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Nonclassical joint measurements can hugely improve the efficiency with which certain figures of merit of
quantum systems are measured. We use such a measurement to determine a particular figure of merit, the
purity, for a polarization qubit. In the process we highlight some of subtleties involved in common methods for
generating decoherence in quantum optics.
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Quantum information science has the potential to dramati-
cally increase the speed of certain information processing
tasks such as factoring large numbers �1�. The superiority of
quantum information processors over classical ones arises in
part because the number of internal states of the processor
increases exponentially with the number of inputs and output
bits, rather than polynomially. This very property that makes
quantum systems such powerful information processors also
makes them notoriously difficult to characterize, since de-
scribing the state of a system at a particular stage of a cal-
culation requires exponentially more measurements than
there are input and output bits. Even with the small quantum
information processors of ten or so qubits that have been
demonstrated so far �2�, this characterization—known tech-
nically as quantum state tomography �3�—would require up
to a million independent measurements and rapidly becomes
impractical as systems become larger.

Given this problem, it is often desirable to describe the
system in terms of a few figures of merit that encapsulate the
relevant properties of the state for some particular applica-
tion. The simplest such figure of merit is the fidelity to the
expected state of the system �4�. If the expected state is ���,
then one will measure the expectation value of the projector
P�= ������, and the fidelity is given by F=Tr�P��	, where �
is the state of the system. The fidelity measurement will yield
one if the system is in the expected state and less than one if
it is not. Other figures of merit measure more subtle proper-
ties of the system. A partial list includes the purity �4�, the
Von Neumann entropy �5�, the tangle �6�, the concurrence
�6�, and the trace distance from another state �7�. All of these
figures of merit share the property that they are nonlinear
functions of the density matrix as opposed to fidelity which
is linear in the density matrix. Whereas the fidelity can be
measured straightforwardly as an expectation value, these
nonlinear functions cannot be measured in this way. Instead,
the figure of merit is usually computed from the density ma-
trix. This presents an experimental problem because the
number of measurements required to determine the density
matrix rises exponentially with the size of the quantum sys-
tem.

A means of circumventing this problem was proposed by
Brun �8� who showed how these nonlinear functions can be
measured very efficiently with nonclassical joint measure-
ments, at least in the special case that they are polynomial in
the density matrix. Brun demonstrated that an mth degree
polynomial function of the density matrix can be written as
the expectation value of a joint measurement performed on m
copies of the system described by the same density matrix �.
Since the density matrix describing these m copies can be
written �m=��m, expectations values that are linear in �m are
mth order polynomials in �. In particular, purity, defined as

P = Tr��2	 , �1�

being quadratic in �, can be measured directly as a joint
expectation value on two copies of a system. Even nonpoly-
nomial functions like the Von Neumann entropy can be mea-
sured by approximating them with a truncated Taylor series
in the density matrix.

The purity is a useful figure of merit in many situations. It
is directly related to the thermodynamic temperature of the
ensemble which can be easily calculated from it. It can also
be used as a measure of entanglement of a particle with other
systems, since for a set of interacting systems each indi-
vidual system will appear pure when the overall state is sepa-
rable, completely impure when the state is maximally en-
tangled, and partially pure when the state is partially
entangled. In this paper we will discuss applying Brun’s
technique to the measurement of purity.

Joint measurements can result in an enormous reduction
in the resources required to measure nonlinear figures of
merit. While complete characterization scales exponentially
with the size of the system, the joint measurement used in
the Brun technique is fixed by the degree of the polynomial
defining the figure of merit. A 10-qubit system requires over
one million measurements to measure the density matrix, but
only a single joint measurement on pairs of copies of the
system to measure the purity. The joint measurement method
for measuring purity was also applied experimentally in a
nuclear magnetic resonance system by Du et al. �9�, and in
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an entangled photon system by Bovino et al. �10�. Both these
systems were limited in the range of mixed states that they
were able to generate. Recently, another figure of merit, the
concurrence, has also been directly measured in a photonic
system �11�. Here we study the application of this technique
to a broad range of pure and mixed states and find that the
effectiveness of the approach depends crucially on the details
of how the state is prepared.

For an ensemble of single qubits described by a density
matrix

� = 
�00 �01

�10 �11
� , �2�

the formula P=Tr��2� can be expanded as a second-order
polynomial in the density matrix elements: P=�00

2 +�01�10
+�10�01+�11

2 . According to Brun’s result, the purity will be
equal to the expectation value of a two-particle operator A
made by replacing each quadratic term �ij�kl in the sum with
the two particle projector �i��j� � �k��l� such that

A = �0��0� � �0��0� + �0��1� � �1��0� + �1��0� � �0��1�

+ �1��1� � �1��1� .

Inserting the two-photon polarization identity operator I4 and
grouping tensor products into two photon states, we obtain

A = I4 − �01��01� − �10��10� + �01��10� + �10��01� �3�

=I4 − 2��−���−� , �4�

where ��±����01�± �10�� /2. Applying P= �A�=Tr�A� � �	,
we obtain

P = Tr��I4 − 2��−���−��� � �	

=1 − 2��−�� � ���−� . �5�

Thus the purity can be obtained by a single measurement on
two particles, namely a projection onto the singlet state ��−�.
This fact can be intuitively understood by realizing that a
projection onto ��−� implements a measurement of permuta-
tion symmetry, since the two qubit space divides into a sym-
metric subspace spanned by ��00� , �11� , ��+�	 and the or-

thogonal, antisymmetric state ��−�. If a state � is pure, then
the state � � � is manifestly permutation invariant, and there-
fore has no antisymmetric component. In the other limit of a
completely mixed state �= � 1

2
�I2, � � �= � 1

4
�I4 with a projec-

tion onto the singlet state �and any other state� of 0.25 and
hence a purity of 0.5. For states of intermediate purity �
� � can be decomposed into antisymmetric and symmetric
parts, the relative weights of which determine the purity.

In quantum optics, ��−���−� can be measured using the
Hong-Ou-Mandel �HOM� effect �12�. The effect occurs
when two photons are made indistinguishable in all physical
properties except polarization and then sent into the two in-
put ports of a beam splitter so as to arrive at the same time.
Photons in a permutation-symmetric polarization state such
as �HH� or ��+� will always leave the beam splitter in the
same port, whereas if the incoming photons are in the
permutation-antisymmetric state ��−� then they will always
leave the beam splitter in opposite ports. If we measure the
rate of coincident firings of detectors at the two output ports
we will have filtered for the singlet state ��−�, thereby,
through Eq. �5�, measuring the purity. This technique of us-
ing the HOM effect as a singlet state filter has been em-
ployed in many important quantum optics experiments in-
cluding the demonstration of teleportation �13�. Its
applicability for this task is discussed by Mitchell et al. �14�
who fully characterized the filtering process using quantum
process tomography and by Kim and Grice �15� who note
some of its limitations.

The experimental implementation of the purity measure-
ment was carried out using the apparatus shown in Fig. 1�a�.
A �-barium borate crystal cut for type-I phase matching was
pumped with a 28-mW, 405-nm diode laser, producing pairs
of horizontally polarized photons over a wide bandwidth.
The photons were sent through 10-nm interference filters to
reduce spectral differences between them. A corner prism
mounted on a motorized translation stage allowed control of
the relative delay in the two arms. The photons passed
through a half waveplate and a liquid crystal variable wave-
plate with its axis aligned with the horizontal. The photons
then arrived at the beam splitter which implemented the joint
measurement before passing to the detector. Ideally the beam
splitter should act as a perfect singlet state filter and never
allow the photons to leave in opposite ports when the input

(a) (b)

FIG. 1. �Color online� Experimental implementation of �a� the direct purity measurement and �b� quantum state tomography. Labels
designate a 50/50 beam splitter �BS�, a nonlinear �-barium borate �BBO� crystal, half waveplates �HWP�, liquid-crystal variable waveplates
�LCWP�, single photon counting modules �SPCM� and a polarizing beam splitter �PBS�. A type-I spontaneous parametric down conversion
�SPDC� crystal produces pairs of H-polarized photons. In �a�, the same state � is prepared in both arms and the beam splitter acts as a singlet
state filter. In �b�, a state is prepared in one of the arms and polarimetry is used to measure the density matrix of the state using a quarter
waveplate, a half waveplate, and a polarizing beam splitter.
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polarization states are the same. In reality, the visibility of
the two-photon interference was limited to 0.90±0.03 by the
unequal reflection and transmission coefficients of the beam
splitter and by small alignment errors. As a result, the mea-
surement actually implemented was Pactual=0.10I
+0.90��−���−� rather than Pideal= ��−���−�. The tabulated pu-
rities were calculated by taking account of this modified
measurement: �Pideal�= ��Pactual�−0.1� /0.9.

This is not quite equivalent to the measurement that might
be made with an ideal singlet state filter. Since in practice
�Pactual� represents a measured expectation value obtained
from a finite number of measurements it will have some shot
noise associated with it. Consequently the estimate of �Pideal�
will also have some shot noise and thus for a pure state there
is a finite probability of obtaining a value for the singlet state
projection of less than zero and hence a purity greater than
one. Similarly for mixed states there is a finite probability of
obtaining a purity less than 1/2 with a finite number of mea-
surements. The probability of obtaining these unphysical re-
sults goes to zero as 1/N in the limit of a large number of
measurements N, and it is only in this limit that our expres-
sion for the purity may be considered exact. This is in keep-
ing with the well-known fact in statistics that an exact esti-
mate of an expectation value requires an infinite number of
measurements.

Impure states were created by applying random polariza-
tion phase shifts with the liquid crystal waveplates. Thus
polarization was correlated to a pseudorandom number gen-
erator rather than to some traced-over degree of freedom. As
far as polarization measurements are concerned, there is no
observable difference between impure states generated with
this technique and those generated by some more compli-
cated method such as loss of a single photon from an en-
tangled pair �16�, although, as will be discussed later, there is
a difference between this approach and the generation of
decoherence by coupling to another degree of freedom of the
photon.

For comparison, the purity was also determined by mea-
suring the density matrix using quantum state tomography
and applying the formula P=Tr��2	. Quantum state tomog-
raphy was performed by blocking one of the photons and
performing projective measurements on the other photon.
Background counts due to detector dark counts and residual
light were subtracted from the data before reconstructing the
density matrix.

Table I shows the results of state tomography and direct
purity measurement for a variety of states of varying purity.
A number of nondecohering and decohering preparation pro-
cesses were performed. If no preparation was done the state
was left in �H� as in Fig. 2�a� with essentially unit purity
measured with both methods. Figure 2�b� shows the state
after a unitary rotation to the state ��� where we have used
the notation �± ���H�± �V� /2. This rotation has no effect on
the purity as measured with either method since purity is an
invariant under unitary operations. Figure 2�c� shows the
completely mixed state �= �1/2�I2 obtained by randomly ap-
plying a phase shift of 0 or � with the liquid crystal wave-
plates to the state ���. The purity measured with either
method is consistent with the theoretical value of 0.5 or com-

pletely mixed. Figure 2�d� shows a state made by randomly
applying either a 0, �, or � /2 phase shift to the state ���.
The purity is consistent with the theoretical value of 5 /9.
Finally, Fig. 2�e� shows a state created by selecting randomly
from the continuum of phases in the range �0,��. Again, the
measured purity was consistent with the theoretical value of
0.5+2/�2.

While the joint measurement technique correctly mea-
sures the purity in these cases, caution must be exercised in
using it since the method depends crucially on the assump-
tion that the couplings to the environment that cause the
reductions in purity in the two copies of the state be uncor-
related. In the case where the couplings to the environment
are perfectly correlated, any given two copies of the state
will be in the same pure state at any given moment, and the
direct purity measurement will indicate unit purity. In this
experiment, correlated decoherence was achieved by apply-
ing phase shifts to the two photons with a liquid crystal
waveplate so as to always give the two photons the same
birefringent phase, even as the value of this phase varied
randomly over time. In this situation the density matrix for
either individual photon is mixed since the phase shifts are
random, but at any given moment the two photons are in the
same state, and hence their singlet state projection is always
zero.

The purity was measured directly for the three mixed
states �Figs. 2�c�–2�e�� generated with the mixing completely
correlated for the two copies of the system. All measured
purities were consistent with unit purity. This demonstrates
that the joint measurement technique relies on the assump-
tion that the decoherence processes are independent for all
the particles being jointly measured and fails to work when
this assumption does not hold.

The quantum optics implementation of this technique de-
pends in another way on the details of how mixed photon
states are prepared. A common technique for creating impure
photon polarization states is to create a correlation between
polarization and some other photon degree of freedom such
as frequency or spatial mode �16� which is subsequently ig-
nored or traced over in the measurement. However, for the
HOM effect to perform as a polarization singlet state filter,

TABLE I. The purities measured for five states using the direct
joint purity measurement and a full characterization followed by a
calculation of Tr��2	. The stated errors arise from counting statistics
and the statistics associated with the random state selection.

State

Purities

Direct Tomographic Theoretical

�H� 1.00±0.03 1.00±0.01 1

��� 0.99±0.03 0.98±0.01 1

Equal mixture
���, ���

0.52±0.01 0.50±0.01 0.5

Equal mixture
���, ���, �R�

0.568±0.008 0.56±0.01 5/9�0.5556

�H�+ei��V�,
�� �0,��

0.72±0.01 0.70±0.01
0.5+

2

�2 �0.7026
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the photons must be indistinguishable in all degrees of free-
dom other than polarization, and this will not be the case if
extra degrees of freedom become correlated to polarization.

To demonstrate this fact the same experiment was done
using the method of �16� to create impurity. In this method,
impurity is obtained by creating a frequency-dependent bire-
fringent phase shift �or equivalently, introducing a constant
group delay between the horizontal and vertical compo-
nents�. Since the photon measurement is insensitive to fre-
quency, this correlation is traced over, resulting in a loss of
coherence between the horizontal and vertical components of
the density matrix. In order to create the maximally mixed
state �= �1/2�I2 a 20 mm piece of quartz was introduced into
each beam with the fast and slow axes of the two crystals
relatively rotated by 90° so that the vertical polarization
component was advanced in one arm relative to the horizon-
tal component and delayed in the other. Diagonally polarized
light was then sent into each arm. State tomography on the
individual photons resulted in the expected density matrix
�= �1/2�I2, but the HOM visibility did not result in the cor-
rect value for the purity. As the path length difference in the
two arms was scanned, rather than observing a single HOM
dip yielding a purity of 0.5 as in Fig. 3�a�, two dips

were observed as in Fig. 3�b�, either of which would
have implied a purity of 0.25. The discrepancy can be
accounted for by noting that after the delay is introduced,
a complete description of the state of each photon involves
not only polarization but also the relative delay between
the horizontal and vertical components. The state space
becomes four-dimensional, being spanned by
��H , early� , �H , late� , �V , early� , �V , late�	. Coincidences are
suppressed when either both photons arrive late with the
same polarization or both arrive early with the same polar-
ization. When either the polarizations or the arrival times are
different the photons cause a coincidence 50% of the time.
Since out of 16 possible combinations of arrival time and
polarization only four are removed by singlet state filtering
the dip visibility is 25% as observed. This result demon-
strates the danger of thinking of the HOM effect as acting as
a polarization singlet state filter. Rather the HOM effect is a
symmetry filter over all the properties of the photon, even
those that one would prefer that it ignore.

For completeness we also looked at the case where the
crystals were oriented so as to delay the same polarization in
the two arms. In that case the interaction with the “environ-
ment” is correlated and the photons in the two arms are al-

FIG. 2. �Color online� Experimentally obtained density matrices for various single-photon polarization states. �a� Pure horizontal �H�, �b�
pure diagonal ���, �c� equal mixture of ��� and ���, �d� equal mixture of ���, ��� and �R�= ��H�− i�V�� /2, and �e� mixture of states of the
form ��H�+ei��V�� /2 with � distributed equally over �0,��.

FIG. 3. �a� The HOM dip expected for a maximally mixed qubit state. �b� Observed data when such a state is created by introducing a
large birefringent group delay between horizontal and vertical polarizations.
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ways in the same state in the four-dimensional state space.
Just as when the correlated mixed states were created with
liquid crystals waveplates, the joint measurement of the pu-
rity for correlated delays gives a purity of one even though
the polarization density matrix measured with tomography is
mixed.

We have demonstrated the direct measurement of the pu-
rity of a single qubit through a joint measurement on two
particles drawn from an ensemble. Such measurements are
much more efficient at determining nonlinear figures of merit
such as purity than the common method of measuring the
density matrix and calculating the figure of merit from it,
particularly in large Hilbert spaces. Furthermore, we have
shown that the method depends critically on the properties of
the decoherence process generating a mixture of states. Joint
measurements on a mixed state where the decoherence is
correlated between the measured photons generate the same

experimental signature as no decoherence at all, while a
widely used technique for preparing decohered states fails
because of the behavior of the HOM effect when used as a
singlet state filter. These caveats aside, joint measurements
still provide an efficient means of characterizing quantum
states that may find application in thermometry, quantum er-
ror correction, and the characterization of quantum devices.
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