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We study the Loschmidt echo �LE� of a coupled system consisting of a central spin and its surrounding
environment described by a general XY spin-chain model. The quantum dynamics of the LE is shown to be
remarkably influenced by the quantum criticality of the spin chain. In particular, the decaying behavior of the
LE is found to be controlled by the anisotropy parameter of the spin chain. Furthermore, we show that due to
the coupling to the spin chain, the ground-state Berry phase for the central spin becomes nonanalytical and its
derivative with respect to the magnetic parameter � in spin chain diverges along the critical line �=1, which
suggests an alternative measurement of the quantum criticality of the spin chain.
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Quantum phase transition �QPT�, which is closely associ-
ated with the occurrence of nonanalyticity of the ground-
state energy as a function of the coupling parameters in the
system’s Hamiltonian �1�, are of extensive current interest,
mainly in condensed matter physics because they are not
only at the origin of unusual finite temperature properties but
also promote the formation of new states of matter like un-
conventional superconductivity in a heavy-fermion system
�2�. In the parameter space, the points of nonanalyticity of
the ground-state energy density are referred to as critical
points and define QPT. At these points one typically wit-
nesses the divergence of the length associated with the two-
point correlation function of some relevant quantum field. In
experiments QPT has been extensively studied in the heavy-
fermion compounds �3,4�. Recently, QPT has drawn consid-
erable interest in other fields of physics. More specifically
QPT has been studied by analyzing scaling, asymptotical be-
havior, and extremal points of various entanglement mea-
sures �5–9�. The connection between geometric Berry phase
�BP� and QPT for the case of a spin-XY model has also been
studied �10–12�, through which a remarkable relation be-
tween the BP and criticality of spin chains is established. In
addition, a characterization of QPT in terms of the overlap
between two ground states obtained for two different values
of external parameters has been presented �13�.

Another way to study quantum criticality is to investigate
quantum dynamics of the many-body systems. Recently,
Sengupta et al. �14� have studied time evolution of the Ising
order correlations under a time-dependent transverse field
and shown that the order parameter is best enhanced in the
vicinity of the quantum critical point. Quan et al. �15� have
studied transition dynamics of a quantum two-level system
from a pure state to a mixed one induced by the quantum
criticality of the surrounding many-body system. They have
shown that the decaying behavior of the LE is best enhanced
by the QPT of the surrounding system. Yi et al. �16� have
reported the relation between the Hahn spin echo of a spin-
1 /2 particle and QPT in a spin chain which is coupled to the
particle. It is expected that further work associated with the
dynamical measurement of QPT via a coupling to the central

probe system will be reported afterwards. From this aspect a
thorough theoretical investigation of the quantum dynamics
in the QPT regime, including the various kinds of spin-chain
models, is necessary and will be helpful for future experi-
mental references.

In this paper, we present a theoretical study of the behav-
ior of the Loschmidt echo �LE� of a coupled spin system
which consists of two quantum subsystems. One subsystem
is characterized by a spin-1 /2 Hamiltonian, which denotes
the general two-level particles. We call this subsystem the
central spin, in the sense that this spin plays the role of
measuring apparatus. Whereas the other subsystem plays the
role of a surrounding many-body environment and is mod-
eled by a general XY spin chain in a transverse magnetic
field. The present study is directly motivated by the recent
theoretical report �15� that the quantum critical behavior of
an environmental system strongly affects its capability of
enhancing the decay of LE. Here we extend the Ising model
used in Ref. �15� for simulating the environmental subsystem
to the more general XY model. Compared to the Ising model,
the XY model is parametrized by � and � �see Eq. �1b� be-
low�. Two distinct critical regions appear in parameter space:
the segment �� ,��= (0, �0,1�) for the XX spin chain and the
critical line �c=1 for the whole family of the XY model �1�.
The behavior of decaying enhancement of the LE calculated
in Ref. �15� can be used as a measure of the presence of the
quantum criticality of the Ising spin chain. It remains yet to
be exploited whether this decaying enhancement sustains in
the whole critical regions for the XY model.

The other interest in this paper is to study the BP proper-
ties of the coupled system. Instead of investigating the BP of
the environmental XY spin chain which has been previously
studied �10–12�, we focus our attention to the ground-state
BP of the central quantum subsystem. Due to the coupling, it
is expected that the quantum criticality of the surrounding
XY spin chain will influence the BP of the central spin, which
is found in this paper to be in close proximity to the nonana-
lytical and divergent behavior of QPT of the environmental
spin chain in the critical region.

We consider a two-level quantum system �central spin�
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transversely coupled to a environmental spin chain which is
described by the one-dimensional XY model. The corre-
sponding Hamitonian is given by H=HC+HE+HI, where
�we take �=1�

HC = ��z/2 + ��x/2, �1a�

HE = − J�
l

N �1 + �

2
�l

x�l+1
x +

1 − �

2
�l

y�l+1
y + ��l

z� , �1b�

HI = J
g

N�
l=1

N

�z�l
z �1c�

Here the Pauli matrices �� ��=x ,y ,z� and �l
� are used to

describe the central spin and the environmental spin-chain
subsystems, respectively. The parameters J and � character-
ize the strengths of the spin interaction and the intensity of
the magnetic filed applied along the z axis respectively, and
� measures the anisotropy in the in-plane interaction. It is
well known that the XY model in Eq. �1b� encompasses two
other well-known spin models: it turns into transverse Ising
chain for �=1 and the XX chain for �=0. HI gives the cou-
pling between the central spin and the surrounding spin
chain. The above employed model is similar to the Hepp-
Coleman model �17,18� or its generalization �19–21�.

As for quantum criticality in the XY model, there are two
universality classes depending on the anisotropy �. The criti-
cal features are characterized in terms of a critical exponent
� defined by ��	�−�c	−� with � representing the correlation
length. For any value of �, quantum criticality occurs at a
critical magnetic field �c=1. For the interval 0	�
1 the
model belongs to the Ising universality class characterized
by the critical exponent �=1, while for �=0 the model be-
longs to the XX universality class with �=1/2 �1�.

Following Ref. �15�, we assume that the central spin is
initially in a superposition state 	�S�0�
=cg	g
+ce	e
, where
	g
= �sin �

2 ,−cos �
2

�T and 	e
= �cos �
2 , sin �

2
�T with �

=tan−1�� /�� are ground and excited states of HC, respec-
tively. The coefficients cg and ce satisfy the normalization
condition, 	cg	2+ 	ce	2=1. Then the evolution of the XY spin
chain initially prepared in 	�0�
, will split into two branches
	��t�
=exp�−iH�t�	�0�
 ��=g ,e�, and the total wave func-
tion is obtained as 	��t�
=cg	g
 � 	g�t�
+ce	e
 � 	e�t�
.
Here, the evolutions of the two branch wave functions
	��t�
 are driven, respectively, by the two effective Hamil-
tonians

Hg = �g	H	g
 = HE − J��
l=1

N

�l
z − � , �2a�

He = �e	H	e
 = HE + J��
l=1

N

�l
z + � , �2b�

where �=��2+�2 /2 and �=g cos � /N. Obviously, both Hg
and He describe the XY model in a transverse field, but with
a tiny difference in the field strength. The central spin in two
different states 	g
 and 	e
 will exert slightly different back-

actions on the surrounding spin chain, which manifests as
two effective potentials Vg=−J��l=1

N �l
z and Ve=J��l=1

N �l
z.

This difference results in the decay of the LE �22� defined as
�15� follows:

L�t� = 	�g�t�	e�t�
	2 �3�

The LE has been proved to be conveniently related to depict-
ing quantum decoherence of the central system �15�: con-
sider the purity defined �22� by P=TrC��C

2 �=TrC�TrE��t��2�.
Here ��t�= 	��t�
���t�	, and TrC�E� means tracing over the de-
grees of freedom for the central spin �environmental spin
chain�. A straightforward calculation reveals the relationship
between the LE and the purity as P=1−2	cgce	2�1−L�t��
�15�. This equation indicates that the purity depends on the
initial state of the central spin and the surrounding spin
chain. For simplicity, we assume that the spin chain sub-
system begins with its ground state. In the following discus-
sion, we will focus on the quantum dynamics of the LE in
the different parameter regions. In particular, the decay prob-
lem of LE induced by the coupling of the central spin and its
surrounding spin chain, as has been discussed in Ref. �15�
for the special case of Ising model, will be fully studied in
the �� ,�� space.

To diagonalize the effective Hamiltonians Hi �i=g ,e�, we
follow the standard procedure �1� by defining the conven-
tional Jordan-Wigner �JW� transformation

�l
x = �

m	l

�1 − 2am
† am��al + al

†� , �4a�

�l
y = − i�

m	l

�1 − 2am
† am��al − al

†� , �4b�

�l
z = 1 − 2al

†al �4c�

which maps spins to one-dimensional spinless fermions with
creation �annihilation� operators al

† �al�. After a straightfor-
ward derivation, the effective Hamiltonians read

Hi = − J�
l=1

N

��al+1
† al + al

†al+1� + ��al+1al + al
†al+1

† �

+ �� + �i���1 − 2al
†al�� − �i� , �5�

where �g=−�e=1. Next we introduce Fourier transforms of
the fermionic operators described by dk= 1

�N
�lale

−i2�lk/N with
k=−M , . . ,M; M =N /2. The Hamitionians �4� can be diago-
nalized by transforming the fermion operators in momentum
space and then using the Bogoliubov transformation. The
results are

Hi = �
k

2�k,i�bk,i
† bk,i − 1/2� − �i� , �6�

where the energy spectrums �k,i �i=g ,e� are given by
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�k,i = J��k,i
2 + �2 sin2 2�k

N
with �k,i = � − cos

2�k

N
+ �i� ,

�7�

and the corresponding Bogoliubov-transformed fermion op-
erators are defined by

bk,i = cos
�k

�i�

2
dk − i sin

�k
�i�

2
d−k

† �8�

with angles �k
�i� satisfying cos �k

�i�=J�k,i /�k,i. It is straightfor-
ward to see that the two sets of normal modes are related by
the equation bk,e= �cos �k�bk,g− i�sin �k�b−k,g

† where �k

= ��k
�e�−�k

�g�� /2.
The ground state 	G
 of Hi is the vacuum of the fermionic

modes described by bk,i	G
i=0, and can be written as 	G
i

=�k=1
M �cos

�k
�i�

2
	0
k	0
−k+ i sin

�k
�i�

2 	1
k	1
−k�, where 	0
k and 	1
k
denote the vacuum and single excitation of the kth mode, dk,
respectively. Note that the ground state is a tensor product of
states, each lying in the two-dimensional Hilbert space
spanned by 	0
k	0
−k and 	1
k	1
−k. From the relationship be-
tween the two Bogoliubov modes bk,e and bk,g, one can see
that the ground state 	G
g of the effective Hamiltonian Hg
can be obtained from the ground state 	G
e of He by the
transformation 	G
g=�k=1

M �cos �k+ i sin �kbk,e
† b−k,e

† �	G
e.
Now we suppose that the XY spin chain is initially in the

ground state of Hg, i.e., 	�0�
= 	G
g. Then our present task is
to derive the explicit expression for LE. First one notices that
the LE in Eq. �3� can be rewritten

L�t� = 	�g�t�	e�t�
	2

= 	g�G	e−iHet	G
g	2

= 	e�G	�
k

�cos �k − i sin �kb−k,ebk,e�e−iHet

��
k

�cos �k + i sin �kbk,e
† b−k,e

† �	G
e	2, �9�

where the dynamical phase in 	g�t�
 contributed by the time
evolution operator e−iHgt has been eliminated by the arith-
metic module operation in L�t�. By using the identity
e−iHetbk,e

† eiHet=bk,e
† e−i2�k,et and after a straightforward deriva-

tion, one obtains the expression for L�t� as follows:

L�t� = 	e�G	�
k

�cos �k − i sin �kb−k,ebk,e��cos �k

+ ie−i4�k,et sin �kbk,e
† b−k,e

† �	G
e	2

= 	�
k

�cos2 �k + sin2 �ke
−i4�k,et�	2

= �
k=1

M

�1 − sin2�2�k�sin2�2�k,et�� . �10�

Remarkably, the expression for L�t� based on an XY spin
chain is formally the same as that based on an Ising model
which has been previously reported �15�. The difference
comes from the time-dependent phase factor, which in the
present case is the energy spectrum 2�k,e of XY spin-chain

characterized by the effective Hamiltonian He, instead of
Ising model given in Ref. �15�. Due to the obvious difference
in the energy spectrum between the XY model and Ising
model, one may expect that the behavior of the LE in the
present case will include new features characteristic of the
XY model.

Since each factor Fk in Eq. �10� has a norm less than
unity, we may expect L�t� to decrease to zero in the large N
limit under some reasonable conditions. This kind of factor-
ized structure was first discovered and systematically studied
�21� in developing the quantum measurement theory in the
classical or macroscopic limit and has been applied to ana-
lyze the universality of decoherence influence from an envi-
ronment on quantum computing �23�. Now we study in detail
the critical behavior of LE near the critical point �c=1 for a
finite lattice size N of spin chain. Following Ref. �15�, let us
first make a heuristic analysis of the features of the LE. For
a cutoff frequency Kc we define the partial product for the
LE,

L�t� = �
k=1

Kc

Fk � L�t� , �11�

and the corresponding partial sum S�t�=ln Lc�−�k=1
Kc 	ln Fk	.

For small k one has

�k,e � J	� − 1 − �	 + O�k2� , �12�

and

sin2�2�k� �
4�24�2�2k2

N2�� − � − 1�2�� + � − 1�2 . �13�

As a result, if Kc is small enough one has

S�t� = −
4E�Nc��2�2 sin2�2t	� − � − 1	�

�� − � − 1�2�� + � − 1�2 , �14�

where E�Nc�=4�2Nc�Nc+1��2Nc+1� / �6N2�. In this case, it
then follows that for a fixed t,

Lc�t� � exp�− �t2� �15�

when �→�c=1, where �=16J2E�Nc��2�2 / ��+�−1�2.
From Eq. �15� it may be expected that when N is large

enough and � is adjusted to the vicinity of the critical point
�c=1, the LE will exceptionally vanish with time. In the
thermodynamic limit, i.e., the number N of sites approaching
infinite while the length of spin chain keeping a constant, �
seems to tend to zero and thus the approximate expression
Lc�t� remains in unity without any decay. This implies that
our heuristic analysis cannot apply to the case of the thermo-
dynamic limit, in which case the small-k approximation be-
comes invalid. Thus to reveal the close relationship between
the decaying behavior of LE and QPT which occur only in
the thermodynamic limit, all k components of Fk in Eq. �11�
should be included. On the other side, for a practical system
used to demonstrate the QPT-induced decay of the LE, the
particle number N is large, but finite, and then the practical �
in Eq. �15� does not vanish.

Figure 1�a� shows the numerical result of the LE in Eq.
�10� as a function of magnetic intensity � and time t for N
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=100, �=0.05, and �=1.0 �i.e., the case of the Ising model�.
One can see that when the value of � is larger or smaller than
that of �c, the LE in the time domain is characterized by an
oscillatory localization behavior. When the amplitude of �
approaches to �c, then the degree of localization of L�t� is
decreased to zero. The fundamental change occurs at a criti-
cal point of QPT, i.e., �=�c=1. At this point, as revealed in
Fig. 1�a�, the LE evolves from unity to zero in a very short
time. Figure 1�b� shows the time evolution of LE for differ-
ent values of lattice size at the critical point �=1 of the Ising
model. One can see that the LE decays more rapidly by
increasing the size N of the spin chain. Also the decaying
amplitude is increased with increasing N.

Figure 2 shows the LE as a function of time for different
values of anisotropy parameter � in the quantum critical re-
gion ��=�c�. In the extreme anisotropy limit, i.e., for the XX
spin model ��=0�, one can see from Fig. 2 that the LE com-
pletely remains to unity during the time evolution. This full
localization behavior can also be seen from the analytic ex-
pression, Eq. �14�, in which �=0 for �=0, indicating no de-
cay in the LE, regardless of the variation of � and the size of
the spin chain. As a consequence, the purity P of the central
spin remains in unity; the coupling induced decoherence dis-
appears for the XX spin chain. In this case, the quantum
criticality behavior of the surrounding spin chain dose not
affect the localization behavior of the LE for the central spin.
The physical reason behind this static behavior of the LE can
be revealed by noting that the two fermionic modes in Eq.
�8� coincide each other, bk,g=bk,e when �=0, which leads to
complete overlap between the ground states 	G
g= 	G
e. In
this case, as can be seen from Eq. �9�, the LE remains in
unity during its time evolution. By smoothly tuning the value
of � a little out of the XX model, as shown in Fig. 2, the

behavior of the LE begins to be characterized by an interplay
of the decay in a short time and the oscillations in the sub-
sequent evolution. The oscillations are featured by a super-
position of the collapses and the revivals. The amplitude of
the oscillations is decreased with increasing the value of �.
Further increasing the value of � will, as one can see from
Fig. 2, leads to the complete decay of the LE without promi-
nent revivals during the whole time evolution. Therefore, the
decay of the LE and its proximity to the quantum criticality
can be tuned by the anisotropy parameter �.

Now we turn to study the behavior of the ground-state BP
for the central spin. Due to the coupling, it is expected that
the BP for the central spin will be profoundly influenced by
the occurrence of QPT in a spin-chain environment.

Similar to the above discussions, it is supposed that the
XY spin chain is adiabatically in the ground state 	G��k��
g

of Hg, which is parametrized by the series �k� in the ground
state. Thus the effective mean-field Hamiltonian for the cen-
tral spin is given by

Hef f = HS + g�G	HI	G
g = ��

2
+

2Jg

N
�
k=1

M

cos �k
�g���z +

�

2
�x.

�16�

In order to generate a BP for the central spin, we change the
Hamiltonian by means of a unitary transformation:

U��� = exp�− i
�

2
�z� , �17�

where � is a slowly varying parameter, changing from 0 to
2�. The transformed Hamiltonian can be written

Hef f��� = U+���Hef fU���

= ��

2
+

2Jg

N
�
k=1

M

cos �k
�g���z

+
�

2
��x cos � − �y sin �� . �18�

The eigenenergies of the effective Hamiltonian for the cen-
tral spin are given by

Ee,g = ±���

2
+

2Jg

N
�
k=1

M

cos �k
�g��2

+
�2

4
. �19�

The corresponding eigenstates are

	g
 = � sin �
2

− cos �
2e−i��, 	e
 = � cos �

2

sin �
2e−i�� , �20�

where sin �=� /2Ee.
The acquired ground-state BP for the central spin by vary-

ing � from zero to 2� is given by

FIG. 1. �Color online� �a� The LE as a function of magnetic
intensity � and time t for Ising ��=1.0� spin-chain size N=100; �b�
The LE as a function of time for different values of N for Ising spin
chain.

FIG. 2. The LE as a function of time for �=1.0 and different
values of anisotropy �. The other parameters are chosen to be N
=100, �=0.05.
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�g = i�
0

2�

�g	
�

��
	g
 = ��1 + cos ��

= ��1 +
� + 4Jgf��,�,N�

��� + 4Jgf��,N��2 + �2� , �21�

where we have defined f�� ,� ,N�= 1
N�k=1

M cos �k
�g�. In the ther-

modynamic limit, N→�, the summation in f�� ,� ,N� can be
replaced by the integral as follows:

f 	��,�,N�	N→� =
1

2�
�

0

� � − cos 

��� − cos �2 + �2 sin2 
d .

�22�

The BP �g for the central spin is closely related with QPT of
its coupled spin-chain subsystem. To manifest this, we plot in
Fig. 3 the BP �g and its derivative d�g /d� with respect to the
field strength � as a function of spin-chain parameters � and
�. One can see that given the value of �, the BP of the
central spin increases with increasing the field strength �.
After passing through the critical line �c=1, the BP �g ar-
rives at a stable value which turns out to be determined by
the specific values of central-spin parameters � and �. The

nonanalytic property of BP and its � derivative along the
whole critical line can be clearly seen from Fig. 3. Thus a
nonanalytic ground-state GP �g and the corresponding
anomaly in its derivative d�g /d� for the central spin also
witness QPT of the coupling spin-chain subsystem.

To help further illustration, let us consider the most dis-
continuous case of an XX spin model ��=0�. In the thermo-
dynamic limit, the function f �Eq. �22�� which occurred in
the expression of �g can be obtained explicitly for �=0 as
f =1/2−arccos��� /� when �
1 and f =1/2 when ��1.
Thus the BP of the central spin is given by

	�g	N→� =���1 +
� + 2Jg�1 − 2 arccos���/��

��� + 2Jg�1 − 2 arccos���/���2 + �2� �� 
 1�

��1 +
� + 2Jg

��� + 2Jg�2 + �2� �� � 1� ,� �23�

which clearly shows a discontinuity at �=�c=1. On the other
side, one can see that the value of function f�� ,� ,N� in �g is
always trivial for �=0 and every finite lattice size N, since
�k

�g�=0 or � for every k. The difference between the finite
and infinite lattice size can be understood, as has been first
demonstrated in Ref. �11�, from the two limits N→� and
�→0. We plot in Fig. 4 the numerical results of the BP �g
for different values of spin-chain size N, in comparison with
the result for the thermodynamic limit. One can see that the
BP of the central spin displays a multisteplike behavior for
the small values of spin chain size N. By increasing N, the
BP approaches toward the case of the thermodynamic limit
with nonanalyticity only at �c. We notice that the multistep
behavior of �g for finite lattice size is a unique feature of the
XX model ��=0�, and will be completely washed out by
deviation of � from zero.

To further understand the relationship between BP of the
central spin and quantum criticality of the coupled spin
chain, we calculate the derivative d�g /d� as a function of �
for �=1 �Ising model� and different lattice sizes. The results
are plotted in Fig. 5. Two prominent features can be seen: �i�
The derivative d�g /d� of GP is peaked around �=1, as in
the thermodynamic limit shown in Fig. 3�b�. The amplitude

of the peak is prominently enhanced by increasing the lattice
size of the spin chain; �ii� The accurate position �m of the
peak in d�g /d� is changed with changing the size N of the
spin chain. The position �m of the peak can be regarded as a
pseudocritical point �24�. We show in the inset �red circles�
in Fig. 5 the size dependence of the peak position �m for
d�g /d�. For comparison, we also plot in this inset the size
dependence of the peak position in � space for the
�-derivative of quantity f�� ,� ,N�. It has been shown in Ref.
�11� that the quantity f�� ,� ,N� is proportional to the ground-

FIG. 3. �Color online� �a� Ground-state BP of the central spin
and �b� its � derivative as a function of spin-chain parameters � and
� in the thermodynamic limit. The other parameters are chosen to
be �=0.1J, �=2J, and g=0.5.

FIG. 4. �Color online� � dependence of ground-state BP of the
central spin coupled to a XX spin chain ��=0� with different chain
sizes N. The other parameters are the same as used in Fig. 3.
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state BP for the spin chain �instead of that for the central spin
discussed here� and the peak position �m in df�� ,� ,N� /d�

tends as N−1.803 toward the critical point. This scaling behav-
ior of df�� ,� ,N� /d� is also clearly shown in the inset in Fig.
5. Remarkably, compared to the scaling behavior of
df�� ,� ,N� /d�, i.e., the scaling behavior of the � derivative
of ground-state BP for spin chain, the peak position �m in
d�g /d� in the present case approaches the critical point �c

more rapidly, which is verified by the fact that in the inset in
Fig. 5 the quantity log�1−�m� characterizing the scaling of
d�g /d� curves down more rapidly than that characteristic of
df�� ,� ,N� /d� at large values of spin chain size N. Thus we
can see that QPT of the XY spin chain is reflected faithfully
by the behavior of the ground-state BP and its � derivative of
the coupled central spin.

The theoretical results in this paper can be practically
tested by using cold atoms confined in an optical lattice �25�.

The quantum dynamics of LE can be engineered by a uni-
versal quantum simulation �26�, the essential is that the time
evolution operator concerning the operations Ul

z����ei��l
z

and Ul,l+1
�� ����ei��l

�
�l+1

�
�� ,�=x ,y� over a time t can be

simulated by decomposing the evolution into a product of
operators acting on very short times �� t. One can write
Ul,l+1

�� =Vl
�Vl+1

� Ul,l+1
zz Vl+1

�† Vl
�† where the fast homogeneous local

unitary operations Vl
�= �1− i�l

�� /�2 can be realized and made
very fast with single atoms in an optical lattice. The central
spin needed in our study, say, positioned at site �atom� 0, can
be introduced by using special local operations on atom 0.
See Ref. �25� for details.

In summary, we have analyzed the behavior of the
Loschmidt echo in a coupled system consisting of a central
spin and its surrounding environment characterized by a gen-
eral XY spin chain. The exact expression of the LE has been
obtained. The relation between the behavior of the LE and
the occurrence of QPT in a spin chain has been illustrated.
The decay of LE, which is closely associated with the en-
tanglement between the two coupled subsystems, has been
shown to be monotonically modulated by the anisotropic pa-
rameter � of the spin chain. At �=0 �XX model�, in particu-
lar, both the heuristic analysis and the numerical calculation
show that the LE is completely localized to be of unity with-
out any decay. Furthermore, we have investigated the behav-
ior of the ground-state BP �g of the central spin. It has been
shown that the behavior of �g and its derivative with respect
to the magnetic intensity � of the spin chain has a direct
connection with QPT of the spin-chain subsystem. This con-
nection is verified by the common feature that both BP �and
its � derivative� of the central spin and QPT of the coupling
spin chain is characterized by nonanalytic behavior around
the critical point �or critical line� �=�c. Thus the QPT of the
spin chain can be revealed by studying the BP behavior of
the coupled central spin.

We gratefully thank D. Rossini for drawing our attention
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Grants Nos. 10544004 10604010, 60325416, and 60521001.
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