Wigner function of the state in
question should be looked for. The choice of this region
seems to be only loosely connected with the reconstruction
procedure itself. However, such an ad hoc guess may have
poor impact on the accuracy of the reconstruction or con-
versely, it may lead to more consistent results. The latter case
may happen when an experimentalist seeks a result close to
the a priori known true state. Such a tacitly accepted as-
sumption may appear as crucial eliminating the large number
of unwanted free parameters. Obviously, such a drawback
erodes the notion of a reconstruction scheme as one which is
objective.

The design of a tomographic measurement reaching opti-
mal performance of the tomographic scheme is another prob-
lem which is addressed in this contribution. Since the answer
to this problem depends on the technology available and can-
not be therefore exhaustive, we will follow the idea of the
original proposal �3� to utilize the imperfections of the single
photon detectors for making tomographic measurement on a
mode of light. Indeed, such schemes based on linear optics
and realistic models of on/off detectors are robust and can be
considered optimal from the pragmatic viewpoint of feasibil-
ity of detection. In this paper approaches and methods briefly
outlined in the recently published Letter �4� are extended,
discussed in more detail, and are further developed.

The outline of the paper is as follows. In Sec. II the math-
ematical details of maximum-likelihood �ML� estimation are
discussed. In Sec. III the main issues related to successful
reconstruction are summarized, which are advised to follow.
This part is designated as a brief manual for the potential
users of the suggested reconstruction procedure. The recom-
mended approach is demonstrated on two examples of opti-
cal tomographic measurement: homodyne detection in Sec.
IV and on/off detection in Sec. V. In Sec. VI the latter
scheme is detailed by adopting the ML strategy for recon-
structing the Wigner function of the measured state of light.
Finally, in Sec. VII, the complete information about the mea-
sured system using the recommended approach is inferred.

II. THEORY OF ML ESTIMATION

To make this paper self-contained the derivation of the
extremal equation for the ML state along the lines presented
in �4� is briefly described.

A. Extremal equation

The measurement procedure is generally described by el-
ements A j of a positive-operator-valued measure �POVM�,
where the index j enumerates particular sets of parameters.
At this point, any specific assumptions about the nature of
the measured elements A j, such as their commutation rela-
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tions or group properties, need not be done. In particular, we
allow for a measurement, where certain output channels of
the measuring apparatus are ignored or are not accessible. Of
course, in order to get a unique result of the reconstruction, a
sufficiently “rich” structure of the measurement should be
anticipated. The concept of the “tomographic completeness”
�“informational completeness”� can be introduced. Loosely
speaking, a set of measurements is tomographically complete
provided that the set contains at least as many independent
observations as the number of independent parameters. For
example, in a p-dimensional Hilbert subspace the free pa-
rameters correspond to the p2−1 real numbers parametrizing
a p-dimensional density matrix. A tomographically complete
set of observations Aj thus comprises a Hermitian operator
basis in the subspace.

Since for a realistic tomography only experimentally fea-
sible measurements are available, and since tomography
must be able to handle any kind of data, we do not impose
other prior criteria for the choice of the set of operators Aj
with the exception of the above-mentioned tomographical
completeness. The adequacy of each particular scheme, how-
ever, depends strongly on the nature of measurements done
and as such it can always be verified a posteriori following
our recommendations.

The reader may be guided by the well-known example of
quantum homodyne tomography discussed in detail later on.
In homodyne tomography, operators A j are projectors onto
different eigenstates of the rotated quadrature operators. Op-
erators A j satisfy

0 � A j � 1, j = 1, . . . ,Np. �1�

Then, the probabilities of measurement outcomes are given
as

pj = Tr�A j�� , �2�

� being the quantum state. By conditions �1� the probabilities
generated by any state are guaranteed to be non-negative and
less than one. In general, the probabilities pj do not add up to
unity, as the operator sum

�
j

A j = G � 0 �3�

may differ from the identity operator. Theoretical probabili-
ties pj can be sampled experimentally by repeating the mea-
surement on an ensemble of identically prepared systems de-
scribed by the density matrix �. In the course of such a
repeated measurement an outcome j occurs Nj times. The
aim of tomography is to find the quantum state � from the
observed data �Nj�, j=1, . . . ,Np.

The ML scenario hinges on the likelihood functional as-
sociated with the statistics of the experiment. In the follow-
ing analysis, the generic form of likelihood for un-
normalized probabilities is adopted

log L = �
j

Nj log� pj

�
j�

pj�	 , �4�

where index j runs over all registered data. This functional is
to be maximized with respect to �.

This form, suggested by Fermi, is sometimes called the
extended maximum likelihood principle �5�. There is a
simple rationale behind the principle. The counted events are
discrete and can always be cast in the generic form of Pois-
sonian statistics with an unknown mean number of counts.
Counted data Nj correspond therefore to a sampled Poisso-
nian signal with expectations �pj, where � is an unknown
mean total number of particles �counts�. When the corre-
sponding Poissonian log-likelihood function

log LPoiss = �
j

Nj log��pj� − ��
j

pj �5�

is maximized with respect to �, a mutual normalization of
probabilities in Eq. �4� is readily obtained.

The extremal equation for the maximum-likely state can
be derived in three steps: �i� The positivity of � is made
explicit by decomposing it as �=�†�. �ii� The likelihood �4�
is varied with respect to an independent matrix � using
��log pj� /��=Aj�

† / pj; and �iii� variation obtained is set
equal to zero and multiplied from the right-hand side by �
with the result

R� = G� , �6�

where

R = �
j

�
j�

pj����

�
j�

Nj�

Nj

pj���
A j . �7�

Notice that while operator G is defined by Eq. �3�, operator
R depends on the particular statistical model �likelihood
function�. Also notice that operator R depends on � via the
state dependent probabilities pj as indicated in Eq. �7�. Equa-
tion �6� may be cast in the form of the expectation-
maximization �EM� algorithm �6�

RG�G = �G, �8�

where

RG = G−1/2RG−1/2, �G = G1/2�G1/2.

This extremal equation may be iterated in a fixed orthogonal
basis. Keeping the positive semidefinite character of �G �by
combining Eq. �6� with its Hermitian conjugate� the �n
+1�th iteration reads

�G
�n+1� = RG

�n��G
�n�RG

�n�, �9�

where we defined
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RG
�n� = G−1/2R���n��G−1/2. �10�

Starting with an initial guess, �G
�0�, the iterative process is

repeated until the fixed point is reached. In terms of �G, the
desired solution is then given by

� = G−1/2�GG−1/2. �11�

Going back to likelihood Eq. �4� it is noted that the operator
G, which comes from the mutual normalization of probabili-
ties, � jpj =Tr��G�, also provides a mutual normalization of
the original biased observations via the transformation

�
j

G−1/2A jG
−1/2 = 1G. �12�

The subscript G, appearing on the right-hand side of Eq. �12�
denotes that this identity is valid within the support of the
operator G. Thus any set of tomographic observations can
formally be described by complete �normalized� POVM ele-
ments G−1/2A jG

−1/2.

B. Interpretation

The closure relation �12� establishes the preferred basis
for reconstruction. Due to division by the operator G in Eq.
�11�, the reconstruction can be done only in the subspace
spanned by the nonzero eigenvalues of G. The spectrum of
G therefore plays the role of a tomographic transfer function
analogous to the transfer function in optical imaging. It
quantifies the resolution of the reconstruction scheme. A
large eigenvalue of G indicates that many observations over-
lap in the corresponding Hilbert subspace and this part of
Hilbert space is clearly visible. The Hilbert subspace where
the reconstruction was done cannot be chosen freely in a
proper statistical analysis. This factor also gives a clue on
how to reduce the number of dimensions of some problems,
mainly those associated with infinite dimensional systems,
simply by restricting the search to the subspace correspond-
ing to the dominant eigenvalues of the operator G. The result
of the reconstruction can be checked easily afterward. If the
reconstructed state exhibits dominant contributions from the
components with relatively small eigenvalues of G, the result
cannot be trusted.

Naturally, the spectrum of G is affected by the choice of
the measurement apparatus. Its dependence on the true state
of the measured system is less obvious. This situation typi-
cally arises in the experiments with quantum systems de-
scribed by continuous variables. For example, in homodyne
tomography, random detections of quadrature eigenvectors

x1�����x1���
 , 
x2�����x2���
¯ are accumulated for different
phases � of the local oscillator. Only projectors actually de-
tected enter the sum in Eq. �3�. The probability that a par-
ticular projector is detected then depends on the true state.
For the same reason G might depend on the number of cop-
ies used for tomography, since a larger number of observa-
tions makes it more likely to explore rarely happening
events. Later on we will illustrate behavior of G with several
examples.

It is intriguing to note that the character of the ML solu-
tion �27� is governed by the fundamental laws of quantum

mechanics. Let us present a simplified discussion valid for
G=1, the generalization to any other G is straightforward.
Assume that a measurement of A j is observed with values of
frequencies f j =Nj /� j�Nj�. Since a total finite number of ob-
servations, � jNj, is distributed among j=1, . . . ,M channels,
the registered data will fluctuate according to a multinomial
statistic. The strength of these fluctuations �statistical noise�
depends on the unknown true state. Since, for a given state,
the fluctuation at two different channels will be different, the
registered data cannot be trusted equally. Those channels
with higher signal-to-noise ratio should be given larger
weighting during the data inversion process than the chan-
nels of more noise. Consequently, the optimal data process-
ing requires the knowledge of the true state. However, at the
beginning of the reconstruction procedure we know nothing
about the true state which governs the observed statistics.
That is why the optimal estimation must be nonlinear—the
unknown state must be estimated together with the quality of
the noisy data. This may be achieved by weighting �renor-
malizing� each measurement using a coefficient � j. Defining
the new POVM elements by

A j� 
 � jA j , �13�

which would satisfy the completeness relationship

�
j

A j� = 1�, �14�

an attempt may be made to match the observed relative fre-
quencies to the new theoretical probabilities as follows:

Tr��A j�� = f j . �15�

Expressing unknowns � j by means of Eqs. �13� and �15�,
inserting them into Eq. �14�, and multiplying both sides of
Eq. �15� by � produces the extremal equation

R� = � , �16�

which is a special case of Eq. �6� for G=1. Standard linear
approaches to quantum tomography which in some special
cases may tend to the inverse Radon transformation, also
hinge upon the same relations �14� and �15� but their role is
reversed. In standard tomography, all the measured data are
equally trusted, � j =1, so the completeness relation �14� is
obeyed by definition and the desired state is given by a linear
inversion of Eq. �15�. Aside from other drawbacks, such a
solution does not keep the necessary constraints of quantum
mechanics ��0. In marked contrast, in the optimal ML ap-
proach the exact correspondence Eq. �15� between the theory
and data is taken as definition and the optimal quantum state
is found by solving the completeness relation �14�, thus re-
versing the roles of relations �14� and �15�. It should be also
noted that the ML solution related to the above-mentioned
choice of parameters �k always exists due to the convexity of
the likelihood function log L=� j f j log pj, for which Eq. �16�
is the extremal equation possessing a unique solution. On the
other hand, the existence of a positive semidefinite solution
of the linear problem characterized by the conditions � j =1 is
not guaranteed.

Consider for comparison an alternative form of the likeli-
hood function. Often the noise can be approximated by a
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Gaussian probability distribution. The relevant part of the
corresponding log-likelihood then reads

log LGauss = − �
j

�pj − Nj�2

2� j
2 , �17�

where � j is the standard deviation of the jth channel given
approximately by �Nj. This approach is sometimes preferred
by experimentalists �7� though there are no good reasons for
making such an approximation. Provided we have some prior
knowledge about the true state this approach will likely give
reasonable results, also for other fits, for example, the least-
squares fit. However, when resorting to these methods we do
not have any hints telling us where to look for the states
since all the links between tomography, performed measure-
ment �expressed by an operator G�, and closure relation �12�
are lost. Nothing is paid back for this disadvantage since the
iteration algorithms are equally involved for alternative
choices of likelihoods.

III. MANUAL FOR APPLICATION

Since ML tomography is a rather involved scheme, let us
summarize the recommended approach for experimenters in
the form of a manual with four steps, which should be fol-
lowed.

A. Step 1: Design of measurement

The quality of reconstruction relies on the available quan-
tum detection. The choice of measurement depends on the
system explored and on the resources available. In our analy-
sis, we will focus on the generic scheme formulated in the
infinite dimensional Hilbert space. Here the subspace where
the reconstruction can be done should be found simulta-
neously with the reconstructed object. In the following we
will focus on homodyne detection and robust binary �on/off�
detection.

B. Step 2: Field of view

Experimental resources should be adopted for the overall
characterization of quantum performance. The key role is
played by the operator G defined by the generic relation �3�.
The spectrum of this positively semidefinite operator defines
the efficiency of the tomographic measurement in a particu-
lar subspace. Notice that all measurements performed con-
tribute to G. In particular, in the case of homodyne detection
G will comprise all the observed quadrature eigenvectors.
The purpose of this step is to find a field of view with good
resolution provided by the particular reconstruction scheme.
Good resolution can be expected only in the subspace
spanned by those eigenvectors of G corresponding to signifi-
cantly nonzero eigenvalues. Similar reasoning can be used to
define the number of degrees of freedom of an image �8�, for
example. The spectrum of G thus plays a similar role to that
of the optical transfer function in classical wave optics. If
one wishes to extend the reconstruction to an even larger
subspace, data must be acquired from new measurements

introduced to the tomography scheme in order to increase the
desired eigenvalues of G.

C. Step 3: ML reconstruction

After properly choosing the reconstruction space as indi-
cated in Step 2, the reconstruction itself can proceed. Starting
from a completely mixed state, �0	1, defined on this sub-
space the iterative algorithm �8� can be employed to find the
optimal state. Notice that the algorithm should not be initial-
ized by a pure state even when we expect the true state to be
one �no guarantee of convexity of the likelihood�. It is also
not advisable to use the Gaussian approximation of likeli-
hood �see the remark above� or rewrite the iterative algo-
rithm directly in terms of Wigner functions �there is no way
of imposing non-negativity� even though one can be tempted
by its seeming simplicity.

D. Step 4: Error analysis

In the last step the reconstruction should be completed by
an error analysis. Notice that the result of the reconstruction
is not just the ML state. There are also states in its neighbor-
hood whose likelihoods are still significant that should be
considered. Obviously, the rate of decrease of the likelihood
with distance from the ML state defines the uncertainty of
the reconstruction and puts the “error bars” on the recon-
structed density matrix. All predictions based on the recon-
structed state must reveal this additional uncertainty. Details
associated with error analysis will be given elsewhere.

All these four steps are necessary conditions which are
establishing quantum tomography as an objective tool for the
analysis and diagnostics of infinite dimensional quantum sys-
tems. Indeed, previously reported results of tomographic
schemes have considered the space for reconstruction ad
hoc: But if one knows what the result should be it is not
difficult to get it.

IV. QUANTUM HOMODYNE TOMOGRAPHY

The recommended approach to ML tomography is illus-
trated on the example of homodyne detection, which origi-
nally triggered the interests in quantum tomography �1,2�.
An iterative algorithm similar to the general scheme de-
scribed above has already been adopted for the reconstruc-
tion of the density matrix in Fock-state space �9,10�. How-
ever, the measurement �9,10� was considered to be unbiased
G=1, which only approximately holds for the homodyne
detection. Also the subspace where the reconstruction was
done was fixed ad hoc in the neighborhood of the �expected�
true state. It is shown in this section how this approach can
be improved using the general framework of objective to-
mography.

The POVM describing the ideal quantum homodyne to-
mography measurement consists of projectors to the eigen-
states of quadrature operators �1�:

A�
� = 

��

 , �18�

whose components in the Fock basis 
n� are given by
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�n

� = � 2

�
�1/4Hn��2


�

�2nn!
exp�− 


2 + in arg�
�� .

For illustration, we adopt here a measurement set and recon-
struction subspace close to those used in Ref. �9�, where the
reconstruction of a state with the average number of photons
less then one was considered. We take the same region near
the origin of the phase plane, see Fig. 1, using the same
truncation number Ntr=15. Let us examine the effect of sev-
eral data configurations. Figures 1�c� and 1�d� correspond to
a sparse data set—just Np=16 different projections are taken.
Clearly, when the set of measured 
-points is very small, the
subspace spanned by the dominant eigenvectors of G is
small compared to Ntr and the effective field of view does not
extend up to Ntr photons. Increasing the number of 
-points
in the chosen region to Np=256, the resolution of the tomog-
raphy can be improved, see Figs. 1�a� and 1�b�, and the ei-
genvalues of the operator G get closer to Fock states, as seen
by comparing Figs. 1�b� and 1�d�. Any state lying in this
subspace can be successfully reconstructed with the help of
the ML technique. Notice also that no data binning is needed
here, raw data consisting of detected quadrature values can
also be processed. One should, however, remember that since
the G operator corresponding to a homodyne tomography is
not proportional to the identity operator, the correct algo-
rithm �9� should be used instead of the simplified version
adopted in Refs. �9,10�.

Increasing further the number of 
-points, the G operator
is approaching the identity operator on the given subspace.
This is because the integral taken over all projectors �18�
results in the identity operator. This tendency can be seen in

Fig. 2�a�, where the relative differences between the first few
eigenvalues of G are considerably reduced. Consequently the
simplified algorithm assuming G=1 becomes a good ap-
proximation of the correct algorithm �9� on such a small
subspace. This also explains why the reconstruction done in
Refs. �9,10� gave reasonable results. However, this argument
would not apply if reconstructions of states with larger pho-
ton numbers were attempted. In that case even a measure-
ment consisting of �105 projections �
-points� as used in
Ref. �9� may be insufficient for establishing the closure rela-
tion G=1 so the correct general algorithm �9� should be
adopted.

This analysis illustrates how a measurement can be tuned
to the required performance. Any measurement brings some
information so loosely speaking any measurement can be
considered informationally complete in some subspace. This
feature is demonstrated in Fig. 2�c�. Here, the data collected
is from only the first quadrant of the phase plane. Such ob-
servations seem to be “incomplete” from the point of view of
the standard inverse Radon transformation since projections
from the full �0,�� interval are needed for linear inversion.
However, even such an imperfect observation may be infor-
mationally complete on a properly chosen subspace of the
infinite dimensional Hilbert space and the ML algorithm can
be used to extract this information.

A simulation of the homodyne tomography of a coherent
state based on the quadrature measurements of Fig. 1�a� is
shown in Fig. 3. For each of Np different projections 
 j, the
corresponding theoretical probability pj has been calculated
using Eqs. �2� and �18�. This probability was then sampled
Nr times in order to simulate Nr experimental runs. As a
result, 
 j was detected Nj �Nr times. Due to the probabilistic
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FIG. 1. Operator G in homo-
dyne tomography; �a,c� eigenval-
ues of G; �b,d� absolute values of
its eigenvector elements computed
in Fock basis and truncated at
Ntr=15; m and n label the eigen-
vectors and their components, re-
spectively. The 
 points describ-
ing the measured projections
are taken from an equidistant
polar mesh, whose parameters
are as follows: �a,b� 16 amplitudes
abs�
�� �0.01,3��16 phases
arg�
�� �0,2�� and �c,d� 4 ampli-
tudes �4 phases from the same
intervals.
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nature of quantum theory, Nj in general differs from the

mean value N̄j = pjNr. The set of generated data was then
processed using the iterative ML procedure of Eq. �9�. The
confidence intervals on the reconstructed density matrix ele-
ments can be provided by calculating the variances

���mn� = �F��mn�Nmes�−1/2, �19�

where Nmes=NpNr is the total number of measurements, and
the Fisher information F can be defined for the real part of
the density matrix elements as follows �11�:
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FIG. 2. Operator G in homo-
dyne tomography; for description,
see Fig. 1. The 
 form a polar
mesh: �a,b� 121 amplitudes
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�� �0.01,3��101 phases
arg�
�� �0,2�� and �c,d� 121 am-
plitudes abs�
�� �0.01,3��101
phases arg�
�� �0,� /2�.
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FIG. 3. Simulated homodyne
tomography of a coherent state of
amplitude 
=exp�i� /4�; �a� real
and �b� imaginary parts of the re-
constructed density matrix; �c� ab-
solute values of the differences
between the reconstructed and the
true density matrix elements; and
�d� variances of real �imaginary�
parts of the reconstructed density
matrix elements in the region m
�n �n�m� as estimated via Eqs.
�19� and �20�. The reconstruction
was done using Nit=103 iterations
of the ML iterative procedure
based on Eq. �8� for homodyne
measurements �Eq. �18��. Ampli-
tudes 
 are taken as for Fig. 1�a�;
the number of experimental runs
is Nr=102; Fock space is trun-
cated at Ntr=15.
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F�Re��mn�� = �
j

�
j�

pj�

pj � �

� Re��mn�
pj

�
j�

pj�	
2

�20�

and similarly for the imaginary part of � with Re replaced by
Im.

Immediately a significant quantitative advantage of the
ML algorithm over methods relying on a tomographically
complete measurement can be seen. Indeed, for Fig. 3 we
have used data collected in just Np=256 points in the

-plane. As confirmed by Fig. 3 it is possible to achieve very
good accuracy of the reconstruction with the total number of
measurements of the order of Nmes=105 although the corre-
sponding operator G is quite far from the identity operator,
see Fig. 1�c�.

V. ON/OFF DETECTION

Any realistic reconstruction scheme must be robust with
respect to noise. In real experiments the presence of noise is
unavoidable due to losses and because detectors are not
ideal. It is well-known �2� that the standard tomography via
the inverse Radon transformation fails when the detector’s
efficiency is below 50%. Although the same conclusion does
not hold for the ML scheme developed above, the presence
of losses is obviously detrimental to the accuracy of a recon-
struction. However, the very presence of losses can be turned
into an advantage and used for reconstruction purposes. As
shown in Ref. �12�, complete characterization of the input
optical signal can be achieved using nonideal photon
counters. Here it is enough to measure the probabilities of
no-counts provided the quantum efficiency of such a detector
can be controlled.

From the practical point of view such a possibility is very
convenient. Practically any photodetector used in quantum
optics can be implemented as a binary one, i.e., a detector
discriminating between the presence and absence of the sig-
nal only. Apart from the avalanche photodiodes being the
most natural detectors for the task, one can also use photo-
multiplier tubes, hybrid photodetectors, and cryogenic ther-
mal detectors �13�. High quantum efficiencies are not needed
for this purpose. Further, ideal 100% efficient detectors are
of no use in such a reconstruction scheme. They would be
sensitive just to the contribution of the vacuum component.
The only requirement for a successful reconstruction is our
ability to discriminate between the signal counts and spuri-
ous “dark” counts. When this is not possible, the noise com-
ing from dark counts can still be incorporated into the recon-
struction scheme, provided a proper physical model of the
detection process is available �14�.

The first reconstruction scheme based on binary detectors
was developed and analyzed for inference of photon number
distribution �3�. The scheme is extremely simple: just a set of
binary detectors is used with different quantum efficiencies,
which can be modeled by a single detector preceded by a
beam splitter with a variable beam-splitting ratio to mix the
input signal with the vacuum field. The scheme is fast, effi-
cient, and robust. It can provide an adequate estimation of

diagonal elements of the signal’s density matrix �photon
number distribution� even when the set of different efficien-
cies used is smaller than the number of reconstructed param-
eters. The scheme also works for very low detector efficien-
cies of the order of a few percent �14�. In addition, this
scheme has an important advantage compared to the homo-
dyne tomography, which is the other important technique for
determining the photon number distribution: it is not an in-
terferometric technique, so there is no need to mode match
the signal with the probe coherent field of the local oscillator.
The scheme was realized experimentally in �15�. A more
advanced setup based on a multichannel fiber loop detector
was developed and experimentally verified earlier �16�.

A generalization of the schemes exists that allows a re-
construction of the nondiagonal elements of the signal den-
sity matrix. It was noticed that diagonal elements of a coher-
ently shifted signal contain full information about the signal
density matrix. To extract this information it is necessary to
perform shifts with appropriately chosen phases and ampli-
tudes �17�. Such a scheme was exploited in proposals
�18,19�. In the former scheme �18�, the generalized distribu-
tion function may be recovered from the measured photo-
count statistics, whereas in the latter scheme �19� the Wigner
function can be probed directly. This reconstruction tech-
nique has also been implemented experimentally �20�. It
should be noted, however, that these schemes of quantum
state reconstruction have their drawbacks. Since the schemes
are based on linear inversion they would typically give non-
physical results. This is due to the a priori constraints that
any quantum state has to satisfy, namely the non-negativity
of a density matrix ��0, which is not guarantied by the
linear methods. This is also a drawback of the proposal rep-
resenting the Wigner function of the signal state by projec-
tors into the shifted Fock states. While it seems to be intrac-
table to implement the condition of positive semidefiniteness
in Wigner representation, it can be done in the general for-
malism adopting the maximum-likelihood estimation.

Reconstruction of a signal state from binary detections
using the ML approach has been briefly discussed in Ref. �4�.
The idea is to mix the signal not only with the vacuum field
but also with a class of probe states. Coherent states, which
can be produced easily in real experiments can be used for
this purpose. In the following text the method is discussed in
detail and its robustness with respect to the measurement
errors is investigated.

The probability of registering no counts on a detector of
quantum efficiency �c is given by the well-known Mandel
formula �21�:

p = �:exp�− �cc
†c�:� , �21�

where c† and c denote creation and annihilation operators of
the output mode, and � denotes normal ordering. For sim-
plicity, it is assumed here that in the absence of the signal,
the detector does not produce any clicks. It is also assumed
that a beam splitter transforms input modes a and b in the
following way:
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c = a cos�
� + b sin�
� . �22�

Theoretically, the choice of probes to make reconstruction
through a set of recorded probabilities p is rather wide. A set
of arbitrary states with nonzero off-diagonal elements in the
Fock-state representation would be sufficient �3,12�. For the
sake of feasibility we will limit our choice of probe states b
to coherent states of amplitudes �. As it is shown in the
Appendix, averaging over the coherent probe mode b in Eq.
�21� gives

p = �
n=0

�1 − ��n�n
D†�
��D�
�
n� , �23�

where

� = �c cos2�
�, 
 = − � tan�
� , �24�

and

D�
� = exp�
a† − 
*a�

is the coherent shift operator; 
n� denotes a Fock state of
signal mode a. Using the operator notation

Rn,
 = D�
�
n��n
D†�
� , �25�

we find that no-count probabilities �23� are generated by the
following POVM elements:

A�,
 = �
n

�1 − ��nRn,
 �26�

and, defining a collective index j= �� ,
�, the counted prob-
abilities coincide with those in Eq. �2�.

Now let us go back to our main goal and illustrate the
process of finding and optimizing the subspace available for

the reconstruction described in Sec. III. Figure 4 shows how
a suitable choice of 
-points can be achieved. Obviously, the
amount of data used in Fig. 4�a� as compared to Fig. 4�b� is
excessive for the reconstruction. It would be enough to use a
smaller number of different phase shifts. On the other hand,
when the number of points is too small, or when they are
chosen in an inappropriate way, the eigenvalues of G differ
strongly thus making reconstruction unreliable. We have al-
ready seen the analogous behavior of homodyne tomography
in Sec. IV. For example, the last eigenvalue in Fig. 4�d� is
only of the order of 10−3.

So far we have been specifying the field of view of a
given reconstruction technique by means of inspecting eigen-
values of operator G �Step 2�. In the next section we will
move to Step 3 considering particular realizations of the re-
construction procedure described above.

VI. POINT-BY-POINT RECONSTRUCTION

Before implementing the complete reconstruction de-
scribed in Sec. II, it is interesting to take a closer look at Eq.
�23�. Consider a set of measurements with different quantum
efficiencies � but with a fixed value of 
. Such measure-
ments are compatible,

�A�,
,A�,
� = 0.

This follows from Eq. �26� since quantum states 
n
�
=D�
�
n� are obtained by a unitary transformation of the
orthonormal Fock-state basis and as such they form an or-
thonormal basis,
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tors corresponding to four differ-
ent binary detection schemes.
Probe amplitudes 
 are as follows:
�a� 16 equidistant amplitudes
abs�
�� �0.01,3��16 equidistant
phases arg�
�� �0,1.99�� plus
the point in the center of coordi-
nates; �b� the same as �a� but
only 4 amplitudes �4 phases;
�c� amplitudes abs�
�= �0.01,1�
�phases arg�
�= �0,0.1� plus the
point in the center of coordinates;
and �d� amplitudes abs�
�
= �0.999,1.001��phases arg�
�
= �0.1,0.1001� plus an additional
point abs�
�=1, arg�
�=0. In all
panels, 20 equidistant values of
the detector efficiencies were
chosen from the interval �
� �0.1,0.9�.
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�n

m
� = �n
D†�
�D�
�
m� = �nm,

where �nm is the Kronecker symbol. Hence all POVM ele-
ments A�,
 corresponding to the same value of 
 take diag-
onal form in the representation 
n
�. Now let us introduce the
diagonal elements of � in this basis,

Rn�
� = �n
D†�
��D�
�
n� .

As follows from Eq. �23�, measurements with a fixed value
of 
 yield information about the corresponding elements
Rn�
�. Reconstructing the values of Rn�
� from this data is
thus formally equivalent to reconstructing the diagonal ele-
ments of � from the binary detections �3,14,22�. In this case,
due to the mentioned mutual compatibility of the observa-
tions A�1,
 ,A�2,
 , . . ., the algorithm �6� and �7� simplifies to

Rn
�k+1��
� = wn

�k��
� �
j=0

M−1
�1 − � j�npj

exp

f jpj
�k� , �27�

where

f j = �
n=0

N−1

�1 − � j�n,

pj
exp are the experimentally measured relative frequencies of

detecting no click on the detector, and pj
�k� is the left-hand

side of Eq. �23� calculated using the result of the kth itera-
tion. Procedure �27� guarantees non-negativity of the recon-
structed Rn�
�. To ensure a unit sum of the reconstructed
values of Rn�
�, one should either renormalize them or mul-
tiply the right-hand part of Eq. �27� by � jpj

�k� /�kpk
exp.

Having found Rn�
� a value of the signal Wigner function
at point 
 can be calculated �17�:

W�
*,
� =
2

�
�
n=0

N−1

�− 1�nRn�
� . �28�

The algorithm �27� together with the formula �28� gives a
practically realizable and seemingly simple way of doing the
quantum state tomography based on binary detections.

In Fig. 5 one can see an example of a reconstruction of a
coherent signal state with the help of the procedure described
above. For this particular case the procedure turns out to be
fast and accurate. Accurate reconstruction was achieved with
only Nit=103 iterations of the EM algorithm �27� for Nr
=104 experimental runs at each point in the phase plane. This
impression is further strengthened by looking at how the
total error of the reconstruction propagates. The average dis-
tance between the exact and reconstructed Wigner functions
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FIG. 5. Point-by-point reconstruction of a signal coherent state of amplitude 
=exp�i� /4�; �a� the reconstructed Wigner function; �b� the
difference between Wigner functions of the exact and truncated true states; �c� the difference between Wigner functions of the true and
reconstructed states; and �d� the variances ��
 ,
*�. The Wigner function was reconstructed at Np=2500 points of the phase plane using
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�W =
1

Np
�
∀



Wexact�
*,
� − W�
*,
�
 �29�

is used as a measure of error, where the summation is taken
over all points on the phase plane where the estimation was
made; Np stands for the number of points on the phase plane.
Figure 6 shows that for a given number of performed itera-
tions Nit, the accuracy of the reconstruction improves with
the number of runs Nr. This is expected: longer measuring
times translate to less statistical noise and more accurate re-
sults. However, the improvement is negligible at larger val-
ues of Nr. This is a sign of robustness. When the iterations
are continued, the dependence of the residual error on Nr
becomes more pronounced. Notice also that increasing the
number of iterations above a certain limit, Nit�Nr, might
even increase the error �W. This has already been observed
in �14� in connection with a photon number reconstruction.
Naturally, this does not mean that the algorithm �27� does not
converge but rather occurs because the error measure �29�
and likelihood are not monotonic functions of each other in
the neighborhood of the ML state. It can be concluded that in
practice it is reasonable to stop the iterative reconstruction
procedure after making Nit�Nr iterations.

So, one can see that a point-by-point reconstruction of the
Wigner function is feasible, robust, and a simple scheme.
However, a closer look reveals that this simplicity is rather
deceiving. In fact, the scheme is far from being optimal.
Above we have been estimating a continuous quantity,
namely the Wigner function. In the recommended approach
outlined in Sec. III the same measurement may be adopted
for the estimation of the full density matrix using an appro-
priately chosen discrete representation. It is confirmed in the
next section that this is indeed a more efficient approach.

There are also other problems with implementing the pro-
cedure �27�. First of all one needs to specify the dimension

Ntr at which the Hilbert space is truncated. Then, one has to
choose some initial values of Rn

�0��
�. Once Ntr is chosen, a
choice of the initial distribution Rn

�0��
� is not a problem. It is
noted in the work �14�, the choice of Rn

�0��
��0 has only a
weak effect on the convergence for any fixed 
. In particular,
one might take the uniform distribution as the initial one, as
was done in our example of Fig. 5. However, an appropriate
choice of Ntr is far from being trivial. Actually, one needs to
investigate the convergence for every point 
 on the phase
plane. Additionally for any Ntr one can find regions on the
phase plane where this very N would be insufficient for the
accurate reconstruction because the average number of pho-
tons of the shifted state can be arbitrarily large for large 
’s,

�
n

nRn
�
�



→� → � .

This is clearly seen in Fig. 5�b�. Such truncation errors fur-
ther increase the errors of the reconstruction procedure, see
Fig. 5�d�. Moreover, for different points on the phase plane
the rate of convergence of the sum �28� might differ strongly.
In regions where the Wigner function changes steeply, more
iterations and measurements are needed to achieve the same
precision. For instance, the variances depicted in Fig. 5�d�
are smaller near the peak of W�
 ,
*�. An explanation can be
found in formula �28�: in the region of such a steep change
one needs to find several comparable Rn�
� with high preci-
sion, whereas the behavior of the Wigner function near 

=
 is defined mostly by R0�
�.

One should also keep in mind that even very small devia-
tions from the true Wigner function, which will inevitably
arise in the process of reconstruction, will likely make it
nonphysical. Such a Wigner function would not correspond
to any physical, positive definite density matrix. This is be-
cause operators Rn,
 do not commute for different 
’s, so
noisy measurements may give inconsistent results. This is
confirmed by the inset of Fig. 7—going back from the
Wigner function to density matrix using Glauber’s formula
�23�

� = 2� d2
�− 1�nW�
*,
�D�2
� , �30�

some diagonal elements of the reconstructed matrix are
found to be slightly negative despite the fact that Rn�0� esti-
mated via the formula �27� is strictly non-negative.

VII. ALL-POINTS RECONSTRUCTION SCHEME

Here we consider an optimal reconstruction in which all
collected data are used for the reconstruction of the signal
density matrix according to the recipe given in Sec. III. We
refer to it as an “all-points” reconstruction scheme to distin-
guish it from the “point-by-point” scheme discussed in the
preceding section.

According to the prescription of Sec. III, after choosing a
measurement one should also determine what this measure-
ment can reveal. In all-points reconstruction the question of a
proper choice of the reconstruction subspace can be an-
swered in quite a simple way. Indeed, let us work out a
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FIG. 6. Reconstruction errors �W defined by Eq. �29� for differ-
ent numbers of iterations Nit of the ML algorithm in dependence on
the number of experiment runs Nr; for all curves Np=2500 and the
following region on the phase plane was taken: Re�
�, Im�
�
� �−1.2,2.5�. Other parameters are as in Fig. 5.
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particular example of the measurements choice, illustrated in
Fig. 8. Already for a modest number of different 
’s and
detector efficiencies, the eigenvectors of the closure operator
G are very close to Fock states. So, by inspecting the eigen-
values of G one can easily estimate the largest subspace of
the Fock space visible to the chosen measurement scheme.
An obvious way to do that is to first perform measurements
for different detector efficiencies and keep 
=0. As we have
demonstrated before, such measurements are sufficient for
reconstructing the diagonal elements of the signal density
matrix. The smallest truncation number Ntr sufficient to con-
fine the signal can be found, e.g., by checking the conver-

gence with respect to increasing Ntr, see also �14�. Then, if
the eigenvalues of the operator G in the Fock subspace n
�Ntr are comparable, its eigenvectors being close to Fock
states, one can conclude that the observed data will be suffi-
cient to yield a faithful reconstruction.

It is interesting to note that coherent shifts depicted in Fig.
8 correspond to coherent states with the average number of
photons less then unity. In other words, one does not need to
implement large coherent shifts in order to reconstruct even
signal density components corresponding to Fock states with
a high number of photons n�1. This observation is impor-
tant for optimizing the measurement procedure. “Intuition”
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would suggest the use of probe states with a mean number of
photons comparable to the expected mean number of pho-
tons in the signal mode. Then one would have to use a rather
large cutoff Ntr to contain such highly populated states. This
is not necessary. The all-points scheme does not require
strong perturbations of the signal via probe states with large
photon content.

To illustrate this, let us consider a reconstruction of the
coherent state with the amplitude exp�i� /4� taken as an ex-
ample in the previous section, which is summarized in Fig. 9.
One can see that with a modest number of measurements and
iterations of the ML algorithm good results of the reconstruc-
tion procedure can be obtained. The all-points reconstruction
scheme is far more economical than the point-by-point
scheme considered previously, one needs much less variation
of the probe field to make the reconstruction. Furthermore,
since it is not necessary to use probe states with large mean
numbers of photons, the truncation error is significantly
smaller. Figure 10 shows that the number of iterations of the
ML algorithm required to achieve the optimal state is rather
small. Here fidelity defined by

f = Tr��rec�� �31�

was used as a measure of the reconstruction errors. It quan-
tifies a distance of the true pure state � from the recon-
structed one �rec. Notice approximately the same number of
iterations is needed for reaching optimal fidelity no matter
what is the size of the processed data. The fidelity practically
does not improve with further iterations. It may also be no-
ticed that the maximal fidelity obtained scales with the num-
ber of experimental runs as �1− f�	1/�Nr. In this simula-

tion, an Ntr�Ntr identity matrix has been used as the initial
guess. The choice of the starting point for the EM algorithm
has little effect on its convergence as long as we choose it to
be strictly positive. On the contrary, for different signal states
the convergence of the ML algorithm can be very different.
Let us consider, for example, the following superposition of
the vacuum and two-photon states:


�� = �
0� + exp�0.5i�
2��/�2. �32�
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The results of the all-points reconstruction procedure can
be seen in Fig. 11. We have used only five different points on
the phase plane depicted in Fig. 8�a�, and Nr=107 simulated
experimental runs. Therefore the number of the probe field
amplitudes needed to get a tomographically complete set of
measurements is quite small, too. We can safely limit our-
selves to a modest number of Fock-state vectors spanning the
reconstruction subspace. In spite of the lower dimensionality
of this problem compared to the previous example of the
signal coherent state, finding the ML solution numerically
appears to be much more difficult. To reach an acceptable
accuracy of the reconstruction �f �99% � in this case, one
has to make more than 105 iterations.

VIII. CONCLUSION

In this paper we have developed quantum tomography as
an objective approach defining a relation between a set of
measurements chosen for the reconstruction and a possible
result of the reconstruction procedure. It has been demon-
strated that choosing a priori the measurement set one might
severely limit the space available for the reconstruction, or
might increase unnecessarily the data acquisition time
needed for getting a faithful reconstruction. With help of the
ML reconstruction procedure we demonstrated how the sub-
space available for the reconstruction could be found; more-
over, we suggested a way to build an orthogonal basis in
such a subspace. This method was demonstrated first on a
simple example of a quantum optical tomography scheme.

After that attention was paid to a reconstruction scheme
based on binary detectors capable of only distinguishing be-

tween the presence and absence of photons. We proved here
that a complete reconstruction of the quantum state with such
detectors could be made. The general objective ML estima-
tion was adapted to such a tomography scheme. Two pos-
sible scenarios of reconstruction using binary detectors were
considered: the point-by-point and the all-points schemes.
The former allows the finding of a value of a signal state
Wigner function at any point on the phase plane. While being
very simple and methodologically similar to the reconstruc-
tion of the photon number �3�, it was shown to be far from
being optimal. Moreover, in the presence of noise it may
often fail to provide a physically sound result, e.g., by yield-
ing a nonpositive “density matrix.” The all-points reconstruc-
tion method is free from such shortcomings. The implemen-
tation of the complete formalism developed in the paper for
the all-points scheme was given: first we found the subspace
required for a successful reconstruction and determined the
appropriate amplitudes of the probe field and built an or-
thogonal basis in the reconstruction subspace. Subsequently
we used the iterative ML algorithm and estimated errors with
the help of the Fisher information matrix. The suggested
scheme is simple, robust, and sufficiently effective to be-
come a successful competitor to the conventional linear
quantum tomography schemes such as the inverse Radon
transformation.
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tion of the state Eq. �32�; �a� ab-
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between the exact and recon-
structed density matrices; �b� real
and �d� imaginary parts of the re-
constructed matrix obtained using
106 iteration of the ML algorithm;
and �c� the variances of the real
�imaginary� parts of the recon-
structed density matrix are shown
in regions n�m �n�m� as given
by Eq. �20�. The measurements
are that of Fig. 8; Nr=107.
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APPENDIX

The derivation of the detection formula, Eq. �23�, is given
here for the sake of completeness. We start by expanding the
normally ordered exponential operator in the quantum aver-
aging, Eq. �21�, into a power series,

p = Tra,b���a � 
��b��
��
l

c†lcl

l!
�− �c�l� , �A1�

where the lower indexes a, b, and c denote the respective
modes, �a is the input state of mode a and 
��b is the coher-
ent probe state of amplitude �. Expressing the output vari-
able c in terms of the input variables a and b using the
input-output relation Eq. �22�, tracing over mode b, and in-
troducing the parameters �24�, we get

p = �
l

�− �̄�l

l!
Tr���a† − 
*�l�a − 
�l� , �A2�

where the mode index a has been dropped. Recalling the
basic property of the coherent shift operator, D�
�aD†�
�
=a−
, and using the cyclic invariance of the trace operation,
this expression further simplifies to

p = �
l

�− �̄�l

l!
Tr�D†�
��D�
�a†lal� . �A3�

The indicated tracing over mode a is most conveniently done
in the computational basis of Fock states 
n�. Since al
n�=0
when l�n, the summation over l stops at n,

p = �
n=0

�

�
l=0

n
n!

l!�n − l�!
�− �̄�l�n
D†�
��D�
�
n� . �A4�

Recognizing the binomial factor, the detection formula, Eq.
�23�, is finally arrived at.
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