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A remarkable feature of standard quantum mechanics is its analogy with classical fluid dynamics. This has
motivated in the past efforts to formulate phase-space techniques based on various statistical models of
quantum hydrodynamic equations. In this work an inverse kinetic theory for the Schrödinger equation has been
constructed in order to formally describe the standard quantum dynamics by means of a classical dynamical
system �to be denoted as phase-space Schrödinger dynamical system�. It is shown that the inverse kinetic
theory can be �non�uniquely determined under suitable mathematical prescriptions. In particular, when the
quantum linear momentum is identified with a suitable linear kinetic momentum, it follows that the fluctuations
of the position vector and the kinetic linear momentum satisfy identically the Heisenberg theorem.
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I. INTRODUCTION

The goal of this investigation is to develop a new phase-
space approach to quantum mechanics. This is based on an
inverse kinetic theory for the Schrödinger equation, i.e., a
kinetic theory which is equivalent, in a suitable sense �to be
recalled below�, to the latter equation. Based on recent work
by Ellero and Tessarotto �1,2�, we intend to show that the
complete set of hydrodynamic equations can be generated by
means of a kinetic theory of this type which holds for arbi-
trary initial and boundary conditions for the quantum state.

Starting point is the quantum hydrodynamics formulation
of standard quantum mechanics �SQM�. In fact, it is well
known that the Schrödinger equation �3� is equivalent to a
complete set of partial differential equations for suitable real-
valued functions of position and time �denoted as quantum
fluid fields�, which are known as quantum hydrodynamic
equations �QHE� �4�. The quantum hydrodynamic descrip-
tion obtained in this way, which has been studied by several
authors �4–13�, affords a straightforward physical interpreta-
tion in terms of a classical fluid. This is obtained by identi-
fying the classical fluid fields �number density and fluid ve-
locity�, respectively, with the quantum probability density in
configuration space and the quantum probability current �or
quantum fluid velocity�. In particular, the quantum hydrody-
namic equations can be viewed as the equations of a classical
compressible and nonviscous fluid, endowed with potential
velocity and quantized velocity circulation.

The analogy �with classical fluid dynamics� has motivated
in the past efforts to formulate phase-space techniques based
on various statistical models of quantum hydrodynamic
equations. These works, although based on different ap-
proaches, share the common view that the quantum state
corresponds to an underlying statistical description of some
sort �for a review of the phase-space route to the quantum
hydrodynamic equations see, for example, Ref. �14��.

Following the pioneering work of Wigner �15,16�, phase-
space techniques typically require that the quantum fluid

fields or the wave function itself be represented in terms of,
or associated with, appropriate phase-space functions. These
are usually identified with quasiprobabilities �17� �for a re-
view see Ref. �18�, Chap. 4�, although formulations based on
pure probability densities are also available �see Ref. �19�,
Sec. IV.3�. Several examples of approaches of this type are
known, which include in particular the Wigner representation
�15� and the P-representation �20,21�. The procedure of rep-
resenting quantum states by quasiprobabilities in phase space
is closely related to the phase space formulation of SQM
mechanics based on the noncommutative product known as
Moyal product �22,23� However, it is known that quasiprob-
abilities such as the Wigner distribution, may become singu-
lar in the so-called “full quantum regime” �24�, i.e., when the
potential becomes nonlinear. A related type of approaches are
based on moment-expansion techniques �25–27� which seek
to reconstruct the density operator or the corresponding
phase-space distributions �28–32�. The latter are usually ob-
tained by constructing a set of moments in terms of the
Wigner distribution. However, the corresponding moment
equations �quantum hydrodynamic moment equations�, ex-
cept for particular initial conditions �33� or specialized �see
Refs. �34,35�� and asymptotic models �see for example Ref.
�36��, in general do not satisfy a closure condition, i.e., the
moment equations form an infinite hierarchy.

These facts have motivated in the past the search of alter-
native phase-space representations of the quantum state.
Among such approaches, we recall, first, the phase space
representation of SQM due to Torres-Vega and Frederick
�37,38�, in which the wave function is extended to phase
space and is assumed to obey an appropriate “Schrödinger
equation in phase space.” Another class of statistical ap-
proaches is represented by the attempt to interpret SQM in
the framework of an underlying statistical process. An ex-
ample is provided by stochastic models �see, for example,
Refs. �39–43� and the review paper �44��, in which the un-
derlying particle dynamics is governed by stochastic differ-
ential equations, such as those describing the nondissipative
quantum Brownian motion, which traditionally is described
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by Fokker-Planck or diffusion equations. Such equations,
generally, lead again to quasiprobability distributions which
permit to “reconstruct” the Schrödinger equation only ap-
proximately �namely in an asymptotic sense� and under “ad
hoc” initial conditions, since quasiprobability functions may
become, in general, invalid for nonMarkovian processes with
arbitrary noise correlation. Although extensions of the clas-
sical theory of Brownian to quantum domain have been pro-
posed which permit the formulation in terms of a well-
behaved true probabilistic description �45�, the problem of
these approaches remains that of explaining the origin of
such stochasticity �46,47�, which is precisely their weakness.

A second type of statistical approach is provided by ki-
netic models in which the underlying particle dynamics is
purely classical, i.e., the Schrödinger equation is assumed to
be based on classical kinetic theory. An example of this type
is provided by the approach due to Kaniadakis �48,49�, in
which each quantum particle is assumed to be composed by
N�1 identical “subquantum” interacting classical particles
�monads�, to be described by means of a classical kinetic
equation. Also in this case the Schrödinger equation is—at
best—recovered only in an approximate sense. Several as-
pects of this formulation, however, remain unclear, which
include—among others—the problem of the closure of the
moment equations, the specification of the initial and bound-
ary conditions for the kinetic distribution function and the
conditions of convergence to the Schrödinger equation.

In this paper we intend to show that certain difficulties of
previous theories �in particular the issue of closure condi-
tions of quantum hydrodynamic moment equations and the
possible singularity of the quasiprobability density� can be
overcome. For this purpose an inverse kinetic theory is
adopted for the Schrödinger equation, based on the introduc-
tion of a suitable inverse kinetic equation �IKE�. By defini-
tion IKE must be able to yield identically, via suitable mo-
ment equations, the complete system of equations forming
QHE. In particular, we intend to show that it can be con-
structed in such a way to satisfy the following requirements.

�1� Completeness of IKE. All fluid fields are expressed as
moments of the kinetic distribution function and all hydro-
dynamic equations can be identified with suitable moment
equations of IKE.

�2� Closure condition of moment equations of IKE. There
must exist a subset of moments of IKE which form a com-
plete system of equations, to be identified with the prescribed
set of quantum hydrodynamic equations.

�3� Smoothness for the wave function. The system wave
function is assumed suitably smooth so that the solution of
the kinetic distribution function exists everywhere in a suit-
able extended phase space.

�4� Arbitrary initial and boundary conditions for the sys-
tem wave function. The initial conditions for the Schrödinger
equations are set arbitrarily while Dirichlet boundary condi-
tions are considered for the system wave function.

�5� Self-consistency of IKE. The kinetic theory must hold
for arbitrary �and suitably smooth� initial conditions for the
kinetic distribution function. In other words, the initial ki-
netic distribution function must remain arbitrary even if a
suitable set of its moments are prescribed at the initial time.

�6� Nonasymptotic IKE. That is, the correct hydrody-
namic equations must be recovered by the inverse kinetic
theory independently of any physical parameter characteriz-
ing the quantum hydrodynamic equations.

The formulation of a theory of this type involves also the
identification of an underlying classical dynamical system, in
terms of which all relevant observables and related expecta-
tion values are advanced in time. This feature is potentially
important for numerical simulations both in computational
fluid dynamics and quantum mechanics, since the corre-
sponding phase-space trajectories, which determine uniquely
the evolution of the fluid fields, can thus be evaluated nu-
merically. This permits the development of Lagrangian par-
ticle simulation methods in fluid dynamics which exhibit a
low computational complexity �50�.

From the mathematical viewpoint inverse kinetic theories
can be obtained, in principle, for arbitrary fluid equations, an
example being provided by the inverse kinetic theory re-
cently developed for the incompressible Navier-Stokes equa-
tion by Ellero and Tessarotto �see Refs. �1,2��. A basic pre-
requisite for the formulation of an inverse kinetic theory of
this type is, however, the proper definition of the relevant
quantum fluid fields and their identification with suitable mo-
menta �to be denoted as kinetic fluid fields�, which include
the kinetic temperature as well as the related definition of
directional temperatures �see below�.

However, the case of Schrödinger equation is peculiar be-
cause, as is well known, its related fluid equations apparently
depend only on two quantum fluid fields, respectively, to be
identified with the observables quantum probability density
and the quantum fluid velocity, while the notions of quantum
temperature and directional temperatures �to be identified
with the corresponding kinetic moments� remain in principle
arbitrary.

The problem is not merely of interest for theoretical and
mathematical research, but has potential relevance also for
the understanding of the fluid description of quantum me-
chanics and of the underlying statistical models. Our moti-
vation is to exploit the analogy between classical and QM
hydrodynamics descriptions in order to prove that the quan-
tum observables and the fluid fields can formally be repre-
sented by means of a purely classical statistical model.

Although the mathematical equivalence should not too
hastily be regarded as implying physical equivalence of the
two formulations, this suggests that some relevant classical
reasonings can be transferred to SQM for the construction of
the inverse kinetic theory. This concerns, in particular, the
adoption of the so-called principle of entropy maximization
�PEM� �19,51,52� for the determination of the initial condi-
tion for the kinetic distribution function. As a consequence,
one finds that a particular solution for the initial kinetic dis-
tribution function corresponds to a generalized Maxwellian
kinetic distribution function, carrying prescribed number
density, flow velocity and directional temperatures. Never-
theless, also non-Maxwellian kinetic distribution functions
can be considered as admissible initial conditions.

Another interesting consequence of the kinetic formula-
tion is the formal description of SQM by means of a classical
dynamical system �to be denoted as phase-space
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Schrödinger dynamical system�. This can be interpreted as a
system of fictitious particles interacting with each other only
by means of an appropriate mean-field interaction which de-
pends on appropriate quantum fluid fields and moments of
the kinetic distribution function. Such a classical description
is realized by means of an appropriate form of the correspon-
dence principle �denoted kinetic�, whereby the physical ob-
servables, quantum fluid fields and quantum hydrodynamic
equations are, respectively, identified with ordinary phase-
space functions, kinetic moments of the kinetic distribution
function and moment equations obtained from IKE.

Here we intend to show that in principle infinite solutions
also to this problem exist due, in particular, to the nonu-
niqueness of the definition of the kinetic temperature. As a
consequence, also the inverse kinetic theory results intrinsi-
cally nonunique. Such a feature is not surprising since these
kinetic models may be viewed simply as examples of the
infinite admissible, and physically equivalent, mathematical
descriptions of physical reality. Nevertheless, despite such a
nonuniqueness feature, we intend to prove that, by suitable
prescriptions, the functional form of the kinetic equation and
the mean-field force that defines the streaming operator can
both be uniquely defined.

The paper is organized as follows.
The mathematical setting of the hydrodynamic description

of SQM is recalled in Secs. II–IV. In particular, the quantum
hydrodynamic equations for the quantum fluid fields �f ,V�
are posed in Secs. II and III, while the definition of the re-
maining quantum fluid fields, provided by the quantum di-
rectional temperatures �TQM,i, for i=1,2 ,3�, is given in Sec.
IV, together with their relationship with the Heisenberg in-
equalities. The construction of the inverse kinetic theory is
treated in Secs. V and VI. In particular, the general form of
the IKE is laid in V, while in Sec. VI the mean-field force is
determined explicitly. The main results of theory are summa-
rized in three theorems which determine the explicit form of
the IKE and its basic properties.

II. HYDRODYNAMIC DESCRIPTION OF NRQM

In this section we intend to recall the well-known fluid
description of nonrelativistic quantum mechanics �NRQM�,
based on the property of the Schrödinger equation to be
equivalent to a complete set of fluid equations. For the sake
of clarity let us introduce the basic definitions and the math-
ematical formulation of the problem.

In this paper we shall consider, in particular, the case of a
system of spinless scalar particles �bosons� described by a
single scalar wave function ��r , t�, with associated probabil-
ity density

f = ���r,t��2, �1�

requiring that both are defined and continuous in �̄� I. In

addition we impose that f is strictly positive in �, where �̄
denotes the closure of �, while f and � are, respectively,
single valued and possibly multivalued in �� I, with � at
least of class C�2+k,1+h���� I���C�2+k�����C�1+h��I�� with
h ,k�0. Hence, by assumption, f can only vanish on the

boundary �� �i.e., in the nodes rn��� where f�rn , t�=0�
and must satisfy the normalization

	
�

drf�r,t� = 1. �2�

For definiteness, we shall also assume, without loss of
generality, that � is a connected subset of R3N and ��r , t�
belongs to the functional space ���, to be identified with the
Hilbert space of complex-valued functions which are square
integrable in �. The N-body wave function ��r , t� is re-
quired to satisfy in the open set �� I the Schrödinger equa-
tion

i�
�

�t
� = H� , �3�

where H=Ho+U is the N-body Hamiltonian operator. Here,
denoting ��j��

�
�r j

, Ho=−
 j=1,N
�2

2m� j
2 and U are, respectively,

the free-particle Hamiltonian �kinetic energy� and the inter-
action potential, to be identified with a real function defined
and suitably smooth in �� I. For well-posedness, appropri-
ate initial and boundary conditions must be imposed on
��r , t�. The initial conditions are obtained by imposing for

all r��̄,

��r,to� = �o�r� , �4�

where �o is a suitably smooth complex-valued function. To
specify the boundary conditions, we first notice the boundary
set �� can always be considered prescribed. The boundary
conditions can be specified by imposing Dirichlet boundary
conditions on ��. This requires ∀ r����,

��r�,t� = �w�r�,t� , �5�

lim
r→r�

V�r,t� = Vw�r�,t� , �6�

where V�r , t� is the quantum velocity field

V�r,t� =
�

2mi���r,t��2
��* � � − � � �*� . �7�

Here the complex function �w�r� , t� and the real vector func-
tion Vw�r� , t� are prescribed, suitably smooth functions. To
specify the value of f�r , t� on ��, let us require that there
results additionally

	
�

dr � f�r,t� = 0 . �8�

In all such cases Eq. �8� implies that there must be ∀ r�

���

f�r�,t� = ��w�r�,t��2 � fo � 0, �9�

where fo is either a constant, whose value may still depend
on the specific subset, or at most is a function fo�t� to be
assumed suitably smooth ∀ t� I. Hence, the points of ��
are not necessarily nodes. However, if r� is an improper
point of R3N �hence, � is assumed to be an unbounded sub-
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set of R3N�, since it must be lim�r�→� f�r , t�=0,r� is neces-
sarily a node, i.e.,

fo = 0. �10�

This implies for consistency also

lim
�r�→�

�w�r,t� = 0. �11�

The set of equations �3�–�6�, together with �9�–�11�, de-
fines the initial-boundary value problem for the Schrödinger
equation �SE problem�. The solution of the SE problem, �,
must be determined in an appropriate functional space, to be
suitably defined �see, for example, Ref. �53��.

The set of hydrodynamic equations corresponding to the
Schrödinger equation are well known �4–6,10� and follow
immediately from the exponential representation �known as
Madelung transformation �4��

� = �fei�S/��, �12�

where �f ,S�, denoted as quantum fluid fields, are, respec-
tively, the quantum probability density and the quantum
phase-function �also denoted as Hamilton-Madelung princi-
pal function�. Equation �12� is manifestly defined only in the
set in which results f 	0 �i.e., in the configuration space ��.
We stress that in principle S�r , t� remains “a priori” unspeci-
fied on the subset the boundary �� where f =0 �subset of the
nodes rn�. This indeterminacy, however, is eliminated by re-
quiring that everywhere in ��, S�r , t� can be prolonged on
the same set by imposing ∀ rn���,

S�rn,t� � lim
r→rn

S�r,t� . �13�

Hence, the real functions �f ,S� can both be assumed continu-

ous in �̄� I and at least C�2,1���� I�. Obviously, S�r , t� is
defined up to an additive constant 2
k, being k�Z, while S
itself is generally not single valued. In addition, if � is single
valued, it is obvious that S must satisfy a well-defined con-
dition of multivaluedness. In fact, in this case on any regular
closed curve C of �, S it must result

	
C

dl · �S�r,t� = 2
n� , �14�

where n is an appropriate relative number �54�. Introducing
the single-valued potential velocity field, defined in �� I,

V�r,t� =
1

m
� S�r,t� , �15�

this yields the well-known condition of quantization of the
velocity circulation

� � 	
C

dl · V�r,t� =
2
n�

m
. �16�

Hence, by denoting D
Dt = �

�t +V ·� �convective derivative�,
it follows that in the open domain �� I �where by definition
f 	0� the fluid fields �f ,S� obey the complete set of hydro-
dynamic equations represented, respectively, by

Df

Dt
+ f � · V = 0, �17�

�S

�t
+

1

2m
��S�2 = − UQM. �18�

These are denoted as quantum hydrodynamic equations. The
first one is manifestly the continuity equation for the quan-
tum probability density f�r , t�. Instead, the second one is the
Hamilton-Jacobi equation for the quantum phase function S.
Moreover, UQM is the so-called quantum potential �6� related
to the interaction potential U by means of the equation
UQM=− �2

2
� 1

2�2 ln f + 1
4 �� ln f�2�+U. Since by assumption U

is single valued in �, it follows that Eq. �17� and �18� must
also be single valued. Nevertheless, both �S

�t and UQM are not
unique since they are determined up to an arbitrary real
smooth function z�t� since they are invariant with respect to
the gauge transformation

S�r,t� → S��r,t� = S�r,t� +
1

�
	 dt�z�t�� ,

U�r,t� → U��r,t� = U�r,t� + z�t� ,

f�r,t� → f��r,t� = f�r,t� . �19�

The initial conditions to be satisfied by the quantum fluid
fields �f ,S�, stem from Eq. �4� and read

f�r,to� = fo�r� , �20�

S�r,to� = So�r�mod�2
� . �21�

Instead, the boundary conditions implied by Eqs. �3�–�6�,
together with �9�–�11�, read, respectively, ∀ r����,

f�r�,t� = fw�r�,t� , �22�

S�r�,t� = Sw�r�,t�mod�2
� , �23�

lim
r→r�

V�r,t� = Vw�r�,t� , �24�

where Sw�r� , t� and Vw�r� , t� are suitably smooth real func-
tions and fw�r� , t� is specified either by Eq. �9� and �10�,
depending on the definition of the domain �.

Equations �17� and �18�, together with the initial condi-
tions �20� and �21� and the boundary conditions �22�–�24�,
define the quantum hydrodynamic initial-boundary problem
�QHE problem�.

III. GAUGE-INVARIANT FORM OF THE
HYDRODYNAMIC EQUATIONS

The gauge function z�t� can be eliminated by taking the
gradient of Eq. �18� term by term. The resulting gauge-
independent equations for the quantum fluid fields �f ,V�,
again valid in the open domain �� I, are provided by the
gauge-invariant quantum hydrodynamic equations, which
are defined by the continuity equation �17� and by
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D

Dt
V�r,t� =

1

m
F � −

1

m
� UQM. �25�

As a consequence, Eqs. �17� and �25� can be viewed as the
hydrodynamic equations of a compressible fluid. On the
other hand, Eq. �25� implies

�

�t
� � V�r,t� + � � „V · �V�r,t�… = 0, �26�

where V ·�V=−V� ���V�−�V2 and

� � „V · �V�r,t�… = − � � �V � �� = − � · �V + V · �� ,

�27�

where �=��V is the vorticity vector. Therefore, if we im-
pose in the whole domain � the initial condition ��r , to�=0 it
results

��r,t� = 0 �28�

for all t� I. Notice that Eq. �28� is not in contradiction with
the condition of quantization for the velocity circulation �
�see Eq. �16�� since the phase function S�r , t� results gener-
ally nonsingle valued. As a consequence, the vector field
V�r , t� is necessarily of the form �15�. Hence, the fluid de-
scribed by the fluid fields �f ,V= 1

m �S�r , t�� is necessarily
vorticity free, while at the same time its velocity circulation
is nonvanishing �see Eq. �16��. This equation is known as the
so-called quantum Newton equation �6��or quantum Navier-
Stokes equation �9��. The initial-boundary conditions for
these equations are defined again by �20�–�24�, which imply
in particular for V�r , to� the initial condition

V�r,to� = Vo�r� �
1

m
� So�r,to� . �29�

Equations �17� and �25�, together with the initial conditions
�20� and �21� and the boundary conditions �22�–�24�, define
the gauge-invariant quantum hydrodynamic initial-boundary
problem �GI-QHE problem�.

In summary, by construction it follows that

�a� the QHE problem is equivalent to the SE problem,
namely �f ,S� is a solution of the first problem if and only if
��r , t� is a solution of the second one; as a consequence the
solution �f ,S mod�2
�� of the QHE problem is unique;

�b� if �f ,S mod�2
�� is a solution of the QHE problem
then �f ,V= 1

m �S�r , t�� is necessarily a solution of the GI-
QHE problem;

�c� vice versa, a solution �f ,V� of the GI-QHE prob-
lem, determines uniquely �f ,S� up to an arbitrary gauge
transformation of the form �19�.

Finally, it is worthwhile to mention that, in principle, it is
also possible to introduce sets of “reduced” hydrodynamic
equations, defined in appropriate subspaces of the N-body
configuration space, in particular the one-particle subspaces
�i �for i=1,N�. The latter can be obtained adopting for the
N-body quantum system the one-particle reduced representa-
tion described in Appendix A �see Eq. �A1��. Manifestly,
these reduced descriptions are not equivalent to the full

N-body description. For example, the N-body system can be
considered as formed by N one-body subsystem, one for
each particle �j=1,N�. For each one-body subsystem it is
possible to introduce a set of reduced quantum fluid fields
�f j ,V j =

1
m� jSj�r j , t��, both defined in the set � j � I and

uniquely associated to the one-particle wave function
� j�r j , t� by means of Eqs. �1� and �15�. It is immediate to
prove that the fluid fields �f j ,V j� for j=1,N obey a set of
fluid equations formally analogous to Eqs. �17� and �23�, to
be denoted as reduced hydrodynamic equations, which can
be viewed as describing the dynamics of an immiscible fluid
mixture.

IV. HEISENBERG THEOREM AND THE CONCEPT
OF QUANTUM TEMPERATURE

The set fluid equations Eqs. �17� and �23� for the quantum
fluid fields �f ,V� provide a complete description of quantum
systems. This means, in particular, that no other independent
observable or fluid field is required to describe the quantum
state. However, for the subsequent analysis it is useful to
introduce the concepts of quantum directional temperatures
and quantum temperature, which can be defined by analogy
with classical statistical mechanics and interpreted as addi-
tional quantum fluid fields. The definition of these observ-
ables follows from Heisenberg theorem. We recall, for this
purpose, that the latter is realized by means of the �Heisen-
berg� inequalities �holding for i=1,2 ,3�

��
ri�2
��
pi�2
 �
�2

4
, �30�

or


̄ri
̄pi �
�

2
. �31�

Here the notation is standard. Thus, 
̄ri= ��
ri�2
1/2, 
̄pi

= ��
pi�2
1/2 �for i=1,2 ,3� are the quantum standard devia-
tions for position and �quantum� linear momentum, ��
ri�2
,
��
pi�2
 are the corresponding average quadratic quantum
fluctuations, while 
ri, 
pi denote, respectively, the quantum
position and momentum fluctuations 
ri=ri− �ri
, 
pi= pi

− �pi
. Finally, �Q
��� �Q�
=��drf�r , t�Q�r , t� is the ex-
pectation value of a generic dynamical variable Q. As usual,
we identify the quantum linear momentum p with the linear
differential operator

p = − i�� �32�

which acts on the functional space ���. It follows �p

��� �p�
=m��drfV��P
, where

P = mV �33�

is the fluid (linear) momentum, while the expectation value
of �
pi�2, upon integration on the set �, reads

��
pj�2
 =
�2

4
	

�

drf�� j ln f�2 + ��� jS�2
 − �� jS
2. �34�
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As is well known, Heisenberg theorem follows by invok-
ing the identity

	
�

drf�r,t� = 	
�

dr�ri − �ri
�
�

�ri
f�r,t� = 1, �35�

which implies

	
�

dr�f�ri − �ri
�2�f� �

�ri
ln f�r,v,t��2

� 1. �36�

Hence, Schwartz inequality delivers

��
ri�2
	
�

drf� �

�ri
ln f�r,v,t��2

� 1, �37�

where by definition ��
ri�2
���drf�ri− �ri
�2.
A peculiar aspect of the Heisenberg inequality �30� is that

it can also be written in terms of the relative fluctuations

�1�pi= pi− Pi, which are defined with respect to the compo-
nents of fluid momentum Pi=mVi �for i=1,2 ,3� instead of
the corresponding expectation values �Pi
. This property is
useful to establish a relationship with the concept of kinetic
temperature �as well as, the related one of directional kinetic
temperatures; see Eq. �48� in the next section�, which is de-
fined in terms of fluctuations with respect to the local fluid
velocity V�r , t�, instead its expectation value �V�r , t�
. In-
deed, it is immediate to prove that, by definition of the quan-
tum linear momentum �32�, the following identity holds �for
i=1,2 ,3�:

��
pi�2
 = ��
�1�pi�2
 + ��
�2�pi�2
 , �38�

where ��
�1�pi�2
 and ��
�2�pi�2
 read, respectively,

��
�1�pi�2
 =
�2

4
	

�

drf�� j ln f�2, �39�

��
�2�pi�2
 � ��� jS�2
 − �� jS
2, �40�

and hence can be interpreted as the average quadratic mo-
mentum fluctuations carried, respectively, by the quantum
probability density f and the phase function S. By analogy
with classical statistical mechanics, the notions of quantum
directional temperature TQM,i�t� and quantum temperature
TQM�t� can be introduced, which are defined, respectively,

mTQM,i�t� � ��
�1�pi�2
 , �41�

TQM�t� =
1

3 

i=1,2,3

TQM,i�t� �42�

�constitutive equations for TQM,i and TQM�. We notice that if
��R3N and ��r , t� is dynamically consistent �53�, necessar-

ily it must result TQM�t�	TQM,i�t�	0 in �̄. In the remainder
we shall assume, however, that it results TQM�t�	0 for all
�I also in the case in which � is a bounded set. As a con-
sequence the following modified Heisenberg inequality
holds:

��
ri�2
�mTQM,i�t� + ��
�2�pi�2
� �
�2

4
. �43�

A particular case is the one in which the condition of (quan-
tum temperature) isotropy

TQM,i�t� = TQM�t� �44�

holds identically for i=1,2 ,3. In the following sections for
greater generality we shall require, however,

TQM,i�t� � TQM,j�t� , �45�

for i� j �with i , j=1,2 ,3�. In fact, generally for arbitrary
quantum systems, Eq. �44� cannot be assumed to hold.

V. PROBLEM: THE SEARCH OF AN INVERSE KINETIC
THEORY FOR NRQM

In this section we intend to develop two key aspects of the
theory. The first one deals with the basic assumptions of the
inverse kinetic theory, while the second is concerned with the
construction of a classical dynamical system which provides
the dynamical evolution of the quantum system.

A. Basic assumptions: construction of the inverse kinetic
theory

Let us now set the problem of searching an inverse kinetic
theory for the Schrödinger equation, i.e., a kinetic theory
yielding exactly, by means of suitable moment equations, the
quantum hydrodynamic equations. The theory must hold for
arbitrary �and suitably smooth� initial and boundary condi-
tions both for the wave function and the kinetic probability
density.

The form of the quantum fluid equations �17� and �25�
suggests that they can be obtained as moment equations of a
continuous inverse kinetic theory, analogous to that devel-
oped recently for the incompressible Navier-Stokes equation
�see Ref. �1,2��.

In the sequel we consider, without loss of generality, the
case of one-body quantum systems; the theory here devel-
oped is applicable, in fact, with minor changes also for sys-
tems with N	1 particles. For definiteness, let us assume that
the quantum fluid fields �f�r , t�, V, TQM,i, for i=1,2 ,3,� are,
respectively, solutions of the GI-QHE problem �i.e., Eqs.
�17�, �25�, and �20�–�24�� and imposing also the constitutive
equation �41�. To restrict the class of possible kinetic models,
following the approach of ET, let us introduce a probability

density g�x , t�, with x= �r ,v�, defined in the phase space �̄

=�̄�U �where U�R3N� and assume that it belongs to the
functional class �g�x , t�� of real functions which satisfy the
following properties �1�–�4� �denoted together as Assumption
No. 1�. More precisely, it is assumed that

�1� g�x , t� is non-negative and continuous in �̄� I, in par-
ticular, is strictly positive and of class C�2+k,1+h���� I�, with
h ,k�1;

�2� ∀�r , t���̄� I ,g�x , t� admits the kinetic moments
MX�g���UdvXg, with X�r ,v , t�=1,v ,ui

2 �for i=1,2 ,3�, uu,
uu2, ln g, where v ,u=v−V are, respectively, the kinetic and
the relative kinetic velocities and ui=vi−Vi �for i=1,2 ,3�
are the orthogonal Cartesian components of u defined with
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respect to an arbitrary inertial reference frame;
�3� g�x , t� admits the kinetic moments X�r ,v , t�=1,v ,ui

2

�for i=1,2 ,3�. The latter are prescribed by imposing a suit-
able set of constraint equations, to be denoted as kinetic cor-
respondence principle, which relate the quantum fluid fields
and the corresponding kinetic moments. For this purpose the
following equations are assumed to hold identically, respec-

tively, in �̄� I:

f = M1�g� � 	
U

dvg�r,v,t� , �46�

M2�g� �
1

f�r,t�	U

dvvg�r,v,t� = V�r,t� , �47�

and in I for i=1,2 ,3

Ti�t� � M3i�g� �
1

f�r,t�	U

dvmui
2g�r,v,t� = TQM,i�t� 	 0.

�48�

Consistently with �45�, we shall generally consider Ti�Tj
for i� j �with i , j=1,2 ,3�. Here the moments Ti�M3i�g�
�for i=1,2 ,3� and T= �T1+T2+T3� /3 are denoted, respec-
tively, the (quantum) kinetic directional temperatures and the
(quantum) kinetic temperature.

�4� Finally, we impose an appropriate regularity condition
for the fluid fields and the quantum force F�r , t�. In particu-
lar, besides imposing that the fluid fields �f , V, TQM,i, for i
=1,2 ,3,� are solutions of the GI-QHE problem, let us require
the stronger requirement that they belong to the functional
settings:

f ,V,Ti�r,t� � C�2+k,1+h��� � I� , �49�

Ti�r,t�, f�r,t� 	 0,

f ,V,Ti�r,t� � C�0���̄ � Ī� ,

F�r,t� � C�2+k,1+h��� � I� ,

with h ,k�1.

The constraint provided by Eq. �48� implies that the ki-
netic directional temperatures Ti �for i=1,2 ,3� are assumed
position-independent. This assumption, although consistent
with the definition of the quantum directional temperatures
given above �see Eq. �41��, may in principle be avoided �see
related discussion in Appendix B and at the end of Sec. VI�.

Furthermore, let us require that in the open set �=�
�U the probability density g�r ,v , t� satisfies a Vlasov-type
kinetic equation of the form �Assumption No. 2�

Lg�x,t� = 0 �50�

�inverse kinetic equation�, where L is the Vlasov streaming
operator

L =
�

�t
+

�

�x
· �X� �

d

dt
+

�

�v
· �K

m
� , �51�

where X now indicates the vector field

X = �v,
1

m
K� , �52�

x= �r ,v� and K�x , t�, to be denoted as mean field force, is a
suitably smooth real vector field.

Since the correspondence principle defined by Eqs.

�46�–�48� must hold identically in the open set �̄� I it fol-
lows that the moment equations for M1�g�, M2�g�, and
M3i�g�, for i=1,2 ,3, must necessarily coincide identically,
respectively, with the quantum hydrodynamic equations �17�
and �25� and the constitutive equation for the directional
temperature �41�. In addition, it is obvious these moment
equations must hold also for arbitrary quantum fluid fields
satisfying assumptions �49�. Such implications will be dis-
cussed in detail below �see Theorems 1 and 2�.

B. The phase-space Schrödinger dynamical system

Let us remark that the kinetic equation �50� determines
uniquely the time evolution of the kinetic distribution func-

tion g�x , t� in the whole extended phase-space �̄� I and con-
sequently prescribes uniquely also the quantum fluid fields in

the set �̄� I. In fact, it can also be cast, respectively, in the
equivalent Lagrangian and integral forms

d

dt
g„x�t�,t… = − g„x�t�,t…

�

�v�t�
·

K�x�t�,t�
m

, �53�

J„x�t�,t…g„x�t�,t… = g�xo,to� , �54�

where g�xo , to� is the initial kinetic distribution function and
the curves �x�t� , t� I� define suitable phase-space Lagrang-
ian trajectories. Moreover, the map

��xo,to�:xo → x�t� = ��xo,to,t� �55�

is the flow generated by the initial-value problem

d

dt
x = X�x,t� , �56�

x�to� = xo, �57�

and

J„x�t�,t… = exp�	
t0

t

dt�
�

�v�t��
·

K„x�t��,t�…
m � �58�

is its Jacobian. Here we shall prove that, due to continuity of
the kinetic distribution function and of the Schrödinger dy-
namical system, this equation holds identically in the closure

�̄� I, except possibly in the nodes rn���, where f�rn , t�
=0. However, by construction, the limit
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lim
r�t�→r�

J„x�t�,t…g„x�t�,t… = g�xo,to� �59�

exists for all r����, including all nodes. Instead, one can
prove that the limit limr�t�→r�

J(x�t� , t) does not exist if r� is
a node. In particular, by suitable definition of the vector field
K�x , t�, we shall prove that ��xo , to , t� results suitably regular
so that the set of maps �55� generates a �generally noncon-
servative� classical dynamical system ���xo,to��, to be denoted
as phase-space Schrödinger dynamical system.

These include in particular—besides Assumptions Nos. 1
and 2—the hypothesis that the kinetic distribution function
g�xo , to� and its initial condition g�xo , to� are suitably smooth
in the whole set �� I. For example, we let us require that the
vector field �52� X�x , t��C�2+k,1+h���� I� and g�xo , to�
�C�2+k,1+h���� I�, with h ,k�1. Then it follows that
��xo , to , t� is a diffeomorphism. of class C�2+k,2+k,1+h���� I
� I� and g�x�t� , t��C�2+k,1+h���� I�, with h ,k�1, so that the
moments �f ,V ,Ti , i=1,2 ,3� are necessarily of class
C�2+k,1+h���� I� �Assumption No. 3�.

Manifestly the Schrödinger dynamical system, if it exists,
provides a deterministic description of quantum mechanics
since it advances in time both the kinetic probability density
and the quantum fluid fields �f�r , t� ,V�. Thus, a fundamental
issue is the question of the existence of a vector field
K�r ,v , t� which satisfies the minimal assumptions indicated
above. To be more specific, however, it is convenient to fur-
ther specify the mathematical model imposing an appropriate
set of assumptions �denoted together as Assumption No. 4�,
which include the following ones �1,2�:

�1� the kinetic equation admits local Maxwellian kinetic
equilibria for arbitrary kinetic moments and quantum fluid
fields which satisfy the kinetic correspondence principle
(46)–(48) and the regularity requirements (49);

�2� the vector field X�x , t� is prescribed in such a way
that it depends, besides on x, only on the fluid fields and
suitable differential operators acting on them;

�3� the kinetic distribution function satisfies appropriate
boundary conditions;

�4� the Heisenberg theorem is satisfied identically.

To complete the specification of the inverse kinetic equa-
tion, however, it must be supplemented with suitable initial
and boundary conditions. In particular since the kinetic cor-
respondence principle must hold both on the boundary ��
and at the initial time to, this means that on the boundary ��
�which includes ��� bounce-back boundary conditions are
imposed on the kinetic distribution function �1�.

C. Bounce-back boundary conditions

We intend to define boundary conditions for the kinetic
distribution function g�x , t� which are consistent with the Di-
richlet boundary condition defined on the boundary �� for
the quantum fluid fields. Denoting Vw(r��t� , t)= d

dtr��t� the
velocity of the point of the boundary determined by the vec-
tor r��t���� and assuming �v−Vw��0, let us introduce the
unit vector

b = �
v − Vw

�v − Vw�
�60�

and the variable

� � �v − Vw� · b . �61�

Here �= ±1 and its sign is defined so that when b is a vector
applied at the position r� it is always oriented inward with
respect to the domain �. For sake of definiteness, we shall
assume that �� is a piecewise regular surface and that the
vector b belongs to the open tangent cone to �� in rn which
is oriented inward with respect to �. Then, at an arbitrary
position r����, the sign of the variable � determines in-
coming and outgoing velocity subdomains, defined, respec-
tively, as the subdomains of velocity space U for which �
�0 and �	0. Therefore �g�r� ,v , t����0 and �g�r� ,v , t���	0

denote the incoming and outgoing kinetic distribution func-
tions at position r�. These notations permit us to define prop-
erly the boundary conditions for the kinetic distribution func-
tion on ��.

For any boundary ��, position rn���i and for all non-
vanishing vectors v−Vw taking at r� the directions specified
above, we impose, respectively, for �	0 and ��0 the
boundary conditions for g�r ,v , t� �Assumption No. 5�,

�g�r�,v,t���	0 = �g�r�,2Vw − v,t����0, �62�

�g�r�,v,t����0 = �g�r�,2Vw − v,t���	0, �63�

to be denoted as bounce-back boundary conditions for
g�x , t�. It is immediate to prove that they are consistent with
Dirichlet boundary conditions defined by Eq. �24�. In fact,
they results are

fV�r�,t� = 	
U

dvvg�r�,v,t�

= 	
U

��0

dvvg�r�,v,t� + 	
U

�	0

dvvg�r�,v,t�

=
1

2
	

U

��0

dvv�g�r�,v,t� + g�r�,2Vw − v,t��

+
1

2
	

U

�	0

dvv�g�r�,v,t� + g�r�,2Vw − v,t�� .

�64�

Thanks to the identities

1

2
	

U

dvvg�r�,2Vw − v,t� = �Vw −
1

2
V�r�,t�� f , �65�

	
U

dvvg�r�,v,t� = V�r�,t�f , �66�

it follows that

Vw�rn,t� =
1

f
	

U

dvvg�rn,v,t� = V�rn,t� . �67�

TESSAROTTO, ELLERO, AND NICOLINI PHYSICAL REVIEW A 75, 012105 �2007�

012105-8



We impose, furthermore, the Dirichlet boundary condition
�Assumption No. 6�

	
U

dvg�r�,v,t� = fw�r�,t� , �68�

where fw�r� , t� is the prescribed probability density on the
boundary �� defined by �22�.

VI. CONSTRUCTION OF THE MEAN-FIELD FORCE K

A. The assumption of PEM

In order to construct explicitly the mean-field force let us
now invoke the principle of entropy maximization �PEM�
�19,51,52� to determine uniquely the initial distribution func-
tion at a prescribed initial time to� I. For this purpose it is
necessary to define the functional class �g�x , to��.

First, let us assume that the sole information on the initial
condition g�x , to� is provided by the knowledge of the initial
fluid fields. In this case the kinetic correspondence principle
requires that at the initial time to� I the kinetic moments of
g�x , to� �i.e., MX�g���UdvXg, with X�r ,v , to�=1,v ,ui

2 �for
i=1,2 ,3�� must coincide with the quantum fluid fields �
f�r , to�, V�r , to�, TQM,i�to�, for i=1,2 ,3,�. In such a case it is
immediate to prove that PEM yields necessarily for t= to the
distribution function

g�x,t� = gM�r,v,t� � f�r,t�
1


3/2vth1vth2vth3
exp�− xixi� ,

�69�

to be denoted as generalized Maxwellian distribution. Here
in the exponential the sum is understood on repeated indexes
�i=1,2 ,3�, while the notation is analogous to Refs. �1,2�,
thus for i=1,2 ,3, vthi=�2Ti�r , t� /m and xi=ui /vthi. Due to
the arbitrariness of to� I it is natural to assume that Eq. �69�
holds identically for IKE.

It is obvious, however, that other definitions of the func-
tional class �g�x , to�� are possible, and hence more general
�nonMaxwellian� initial conditions are in principle allowed.
This occurs, for example, if the fluid fields are stochastic and
the information on the initial fluid fields is provided only by
means of suitable stochastic averages. However, the treat-
ment of non-Maxwellian kinetic distributions is potentially
relevant, also for direct numerical simulations, in which the
kinetic distribution function is simulated numerically by
means of test particles. In such a case, in fact, small numeri-
cal errors may imply that locally the kinetic distribution
function is actually nonMaxwellian. Thus, for greater gener-
ality we can consider the case in which �g�x , to�� is deter-

mined by imposing for all r��̄ just that

g�x,to� = go�x� . �70�

Here, by definition, go�x� is an arbitrary, non-Maxwellian,
distribution function whose moments coincide identically
with �f , V, TQM,i, for i=1,2 ,3,� at t= to. It is manifest that in
this case PEM is identically satisfied by go�x�.

B. Case of the generalized Maxwellian distribution

Due to the arbitrariness of the initial time to, it is natural
to assume that, if the initial condition Eq. �69� is satisfied,
gM�r ,v , t� results identically ∀�x , t���� I a particular solu-
tion of the inverse kinetic equation �50�. In such a case,
invoking Assumptions Nos. 1–6 �and in particular the hy-
pothesis that the kinetic directional temperatures can only
depend on time�, the mean-field force K�gM� results neces-
sarily (Assumption No. 7)

K�gM� = K0�gM� + K1�gM� , �71�

with

K0�gM� = F�r,t� +
1

f

m

2
vthi

2 êiêi · �f = F�r,t� +
1

f
� p ,

�72�

K1�gM� = mu · �V +
m

2
uiêi

�

�t
ln Ti, �73�

where the sum is understood on repeated indexes and p
= fT denotes the kinetic scalar pressure. Here, K0�gM� and
K1�gM� have been distinguished for being, respectively, con-
stant and velocity dependent. In particular, K0�gM� contains,
besides the quantum force F�r , t�, a corrective term �“pres-
sure term”� which depends explicitly only the logarithmic
gradient of f; instead K1�gM� contains a “convective term,”
proportional to �V and a contribution proportional to the
logarithmic time derivatives of the directional temperatures.
For the sake of reference, the more general case in which the
kinetic directional temperature are taken as spatially nonuni-
form is reported in Appendix B.

Let us now examine the main implications which stem, in
the particular case g=gM, from positions �71�–�73� and As-
sumptions Nos. 1–7. We first notice that the Schrödinger
dynamical system generated by K�gM�, defined as the solu-
tion of the initial value problem �56� and �57�, exists and is
unique in the whole extended phase space �� I. This prop-
erty is manifestly assured by assumption, thanks to to previ-
ous definition of K�gM� and the regularity properties of the
quantum fluid fields �Assumption No. 1�. In the same set the
kinetic distribution function gM�r ,v , t� is, by construction, a
particular solution, i.e., exists, is unique and results strictly
positive. In fact, this property holds if and only if the quan-
tum fluid fields are solutions of the GI-QHE problem
and—in validity of Eqs. �71�–�73�—if the kinetic directional
temperatures are assumed to be only functions of time, i.e.,
Ti�t� �i=1,2 ,3�. In addition, by continuity, the kinetic distri-
bution function gM�r ,v , t� �and its moments� are uniquely
defined also on the boundary set �� and hence, in particular,
in the nodes. Finally, it is immediate to prove that Eq. �50� is
also an inverse kinetic equation for the quantum hydrody-
namic equations. Indeed its moment equations, evaluated
with respect to the weight functions G�x , t�=1,v, coincide
identically �in �� I� with the Eqs. �17� and �25�. As a con-
sequence, the following theorem holds for Maxwellian ki-
netic distributions of the type �69�:
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Theorem 1. Generalized Maxwellian solution of the in-
verse kinetic equation.

Besides the validity of Assumptions Nos. 1–7, let us as-
sume that

�1� the kinetic distribution function fulfills Eq. �69� at
least at the initial time to� I;

�2� the mean-field force K can only depend functionally
on gM; moreover K can only depend on the quantum fluid
fields �f�r , t�, V, Ti, for i=1,2 ,3�.

Then it follows that

�a� ∀�x , t�� �̄� I the generalized Maxwellian distri-
bution �69� is a particular solution of the inverse kinetic
equation �50� if and only if the mean field force K has the
form defined by Eqs. �71�–�73�.

�b� The Schrödinger dynamical system exists, is

unique and is continuous in �̄� I, except in the nodes, i.e.,
when r�t�=rn, with f�r�t� , t�=0. Moreover, it is C�2+k,1+h���
� I� with h ,k�1. This result holds for arbitrary quantum
dynamical systems and both for isotropic and nonisotropic
quantum directional temperatures.

�c� The Jacobian of the phase-flow xo→x�x�t�
=��xo , to , t�, generated by the initial value problem �56� and

�57�, is defined ∀�x , t�� �̄� I, except in the nodes. There
results in such cases

K1�ro,to�f�r�t�,t�exp�− xi�t�xi�t�� � 0 �74�

so that J�x(t� , t) reads

J„x�t�,t… =
K1�t�f„�ro,to�…exp�− xioxio�

K1�to�f„r�t�,t…exp�− xi�t�xi�t��
, �75�

where K1= �T1T2T3�1/2, xoi=uoi /vth,i�to�, uo=vo−V�rn , to�,
xi�t�=ui�t� /vth,i�to�, and u�t�=v�t�−V(r�t� , t).

�d� The limit

lim
r�t�→rn

J„x�t�,t…gM„x�t�,t… �76�

exists and is unique.
�e� ∀�x , t���� I, the velocity-moment equations of

the inverse kinetic equation �50� evaluated for the weight
functions G�x , t�=1,v and for g=gM coincide with the fluid
equations �17� and �25�.

�f� ∀�x , t���� I, the moment equations for the direc-
tional kinetic temperatures are satisfied identically.

Proof.

�a� If the mean-field force K is assumed of the form
�71�–�73� the proof of �a� follows by straightforward algebra
as a consequence of Eq. �50� �or in an equivalent way of the
integral equation �54��.

�b� Due to Assumption No. 3 the quantum fluid fields
�f ,V ,Ti , i=1,2 ,3� the quantum force F�r , t� belong to the
functional setting �49�. Hence, the vector field X= �v , 1

mK� is

necessarily C�2+k,1+h���̄� I� with h ,k�1. The proof of �b� is
therefore a consequence of the fundamental �existence and

uniqueness� theorem for ordinary differential equations. In
particular, it is obvious that the solution of the Schrödinger
dynamical system is not defined in the nodes since the mean-
field force K is not defined for f =0.

�c� The proof of Eq. �75� is implied by �b� and follows
invoking Liouville theorem �58�.

�d� The only possible singular behavior of J(x�t� , t)
can occur either in the nodes rn���, i.e., if at some time
t1� I there results f�rn , t1�=0, or if least one of the direc-
tional temperatures Ti vanishes. The second possibility is ex-
cluded by assumption. Hence J(x�t� , t) is not defined at
(x�t� , t) only if r�t�=rn is a node. Nevertheless, it is obvious
that the limit �76� exists.

�e� and �f� Finally it is immediate to determine the
moment equations satisfied by the inverse kinetic equation
for g=gM�r ,v , t�, which is manifestly defined everywhere in

�̄� I. Indeed, the first two moments G=1,v coincide, re-
spectively, with the quantum hydrodynamic equations �17�
and �25�, while for G=ui

2 �i=1,2 ,3� one obtains the moment
equations for the directional temperature which are satisfied
identically.

C. Case of the non-Maxwellian distributions

As in Ref. �1� the inverse kinetic theory can be formulated
for non-Maxwellian kinetic distribution functions too. It suf-
fices for this purpose to assume that the initial kinetic distri-
bution function g�r ,v , to�=go�r ,v� results suitably smooth,

strictly positive and summable in �̄. A unique definition of
K�g� which yields the correct fluid equations and satisfies
also the constitutive equations can readily be obtained also in
this case, which reads �Assumption No. 7b�

K�g� = K0�g� + K1�g� , �77�

K0�g� = F�r,t� +
1

f
� · �= , �78�

K1�g� = mu · �V +
m

2
uiêi� �

�t
ln Ti +

3

fTi
� · Qi� , �79�

where again the sum is understood on repeated indexes.
Equations �77� and �79� hold if the kinetic directional tem-
peratures are assumed to be only functions of time �Ti�t�, for
i=1,2 ,3�. In this case the corrective term in the mean-field
force K0�g� depends on the tensor pressure �= , instead of the
scalar pressure p, while K1�g� contains an additional term
depending on the relative heat fluxes Qi �i=1,2 ,3�. The ki-
netic moments �= and Qi �for i=1,2 ,3�, assumed to exist,
are, respectively,

�= =	 dvuug , �80�

Qi =	 dv
1

3
uui

2g . �81�

The mean-field force defined by Eqs. �77�–�79� is manifestly
consistent with the previous definition when g=gM, since in
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such a case there results �= = fT1= = p1= and Qi=0 �i=1,2 ,3�.
It is immediate to prove that also in this case the

Schrödinger dynamical system generated by K�g� exists and
is unique in the whole extended phase-space �� I. In the
same set the kinetic distribution function g�r ,v , t� exists, is
unique, results strictly positive and by continuity is uniquely
defined also on the boundary set ��. Finally, by construction
the moments of the inverse kinetic equation �50�, evaluated
with respect to the weight functions G�x , t�=1,v, coincide
identically �in �� I� with the quantum hydrodynamic equa-
tion Eqs. �17� and �25�. As a consequence, in the case of
non-Maxwellian kinetic distributions the following theorem
holds.

Theorem 2. Non-Maxwellian solutions of the inverse ki-
netic equation. Besides the validity of Assumptions Nos.
1#7, with No. 7b replacing No. 7, let us require that

�1� the kinetic distribution function is a smooth function
of class C�2+k,1+h���� I�, with h, k�1, which is suitably
summable in �;

�2� the mean-field force K can depend functionally but
not explicitly on g; moreover K0�g� and K1�g� depend, be-
sides �f�r , t�, V, Ti, for i=1,2 ,3�, on the minimal number of
moments, which include �= and Qi (i=1,2 ,3).

Then it follows that

�a� if at a prescribed time t� I and ∀x� �̄ the kinetic
distribution function g�x , t� is of the form �69� then it results

g�x , t�=gM�x , t�, ∀�x , t�� �̄� I;
�b� ∀�x , t���� I and for arbitrary smooth g�x , t� the

velocity-moment equations of the inverse kinetic equation
�50� evaluated for the weight functions G�x , t�=1,v coincide
with the fluid equations Eqs. �17� and �25�;

�c� ∀�x , t���� I, the moment equations for the direc-
tional kinetic temperatures are satisfied identically;

�d� the Jacobian of the phase-flow xo→x�x�t�
=��xo , to , t�, generated by the initial value problem �56� and

�57�, is defined ∀�x , t�� �̄� I reads in this case

J„x�t�,t… =
K1„r�t�,t…f�ro,to�
K1�ro,to�f„r�t�,t…

exp�	
to

t

dt�G„x�t��,t�…� ,

�82�

where K1= �T1T2T3�1/2 and

G„x�t�,t… =
1

f
u · �f +

1

2

1

fTi
� · Qi. �83�

�e� If g�x , to� is strictly positive ∀�x�� �̄, then for all

∀�x , t�� �̄� I, g�x , t� is also strictly positive;
�f� the Schrödinger dynamical system exists and is

unique and is continuous in �̄� I, except in the nodes, i.e.,
when r�t�=rn, with f(r�t� , t)=0. Moreover it is C�2+k,1+h���
� I� with h ,k�1. This result holds for arbitrary quantum
dynamical systems and both for isotropic and nonisotropic
quantum directional temperatures.

Proof.
�a� is manifestly a consequence of Theorem 1, while the

proof of �b� follows by direct inspection. Regarding �c�, we
notice that the directional temperatures Ti �i=1,2 ,3� remain
in principle completely arbitrary. Hence they can be uniquely
determined according to Eq. �48�. Also see Eq. �82�. �d�
again follows from Liouville theorem �58�. In particular,
once again it follows that J(x�t� , t) is not defined if r�t� �or
rn� coincide with a node rw��� where f�rn , t�=0. As a
consequence ∀�x , t���� I, J(x�t� , t)	0. This proves also
propositions �e� and �f�.

Finally, to reach the proof of uniqueness of the mean-field
force K�g� it is sufficient to prescribe, besides the assump-
tion that its does not depend explicitly on g, also an appro-
priate dependence in terms of higher-order kinetic moments
�see Assumption No. 2 of Theorem 2�. An important conse-
quence is the uniqueness of the mean-field force K�g� and
hence of the inverse kinetic equation.

Theorem 3. Uniqueness theorem for K�g�.
In validity of Theorem 1 and 2 the mean-field force, for

which �a�–�e� hold, K�g� is unique. For g=gM it has the form
defined by Eqs. �71�–�73�; for g�gM the mean-field force
has the form defined by Eqs. �77�–�79�.

Proof.
For example, let us prove that in validity of Assumption

No. 3 of Theorem 1 the mean-field force K�gM� is unique.
Let us assume that there is a nonvanishing vector field 
K
such that K�=K+
K is also an admissible mean-field force.
Hence it must be

�

�v
· �
KgM� = 0. �84�

This means that 
KgM has necessarily the form


KgM =
�A

�v
�

�B

�v
, �85�

where A and B are suitably smooth real scalar fields. If both
A and B are independent of gM then it must be 
K�0.
Instead, for example, let us assume that only A depends on
gM. Letting

1

gM

�A�gM,r,v,t�
�v

= Â , �86�

if follows that Â must depend on gM too. Hence, in order that

K results independent of gM it must vanish identically. This
proves that it must be 
K�0 and hence K is unique.

Let us briefly comment on these results.
First, we stress that Schrödinger dynamical system �de-

fined by the initial-value problem �56� and �57�� uniquely
generates the time evolution of the kinetic distribution func-
tion g and hence of its moments. The result holds not only
for generalized Maxwellian distributions �69� but also for
arbitrary, but otherwise suitably smooth, kinetic probability
densities �Theorem 2�. An interesting aspect concerns, in par-
ticular, the behavior of the kinetic distribution function and
of the Schrödinger dynamical system in the nodes, i.e., the
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points of the boundary �� in which the probability density
f�r , t� vanishes. Their occurrence is usually associated to the
possible singular behavior of the wavefunction, i.e., its nonu-
niqueness �for a review see Ref. �13��. Therefore, the ques-
tion arises whether the existence of these roots is reflected in
any way in the inverse kinetic approach �and therefore on the
quantum system�. It is manifest that in these points the dy-
namical system is not defined and hence the Jacobian of the
Schrödinger dynamical system �given by �75� or more gen-
erally by Eq. �82�� vanishes or is not defined. However, in
these points the kinetic probability density can still be
uniquely defined, thanks to continuity. Consequently, the ki-
netic distribution function g and its moments, and in particu-
lar those corresponding to the relevant quantum fluid fields,

are defined without exceptions in the whole domain �̄� I.
As a consequence, it follows that no singularity appears, i.e.,
the quantum fluid fields �and hence the quantum wave func-

tion� are unique in �̄� I.

D. The kinetic representation of Heisenberg inequalities

It is interesting to examine the role of the kinetic direc-
tional temperatures Ti �i=1,2 ,3� in the framework of the
inverse kinetic approach and the consequent interpretation of
the Heisenberg theorem. For this purpose, let us analyze the
implications due to the kinetic correspondence principle. It is
immediate to prove that the Heisenberg inequalities �31� can
be represented, in terms of the kinetic standard deviations for

position and kinetic linear momentum 
̄ri
kin, 
̄pi

kin, in the
form:


̄ri
kin
̄pi

kin �
�

2
. �87�

Here 
̄ri
kin and 
̄pi

kin are defined in terms of appropriate
phase-space averages which are defined as ��A


=��dxg�r ,v , t�A�r ,v , t�, where A�r ,v , t� is an arbitrary sum-
mable phase-space function. In particular, we pose, respec-

tively, 
̄ri
kin= ���
ri�2

1/2, 
̄pi

kin= ���
p� i
kin�2

1/2 �for i

=1,2 ,3�, where ���
ri�2

 and 
̄pi
kin= ���
p� i

kin�2

 are de-
noted as average quadratic kinetic fluctuations. Here 
r=r
− �r
 is the position fluctuation, while 
p� kin=pkin−m�V
 and
pkin=mv are, respectively, the kinetic momentum fluctuation,
and the kinetic momentum. It is immediate to prove that �87�
are equivalent to �31�. In fact, in analogy with Eq. �38�, one
finds that the average quadratic momentum fluctuation
���
p� i

kin�2

 can be written in the form

���
p� i
kin�2

 = ���
pi

kin�2

 + ��
�2�pi�2
 �88�

�i=1,2 ,3�, where 
pkin denotes 
pkin=pkin−mV�r , t� and
��
�2�pi�2
 is given by Eq. �40�. Moreover, by definition, it
follows that the momentum fluctuation ���
pi

kin�2

 reads

���
pi
kin�2

 = mTi�t� , �89�

where and Ti�t� �for i=1,2 ,3� are the directional kinetic tem-
peratures. As a consequence, the constraint Ti�t�=TQM,i�t�,
set �for i=1,2 ,3� by Eq. �48� of the correspondence prin-
ciple, implies

��
�1�pi�2
 = ���
pi
kin�2

 . �90�

It follows that the Heisenberg inequalities can be interpreted
in terms of kinetic fluctuations, i.e., as constraints between

���
ri�2

 and 
̄pi
kin= ���
p� i

kin�2

, whereby the quantum ob-
servable p=−i�� and its average quadratic quantum fluctua-
tion are replaced by the kinetic momentum pkin=mv and the
corresponding average quadratic kinetic fluctuation. This re-
sult is a direct consequence of the assumption set by Eq. �48�
for the directional kinetic temperatures Ti �i=1,2 ,3�.

E. Generalizations: nonuniqueness

It is obvious that the present results can be generalized in
several ways. In particular, the definition of the kinetic direc-
tional temperatures remains in principle arbitrary since they
do not enter explicitly the quantum hydrodynamic equations.
Thus, for example, it is possible to require that the functions
Ti �i=1,2 ,3� are also position dependent �see Appendix B�.

Due to the arbitrariness of the kinetic temperatures, it fol-
lows that there exist infinite equivalent realizations of the
Schrödinger dynamical system and of the associated La-
grangian trajectories �x�t� , t� I� which yield the same quan-
tum hydrodynamic equations. Therefore, the unique inverse
kinetic theory here presented, which corresponds to a well-
defined set of prescriptions and in particular the assumption
of spatially constant directional temperatures, is simply one
of the infinite possible mathematical realizations.

A side aspect concerns the so-called uniqueness problem
of the deterministic viewpoint of SQM �6,12,13�, i.e., the
Bohmian program, of reproducing the predictions of SQM
within the framework of suitable deterministic Lagrangian
trajectories. In fact, the Schrödinger dynamical system deter-
mined by the initial-value problem �56� and �57� yields in
terms of the associated Lagrangian trajectories �x�t� , t� I� a
deterministic description of SQM. Hence, it can also be
viewed a phase-space generalization of Bohmian mechanics
�6–8�. An implication of the present theory is that such a
program has by no means a unique solution. In fact, there are
infinite equivalent Lagrangian trajectories determined as so-
lutions of the initial-value problem �56� and �57�, which dif-
fer only by the choice of the spatial-dependency assumed for
the directional temperatures �see Appendix B�.

VII. CONCLUSIONS

Motivated by the analogy between hydrodynamic descrip-
tion of SQM and classical fluid dynamics an inverse kinetic
theory has been developed for the quantum hydrodynamic
equations. We have shown that, although in principle infinite
solutions to this problem exist �in particular due to the inde-
terminacy in the kinetic directional temperatures�, the in-
verse kinetic theory can be uniquely determined, provided
appropriate hypotheses are introduced. The results presented
are relevant for the fluid description of quantum mechanics
and a deeper understanding of the underlying statistical �in
particular, kinetic� descriptions.

For this purpose the full set of gauge-invariant quantum
hydrodynamic equations, including the Heisenberg inequali-
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ties, have been related to the appropriate quantum fluid
fields. As a result the notions of quantum temperature and
quantum directional temperatures have been introduced. The
present approach has the following main features:

�1� the inverse kinetic equation �50� has been assumed to
be a Vlasov-type kinetic equation;

�2� its solution, i.e., the kinetic distribution function has
been required, in particular, to admit kinetic directional tem-
peratures Ti �i=1,2 ,3� which, consistent with the correspon-
dence principle �defined by Eqs. �46�–�48��, depend only on
time;

�3� the inverse kinetic theory is complete, namely all
fluid fields are expressed as moments of the kinetic distribu-
tion function and all hydrodynamic equations can be identi-
fied with suitable moment equations.

�4� the theory holds for arbitrary quantum fluid fields,
i.e., arbitrary initial and boundary conditions for the system
wave function;

�5� IKE is nonasymptotic, i.e., the quantum hydrody-
namic equations are satisfied exactly and self-consistent. i.e.,
it holds for arbitrary �and suitably smooth� initial conditions
for the kinetic distribution function;

�6� the moment equations form a complete system of
equations �closure condition for the moment equations of
IKE�;

�7� under suitable assumption, the inverse kinetic theory
and the mean-field force which defines the streaming opera-
tor are unique.

An interesting result of the theory, relevant for the math-
ematical investigation of the Schrödinger equation, concerns
the discovery of the underlying dynamical system, i.e., the
phase-space Schrödinger dynamical system. We have found
that this can be identified with the nonconservative dynami-
cal system advancing in time the kinetic distribution function
and generated by the kinetic equation itself. The evolution of
the fluid fields is proven to be determined uniquely by this
dynamical system. Formally the Schrödinger dynamical sys-
tem can be interpreted as describing the dynamics of system
of classical fictitious particles which interact with each other
only by means of the mean-field force K and are character-
ized by a dynamics which fulfills a suitable set of regularity
assumptions.

To conclude, a further interesting feature of the present
treatment is its adoption of the mean-field force kinetic
model. This permits, in principle, numerical implementations
by means of appropriate algorithms based on the inverse ki-
netic theory �see related discussion in Refs. �1,2��.

A side aspect concerns also the uniqueness and regularity
of the quantum fluid fields and of the related quantum wave
function. We have shown, in fact, that the kinetic distribution
function is smooth in the whole extended phase space �� I,
while it is uniquely defined also in the nodes, i.e., in the

“singular” points of configuration space �̄ where the quan-
tum probability density f�r , t� vanishes. As a consequence,

the quantum fluid fields are necessarily unique in �̄� I too.
Finally, have pointed out that the Heisenberg inequalities

afford a simple statistical interpretation, which permits the
representation of the quantum statistical fluctuations of the

components of the linear momentum in terms of the kinetic
directional temperatures.
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APPENDIX A: REDUCED ONE-PARTICLE DESCRIPTION
OF QUANTUM SYSTEMS

In SQM the state of a system of N interacting particles is,
by assumption, represented by its N- body wave function

��r , t�, with r= �r1 , . . . ,rN���̄, r j ��̄ j �for j=1,N� and t

� I. This is defined in the set �̄� I, where � is the configu-
ration space ��� j=1,N� j, �i�R3 �for j=1,N� and I is an
open subset of R. However, since the number of particles
forming a quantum dynamical system is “a priori” arbitrary,
also “reduced” quantum descriptions of an N-body system
are permitted. These descriptions, however, are not equiva-
lent to the full N-body description based on the N-body wave
function. Thus, it is in principle possible to obtain a reduced
description based, for example, on one-particle wave func-
tions, whereby the N-body system is represented by the re-
duced vector state

�R�r,t� � „�1�r1,t�,…,�N�rN,t�… , �A1�

instead of the single scalar N-particle wave function ��r , t�.
The one-particle wave function � j�r j , t�—which prescribes
the state of the jth one-particle subsystem—is defined by
means of the integral

c�j��t�� j�r j,t� = Lj�
�N��r,t� � �̂ j�r j,t� , �A2�

where Lj is the integral operator

Lj = 	
�k=1,N;k�j�k

dr1 ¯ drN

dr j
. �A3�

Here cj�t� �for j=1,N� are a real functions defined so that
there results identically

	
�j

dr j�� j�r j,t��2 =
1

cj
2�t�

	
�j

dr j��̂ j�r j,t��2 = 1 �A4�

and f j = �� j�r j , t��2 are the associated one-particle probability
densities. The Schrödinger equation for � j�r j , t� follows im-
mediately from the N-body Schrödinger equation �3�. Let us
assume for definiteness that the N-body Hamiltonian takes
the form

H = 

k=1,N

Hok + 

k,m=1,N;k�m

Ukm�rk,rm,t� �A5�
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+ 

k=1,N

U0k�rk,t� , �A6�

where Ukm�rk ,rm , t� and U0k�rk , t� are, respectively, binary
and unary interaction potentials. Introducing the position

Lj 

k,m=1,N;k�m

Ukm�rk,rm,t���N��r,t� �A7�

=c�j��t�U1�r j,t�� j�r j,t� , �A8�

it follows

LjH� = c�j��t��Ho�j� + U1�r j,t� + U0j�� j�r j,t� . �A9�

Hence, � j�r j , t� obeys necessarily the one-particle
Schrödinger equation

i�
�

�t
� j = H�j�� j , �A10�

where the index j �for j=1,N� identifies the particle sub-
system �or species index� and

Hj = Hoj + U0j − i�
�

�t
ln c�j� �A11�

is the jth particle Hamiltonian. The reduced one-particle de-
scription of a N-body quantum system is, therefore, obtained
by means of the vector wavefunction ��r , t����1 ,… ,�N�,
� j�r j , t�, for j=1,N, being the one-particle wave functions
which obey Eq. �A10�.

APPENDIX B: CASE OF POSITION-DEPENDENT
DIRECTIONAL TEMPERATURES

We notice that the correspondence principle �48� can be
modified by assuming instead Ti=Ti�r , t� �i=1,2 ,3� and im-
posing, in place of Eq. �48�, the constraint equation

�Ti�r,t�
 = TQM,i�t� , �B1�

with general solution of the form

Ti�r,t� = k�i��r,t��Ti�r,t�
 , �B2�

�k�i��r,t�
 = 1. �B3�

The functions k�i��r , t� �i=1,2 ,3� which satisfy Eq. �B3� are
manifestly nonunique. In this case it is immediate to prove
that for the generalized Maxwellian solution �59� the mean-
field K�gM� is obtained by imposing �71� and �72� with

K1�gM� = mu · �V +
m

2
uiêi

D

Dt
ln Ti

−
m

2
êiêivth,i

2 · 

j=1,2,3

� ln Tj�xj
2 −

1

2
�

−
m

2
êiêivth,i

2 · � ln Ti �B4�

replacing Eq. �73�. Here, the sum is understood on repeated
indexes. The general case in which g�gM can be obtained
immediately from Eqs. �B4�, �78�, and �79�.
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