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A formal analytic solution of the time-dependent Schrödinger equation is obtained for cutoff Gaussian
wavepackets incident on finite range potentials of arbitrary shape. We derive closed analytical expressions for
transmitted wavepackets with a small cutoff and the solutions are applied to investigate the dynamics of
wavepacket tunneling. We showed that the analytic solutions satisfy a useful rescaling property that was
applied to study and characterize the delay time in delta potential barriers.
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I. INTRODUCTION

The scattering of wavepackets by one-dimensional poten-
tials has been a quantum dynamical model of great impor-
tance �1–13�. In addition to its academic interest as a
pedagogical tool in quantum mechanics textbooks, this
simple model has allowed to explore and understand a num-
ber of interesting transport phenomena, such as delay times,
Hartman effect �2�, and the dynamics of wavepackets in
semiconductor superlattices �7,8,11�.

Although one finds a few recent works that use analytical
solutions, the approach based on full numerical solutions is
mostly employed in the literature. In general, the possibility
of having analytical solutions in terms of known functions,
not only provides more insight into the physics of the sys-
tem, but they are also versatile and faster computational
tools.

In this work we apply the quantum shutter approach to the
problem of scattering of Gaussian wavepackets by arbitrary
one-dimensional potentials, and explicit analytic solutions
are obtained. The truncation of the initial wavepacket �i.e.,
the cutoff of its front tail by the shutter; see Fig. 1� is the
unique difference with respect to the traditional extended
wavepacket �EWP�, usually treated numerically. We demon-
strate the existence of a regime in which our cutoff wave-
packet �CWP� can be used as an excellent approximation for
the EWP, providing in this way a formal analytic solution for
the latter. In the present work we also derive exact analytic
solutions for the particular cases of free propagation, tunnel-
ing through a delta potential, and tunneling through a finite
thin barrier. Moreover, these easy-to-use analytic solutions
have interesting mathematical properties, in particular, a res-
caling property that is exploited to study a large number of
systems in a single calculation.

We also apply our formalism of CWP’s to the case of a
delta potential in order to analyze the delay time. The men-
tioned rescaling property is used to extend the range of the
parameters to unexplored regions, which allows us to char-
acterize from a dynamical point of view the main features of
the delay time.

In Sec. II we present the derivation of the formal solution
for CWP’s. Section III deals with a discussion of the trunca-
tion effects, and the derivation of the exact analytical solu-
tions for the free propagation, the delta potential, and thin
barrier in the low-energy regime. In Sec. IV we apply our
formalism in order to carry out a dynamical analysis of the
delay time for a delta potential. Finally, in Sec. V we present
the concluding remarks.

II. FORMAL SOLUTION FOR CUTOFF GAUSSIAN
WAVEPACKETS

In this section we shall derive the formal solution for
exploring the tunneling dynamics of Gaussian CWP’s within
the quantum shutter approach �14,15�. Our model deals with
a time-dependent solution of Schrödinger’s equation for a
finite range potential V�x� that vanishes outside the region
0�x�L, with a CWP initial condition,

��x,t = 0� = �Ae−�x − x0�2/4�2
eik0x, − � � x � 0,

0, x � 0.
� �1�

This setup consists of a Gaussian wave packet centered at
x=x0 with an effective width �, impinging on the left poten-
tial edge at x=0, and t=0. Here we have defined k0 as the
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FIG. 1. Quantum shutter S for an initial cutoff Gaussian wave-
packet with momentum k0 centered at x0, and effective width �.
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initial momentum, where E0= ��2k0
2 /2m� is the incidence en-

ergy, and A is the corresponding normalization constant.
While the EWP’s are spread in the full spatial interval
�−� , +��, the CWP’s, as mentioned above only exist in the
semispace, x�0, at the initial time, t=0.

To obtain the time-dependent solution for t�0 along the
transmission region �x�L�, we use the following expression
�13,16�:

��x,t� = �
−�

� dk
�2	


�k�T�k�eikx−i�k2t/2m, �2�

where T�k� is the transmission amplitude of the problem and

�k� is the Fourier transform of the initial cutoff state given
by Eq. �1�. The normalized expression for the latter reads,


�k� = 2	�0w�iz� , �3�

where we have defined a constant factor �0 as,

�0 	
1

2	
� �

�2	

1
�w�iz0�

, �4�

which is related to the normalization constant A. In the above
equations, w�z� is the complex error function �17,18� defined
as w�z�=exp�−z2�erfc�−iz�, where erfc�z� is the complemen-
tary error function �17�; the arguments z and z0 in Eqs. �3�
and �4� are given by

z =
x0

2�
+ i�k0 − k�� ,

z0 =
ix0

�2�
. �5�

The time-dependent solution in x space along the transmis-
sion region is obtained by feeding Eq. �3� into Eq. �2�. It
reads

��x,t� = �0�
−�

�

dk w�iz�T�k�eikx−i�k2t/2m. �6�

The above expression is the formal solution for Gaussian
CWP’s. It can be used to explore the space and time evolu-
tion of the system for a wide variety of potential profiles.
The only relevant input is the transmission amplitude T�k�
associated to the arbitrary potential V�x�, defined along the
interval 0�x�L.

There are some interesting cases in which the evaluation
of the solution �6� can be done analytically, which is one of
the main advantages of using CWP’s instead of EWP’s. In
the next section we shall discuss different cases of interest,
and demonstrate the reliability of the CWP’s solutions as
approximations for EWP’s in a special range of parameters.

III. PROBABILITY DENSITY: EFFECT OF
TRUNCATION

In our approach, the cutoff of the front tail of the initial
packet is the price we pay to obtain explicit analytic

solutions. However, as we shall show in this section, this
condition is not so restrictive. In fact, in most cases the effect
of this truncation is so small that the probability densities of
CWP’s and EWP’s become indistinguishable.

In this section, explicit analytic solutions will be derived,
not only for the free case but also for situations involving
potentials. Three simple cases will be considered, the free
propagation case, the dispersion of the packets by a delta
potential, and thin potential barriers in the low-energy
regime.

The first step in our study is to analyze the effect of the
truncation on the CWP’s for t�0. In order to perform this
task, we shall calculate and compare the time-dependent
probability density 
��x , t�
2 of CWP’s and EWP’s.

A. Free propagation case

We start our study by comparing the evolution of CWP’s
and EWP’s for the simplest case of free propagation. Al-
though the analytical solution for free EWP is well-known,
and given by

�0�x,t� =
1

�2	�1/4

1

�1/2

ei�k0x−�k2t/2m�

�1 + i
�t

2m�2

�exp�−
�x − x0 − �kt/m�2

4�2�1 + i
�t

2m�2� , �7�

we use it as reference point to test the consistency of our
approach of CWP’s, and to establish the basis to deal with
more complex situations involving potentials.

In what follows we shall derive an exact analytic solution
for the time evolution of the CWP’s. Feeding the well-known
free particle propagator,

Kf�x,t;y,0� =� m

2	�t
eim�x − y�2/2�t �8�

into Eq. �14� of Ref. �16�, and using the identity �17�

�
0

�

dt e−�at2+2bt+c� =
1

2
�	

a
e�b2−ac�/a erfc� b

�a
 , �9�

we obtain the following solution:

�0
e�x,t� =

1

�1/2� 2

	
�1/4 eimx2/2�t

�1 + i
t



w�izf�
�w�iz0�

, �10�

with = �2m�2 /��, and zf defined as

zf = −
i

2
� it

2
� x/� + it�ik0� + x0/2��/

�1 + it/
 . �11�

There are routines that can be used to easily evaluate the
complex error function w appearing in Eq. �10�. For
example, using the method given in Ref. �19�.
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An equivalent representation can also be obtained by set-
ting T�k�=1 in Eq. �6�, and integrating with respect to the
variable k, that is,

�0
e�x,t� = �0�

−�

�

dk w�iz�eikx−i�k2t/2m. �12�

Equations �10� and �12� are equivalent, and the latter will be
used later in the following subsections.

We illustrate in Fig. 2�a� the quantum shutter model for a
free Gaussian CWP with a strong truncation. In this case the
parameters �given in the figure� are such that the relation

x0 /2�
�1 is fulfilled, and hence the right tail of the initial
packet is almost entirely cut off at x=0. In all of our calcu-
lations we shall use the effective mass, m=0.067me, where
me is the electron mass.

The effect of the truncation of the probability density in k
space is shown in Fig. 2�b�. Here we plot the 
��k�
2 vs k, at
t=0, for the CWP �solid blue line� calculated from Eq. �3�.
This is compared to the calculation of the probability density
in k space for the EWP �dashed red line� given by the Fourier
transform of Eq. �7� at t=0, and we note that the packet
corresponding to the CWP is wider than the EWP in this
space. The above is expected from the uncertainty principle
as CWP is narrower than the EWP in x space �the former is
extended just in the semispace x�0�.

In Fig. 2�c� we compare the probability density 
��x , t�
2

as a function of time t and fixed position x=0 for both the
CWP and EWP. Although roughly similar in shape, the
curves exhibit differences in height as a consequence of the
truncation of the initial wavepacket in the CWP case.

However, all the differences between the CWP’s and
EWP’s observed in the previous figure rapidly disappear
when the ratio 
x0 /2�
 is increased. Moreover, we can use
the mathematical properties of the w�z� function in this re-
gime, to obtain an analytical expression for the solution more
easy-to-use and even simpler than Eq. �10�, provided that the
condition 
x0 /2�
�1 is fulfilled. Notice that this condition is
not so demanding, since it is sufficient that the distance 
x0

of the initial packet to the shutter is about twice the width �
or larger.

In order to obtain the approximate analytical expression
mentioned above, let us first consider the following proper-
ties of the w�z� function. For very large values of the
argument z, i.e., 
z
�1, the w�iz� has the following series
representation �14�:

w�iz� � 2ez2
+

1

	1/2z
−

1

2	1/2z3 + ¯ , �13�

provided that the phase 
z of z lies in the interval
	 /2�
z�3	 /2. In the case of the free wavepacket given
by Eq. �12�, it is easy to convince oneself by inspection of
Eq. �5� that the argument z always satisfy the above inequal-
ity since Re�z��0. Moreover, from Eq. �12� we can see that
the argument z has in general a large value in the range of the
k integration. However, in view of the fact that the main
contributions of the integral arise from values of k in the
vicinity of k0, one may consider from Eq. �5� that
z��x /2��+ i� �where �→0�. Therefore, in order to use the
properties of w�z� given by Eq. �13�, one has to guarantee
that the condition 
z 
 �
x /2�
�1 is always satisfied; this is
our condition for the small truncation regime. With these
conditions fulfilled, one can approximate

w�iz� � 2ez2
. �14�

By feeding the above approximation in Eq. �12�, we obtain
the following expression for the free CWP:

FIG. 2. �Color online� �a� Free Gaussian CWP with strong trun-
cation �
x0 /2�
�1� at t=0. Parameters: x0=−4.0 Å, �=5.0 Å, and
E0=1.0 eV. �b� Probability density in k space for the CWP �solid
blue line� compared to the EWP �dashed red line�. �c� Time evolu-
tion of the CWP at x=0, calculated from �10� �solid blue line�, and
compared to the EWP �dashed red line� calculated from Eq. �7�.
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�0
app�x,t� =

1

�2	�1/4

1

�1/2

ei�k0x−�0t�

�1 + i
t



�exp�−
�x − x0 − v0t�2

4�2�1 + i
t


 � , �15�

where we have defined the frequency �0= �E0 /��, and the
velocity v0= ��k0 /m�. Note that our free approximated solu-
tion, Eq. �15�, is exactly the same as the free solution for
EWP’s, Eq. �7�. This is an important test that confirms our
initial assumption that our approach can accurately describe
the evolution of EWP’s in the small truncation regime. In
what follows we shall apply this idea to the more complex
situations involving potentials.

B. Delta potential barrier case

The transmission amplitude for a delta potential
V�x�=���x� is given by

T�k� =
k

k + i�m�/�2�
. �16�

Using this expression for T�k� in the formal solution, Eq. �6�,
we obtain after simple algebra, the dynamical solution for
CWP’s incident on a delta potential barrier; it reads

��
e�x,t� = �0

e�x,t� − ���
−�

� dk w�iz�eikxe−i�k2t/2m

k + i�m�/�2�
, �17�

where we have defined the parameter ��	�im� /�2��0.
From the above expression it is easy to see that the free
solution �0

e�x , t� is naturally recovered in the limit �→0.
Calculations of the time-dependent probability density are

depicted in Fig. 3, where we show a plot of 
��x , t�
2 vs t at

the fixed position x=0 for the CWP incident on a delta po-
tential �solid blue line�. The parameters are given in the fig-
ure. This is compared to the calculation of the probability
density corresponding to the EWP with the same parameters
�dashed red line�. The latter was done evaluating numerically
the integral solution obtained by Elberfeld and Kleber �4�.
Both calculations coincide almost perfectly, implying that the
CWP’s are excellent approximations for EWP’s, even in the
presence of a potential, with the unique condition that we are
in the small truncation regime.

This equivalence is relevant since we can derive analyti-
cal solutions for wavepackets that otherwise can only be nu-
merically treated. This can be done by exploiting the math-
ematical properties of the complex error functions involved
in the exact solutions �12� and �17�.

For wavepackets with a small cutoff, i.e., 
x0 /2�
�1, we
can, as in the free case, use the approximation �14� in the
integral representations given by Eqs. �12� and �17�, and
using the identity

M�x�;q�;t�� =
i

2	
�

−�

�

dk
eikx�e−i�k2t�/2m

k − q�
, �18�

to obtain an approximate analytical solution for the delta
potential case. This solution reads

��
app = �0

app�x,t� −
1

�2	�1/4

1

�1/2ei�k0x−�0t�

� �	�2m��/�2�M�x�;q�;t�� , �19�

where we have defined

x� = x − x0 − v0t ,

q� = − �k0 + im�/�2� ,

t� = t − i . �20�

The quantities M�x� ;q� ; t�� are known as Moshinsky
functions �14,20�, and are defined by

M�y�� =
1

2
eimx�2/2�t�w�iy�� , �21�

where the argument y� of the complex error function w�iy��
is given by,

y� = e−i	/4� m

2�t�
�x� −

�q�

m
t� . �22�

The new expression for the time-dependent solution, Eq.
�19�, is analytical and simpler than �17�, where we just need
to evaluate the Moshinsky function instead of performing the
time-consuming numerical integration required to evaluate
�17�. In Fig. 3 we have included the calculation of 
��x , t�
2
vs t at x=0 using this approximate expression for the solu-
tion �dotted green line�. All curves overlap illustrating that
the description of Eq. �19� is excellent. It is important to
stress that Eq. �19� not only reproduces the calculations of
the exact integral solution, Eq. �17�, but also the numerical
solution of the Gaussian EWP, widely used in the study of

FIG. 3. �Color online� �a� Time evolution of 
��
e
2 for the delta

potential at a fixed value of the position x=0, given by the integral
representation Eq. �17� �solid blue line�. Parameters: x0=−20.0 Å,
�=5.0 Å, and E0=1.0 eV, �=2.0 eV Å. The calculations using the
solution for an EWP �Eq. �19� from Ref. �4�� �dashed red line�, and
the analytical solution �19� �dotted green line�, are included for
comparison. All curves overlap.
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time-dependent tunneling problems �4�. Therefore the ana-
lytic expression for the solution, Eq. �19�, can also describe
EWP’s in the considered regime.

C. The finite barrier case

Let us consider a rectangular potential barrier of height V0
and width L, defined along the region, 0�x�L. The poten-
tial barrier systems can also be characterized in terms of the
opacity �, defined as �= �kV0

L�, with kV0
= �2mV0�1/2 /�. The

transmission amplitude T�k� is given by

T�k� = �cosh��L� − i
k2 − �2

2k�
sinh��L�−1

e−ikL, �23�

where we have defined �2= �kV0

2 −k2�. In the low-energy re-
gime �k�kV0

�, we have that �→kV0
= �� /L�, which allows to

approximate Eq. �23� by

T�k� � �cosh � + i
�

2kL
sinh �−1

e−ikL. �24�

For the case of potential barriers with small opacities
���1�, we can make the approximations cosh ��1, and
sinh ���, which allows us to write

T�k� � �1 + i
�2

2kL
−1

e−ikL =
ke−ikL

k + i�mV0L/�2�
. �25�

In order to obtain the time-dependent solution for this
case, we proceed as follows. First we feed into our formal
solution, Eq. �6�, the obtained transmission amplitude, Eq.
�25�, and the approximate w function, Eq. �14�. Using Eq.
�18�, and with the help of the Gaussian integral,

�
−�

�

dy e−uy2
e−vy =�	

u
e−v2/4u, �26�

we obtain the solution

�b
app = �0

app�x − L,t� −
1

�2	�1/4

1

�1/2ei�k0�x−L�−�0t�

� �	�2m�V0L/�2�M�xb;qb;tb� , �27�

where we have defined,

xb = x − L − x0 − v0t ,

qb = − �k0 + i�2/2L� ,

tb = t − i . �28�

The above solution is very similar to the delta potential
case, given by Eq. �19�. Actually, Eq. �27� can be obtained
directly from the delta case solution �19�, by letting �=V0L,
and performing the translation x→ �x−L�.

Let us consider in Fig. 4 the time evolution of 
�b
app
2

�solid red line�, measured at the barrier edge x=L, with po-
tential parameters V0=0.1 eV and L=2.5 Å. The initial CWP
is centered at x0=−50.0 Å, with �=5.0 Å, and an incidence
energy E0=1.0�10−3 eV. Here we have included for

comparison a plot of the probability density �dashed black
line�, using Eq. �6� with the exact transmission amplitude
given by Eq. �23�. As can be appreciated from the figure,
they agree very well showing that the analytical solution is a
good approximation to the numerical one.

At this point it is important to emphasize the generality of
the solution Eq. �6� and the possibility to derive analytical
solutions for more complex structures. As illustrated here for
the potential barrier case, all we need is a suitable expression
for the transmission amplitude T�k�. For example, in systems
involving resonances such as double barriers or superlattices,
Breit-Wigner-type expressions for T�k� could be used.

IV. ANALYSIS OF THE DELAY TIME

With the new tools developed so far, we are ready to
perform a systematical study of the delay time, and extend
the study to unexplored regions. Before performing this task,
let us explore a useful rescaling property of the solutions.

In order to exemplify the above, let us consider the
time evolution of 
��

app
2 for two different systems called A
and B. System A is the one considered in Fig. 3, that is, the
system with parameters x0=−20.0 Å, �=5.0 Å, E0=1.0 eV
�k0=0.1325 Å−1�, and �=2.0 eV Å. System B has
parameters x0=−40.0 Å, �=10.0 Å, E0=0.25 eV
�k0=0.06626 Å−1�, and �=1.0 eV Å. In Fig. 5�a� we plot
their corresponding time-dependent probability densities.
However, if we now consider the probability densities of
systems A and B in such a way that we now plot �
��

app
2 vs
�t /�, we find that both curves coincide perfectly. This in-
variance under rescaling is illustrated in 5�b�, where the plots
are now indistinguishable among them. This coincidence
arises from the fact that we have �intentionally� chosen the
parameters so that the dimensionless quantities k0� and
�x0 /�� are the same for both systems. This is evidence of an
underlying rescaling property of the solutions.

The rescaling property illustrated in the above numerical
example, is in fact a general feature of our solutions. We

FIG. 4. �Color online� Time evolution of 
�b
app
2 �solid red line�

for a thin potential barrier ��=0.1047�, in the low-energy regime,
measured at x=L. The potential parameters are V0=0.1 eV, and
L=2.5 Å; the CWP parameters are x0=−50.0 Å, �=5.0 Å, with an
incidence energy E0=1.0�10−3 eV. For comparison, we included a
plot of the probability density �dashed black line�, using Eq. �6�
with the exact transmission amplitude given by Eq. �23�.
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have found that the solutions for the different cases consid-
ered so far, Eqs. �6�, �10�, �12�, �15�, �17�, �19�, and �27� can
all be rescaled in this special manner. See the Appendix. In
this way, a rescaled solution, instead of representing a given
system, will represent a set of systems that share similar
characteristics. We will take advantage of this property in our
study of the delay time, exploring a large number of systems
in a single calculation.

The rescaled delay time TD is calculated by measuring the
time differences of the maxima of the probability densities of
the free and delta cases. The dynamical time scale is then
given by

TD = T�
app − T0

app, �29�

where T0
app is obtained from the maximum of 
�0

app�X ,T�
2
calculated from the rescaled free solution ��A15��, and T�

app

from the maximum of 
��
app�X ,T�
2 evaluated using the res-

caled solution of the delta potential �A16�. Notice that TD is
evaluated in the rescaled coordinates �X ,T�, defined in the
Appendix, and according to Eq. �A7�, TD is a dimensionless
quantity.

We shall analyze the behavior of TD as function of two
parameters: K0, �, at fixed values of X0 and X=0. All the
systems with the same pair �K0 ,�� will have exactly the

same behavior; in this sense each pair �K0 ,�� represents a
family of similar systems.

We present in Fig. 6 the calculation of TD as a function of
the parameters K0 and �, for the case X0=−4.0. We notice a
regime �red region� for small values of K0 �roughly
K0�10.0 in this calculation�, where the time differences of
peaks, given by Eq. �29�, yield TD�0. This effect must be
related to a filtering process as discussed in Ref. �21�. The
delta is acting as a filter of high-energy components of the
wavepacket, and therefore the peak of the transmitted packet
T�

app appears earlier than its free counterpart T0
app. See also

Ref. �8�. Moreover, a region of delay time is clearly appre-
ciated �green region� as a large plateau in the surface in Fig.
6. As we shall show below this region is not so flat at all, and
exhibits structure when viewed at an appropriate scale. In
Fig. 7�a� we illustrate this in detail by plotting an amplifica-
tion of the plateau of Fig. 6, and a hump is clearly appreci-
ated. This special structure is related with the antibound state
of the delta potential, Kab=−i� /2, as it will be clarified after
we compare our dynamical delay time with the well-known
expression for the phase time �22�. As discussed in Ref. �23�
the phase time can be computed as an energy derivative of
the phase of the transmission amplitude. For the case of the
delta potential, the phase time can be obtained by using Eq.
�16�, which yields

t
 = � m

�k0
� �m�/�2�

�m�/�2�2 + k0
2 . �30�

The rescaled phase time T
= �t
 /� is given by

T
 =
��/K0�

�2 + 4K0
2 . �31�

In Fig. 7�b� we calculate the phase time for the delta
potential T
 using the same parameters as in Fig. 7�a�. Note

FIG. 5. �Color online� �a� Probability density at x=0 for the
delta potential case using the analytical solution given by Eq. �19�
for systems A �solid blue line�, and B �dashed red line�. �b� Res-
caled probability density �
��

app
2 as a function �t /� for the systems
depicted in �a�. The curves of systems A and B are indistinguishable
among them.

FIG. 6. �Color online� Delay time TD at X=0 for a CWP initially
centered at X0=−4.0. An apparently flat region of negligible
TD�0 �green �top� surface� appears for a wide range of values of
the rescaled parameters K0 and �. A region of TD�0 �red �front�
surface� is also appreciated, and is related to a filtering process. See
text.
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that both surfaces in 7�a� and 7�b�, although not exactly the
same, exhibit similar structure. Sections of both surfaces are
shown in Fig. 8 for representative values of K0. Notice the
perfect agreement between TD and T
 for small values of �.
This occurs roughly for values of ��K0, as can be seen by
visual inspection of Fig. 8.

It can be easily shown from Eq. �31�, that the maximum
exhibited by the phase time in the graphs occurs exactly at
K0= �� /2�= 
Kab
, i.e., the magnitude of the antibound state
of the delta potential. In view of the similarities of TD and T


exhibited in Figs. 7 and 8, it is clear that the antibound state
is also responsible for the maximum of our dynamical delay
time. The importance of the antibound state on both the
phase time and the delay time was noticed earlier by Hernán-
dez and García-Calderón �6� in the problem of tunneling of
cutoff plane waves in a delta potential.

V. CONCLUDING REMARKS

A formal solution for tunneling Gaussian wavepackets
was derived exactly within the framework of the quantum

shutter approach. The general solution, valid for finite-range
potentials of arbitrary shape, was applied to particular sys-
tems of interest, and simple analytic expression for their cor-
responding wave functions were derived. We showed that the
solutions satisfy a useful rescaling property that was applied
here to study the delay time. This interesting mathematical
property allowed us to explore this time scale for a wide
range of parameters.

The main results of our study of the delay time can be
summarized as follows. �i� Our dynamical time scale TD was
analyzed in terms of two special rescaled parameters: K0 and
�. The former is related to the momentum, and the latter to
the intensity of the delta potential. For small values of K0, a
strong filtering effect of high-energy components of the

FIG. 7. �Color online� �a� Amplification of the plateau of the
surface presented in the previous figure that shows delay time in
more detail. �b� The surface corresponding to the rescaled exact
phase time T
 is included for comparison with �a�.

FIG. 8. �Color online� Delay time TD �red solid line� and phase
time T
 �black dashed line� at X=0 as a function of � for different
values of the dimensionless momentum K0: �a� K0=10.0, �b�
K0=20.0, and �c� K0=40.0. The initial position of the CWP in the
rescaled coordinates is X0=−4.0.
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wavepacket dominated the process, whereas for larger values
of K0, a region of negligible time delay is observed �this
holds for a wide range of values of ��. �ii� The phase time
was also calculated in terms of the parameters K0 and � and
compared with our dynamical time delay. An excellent
agreement was obtained for small values of �, implying that
the phase time, which is a stationary time scale, works well
in the vicinity of the interaction region �X=0�. This is im-
portant to emphasize since this is not the case for other kind
of initial conditions, such as cutoff plane waves, as shown
recently by Hernández and García-Calderón �6�.

The analysis of the effect of truncation of the initial state
on the evolution of the probability density is also one of the
important contributions of the present work. We found a re-
gime �
x0 /2�
�1� in which the analytic solutions of the
CWP’s perfectly coincide with the calculations of the
EWP’s. This means that the analytic solutions of the CWP’s
can also be used as practical and fast computational tools for
the EWP’s in that regime.

As a final remark, the formal solution �6� is valid for
potentials of arbitrary shape, and the only input is the trans-
mission amplitude T�E�, which, for more complex systems
such as superlattices, can be calculated using transfer matrix.
It is important to emphasize, however, that this solution is
valid only for the transmission region x�L. The solution for
the internal region �0�x�L� requires the use of a different
propagator.
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APPENDIX: RESCALING OF THE SOLUTIONS

The regularities observed in our formulas for the probabil-
ity density arise from a simple rescaling property
of Schrödinger’s equation and the corresponding initial con-
dition. By feeding the dimensionless variable X= �x /�� into
the time-independent Schrödinger equation for the delta
potential,

�−
�2

�x2 +
2m

�2 ���x� − k0
2��x� = 0, �A1�

we obtain,

�−
�2

�X2 +
2m

�2 ����X� − �k0��2��X� = 0. �A2�

In the above equation we can identify the dimensionless pa-
rameters for the momentum K0=k0� and the effective poten-
tial �= �2m�� /�2�. This allows us to write the rescaled
Schrödinger’s equation as

�−
�2

�X2 + ���X� − K0
2��X� = 0. �A3�

By performing the above rescaling for the time-dependent
Schrödinger’s equation,

�−
�2

�x2 +
�2

2m
���x� − i

2m

�

�

�t
��x,t� = 0, �A4�

we obtain

�−
�2

�X2 + ���X� − i
�

�T
��X,T� = 0, �A5�

where the dimensionless variable of time is defined as
T= �t /�. Similarly, the Gaussian CWP initial condition given
by Eq. �1� becomes

��X,T = 0� = �A�e−�X − X0�2/4eiK0X, − � � X � 0,

0, X � 0.
�

�A6�

with X0= �x0 /�� and ��X ,T� as the rescaled time dependent-
solution. It is clear that ��X ,T� only depends on the param-
eters �, X0, and K0. That is, for a fixed value of X0, all the
systems with the same parameter K0 and � yield the same
��X ,T�.

The above results allow us to rescale all of our formulas
considered so far, by using the set of dimensionless variables

X = x/� ,

X0 = x0/� ,

T = t/ ,

K = k� ,

K0 = k0� ,

� = 2m��/�2. �A7�

With these new rescaled variables, the general solution
given by Eq. �6� can be rewritten as

��X,T� = ����x,t� = ���
−�

�

dK w�iZ�T�K�eiKX−iK2T,

�A8�

with the definitions

�� =
1

2	
� 1

�2	

1
�w�iZ0�

,

Z0 = X0/�2,

Z = X0/2 + i�K0 − K� , �A9�

where �� is related to the normalization constant A�.
For the particular case of the free Gaussian wavepacket,

the rescaled version of the integral solution, Eq. �12�, reads
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�0�X,T� = ���0�x,t� = ���
−�

�

dK w�iZ�eiKX−iK2T.

�A10�

Similarly, the rescaled exact solution for the free particle
case reads

�0
e�X,T� = ���0

e = � 2

	
�1/4 eiX2/4T

�1 + iT

w�iZf�
�w�iZ0�

, �A11�

with

Zf = − i
1

T�X + i�iK0 + X0/2�/T
�1 − i/T

 . �A12�

That is, Eq. �A11� is the rescaled version of the solution
given by �10�.

For the particular case of the delta potential, the rescaled
transmission amplitude reads

T�K� =
K

K + i�/2
�A13�

and the rescaled integral representation of the solution �17� is
written as

��
e�X,T� = ����

e�x,t� = ���
−�

�

dK w�iZ�T�K�eiKX−iK2T.

�A14�

We also perform the rescaling procedure for the solutions
corresponding to the small cutoff regime 
X0 /2
�1. For the
free propagation case we have

�0
app�X,T� = ���0

app

=
1

�2	�1/4

ei�K0X−K0
2T�

�1 + iT

�exp�−
�X − X0 − 2K0T�2

4�1 + iT� � , �A15�

and for the rescaled delta potential case we have
��

app�X ,T�=�1/2��
app, given by

��
app�X,T� = �0

app�X,T� −
1

�2	�1/4ei�K0X−K0
2T�

� �	�M�X�;Q�;T�� , �A16�

where we have defined

X� = X − X0 − 2K0T ,

Q� = − �K0 + i�/2� ,

T� = 2m�T − i�/� . �A17�

For the case of the potential barrier in the low-energy
regime, and small values of the opacity ���1�, we have
�b

app�X ,T�=�1/2�b
app, given by

�b
app�X,T� = �0

app�X − L�,T� −
1

�2	�1/4ei�K0�X−L��−K0
2T�

� �	��2

L�
M�Xb�;Qb�;Tb�� , �A18�

with

L� = L/� ,

Xb� = X − L� − X0 − 2K0T ,

Qb� = − �K0 + i�2/2L�� ,

Tb� = 2m�T − i�/� . �A19�

Equations �A15�, �A16�, and �A18� are the rescaling of
Eqs. �15�, �19�, and �27�, respectively.
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