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We examine the entanglement creation between two mutually independent two-level atoms immersed in a
thermal bath of quantum scalar fields in the presence of a perfectly reflecting plane boundary. With the help of
the master equation that describes the evolution in time of the atom subsystem obtained, in the weak-coupling
limit, by tracing over environment �scalar fields� degrees of freedom, we find that the presence of the boundary
may play a significant role in the entanglement creation in some circumstances and the new parameter, the
distance of the atoms from the boundary, besides the bath temperature and the separation between the atoms,
gives us more freedom in manipulating entanglement generation. Remarkably, the final remaining entangle-
ment in the equilibrium state is independent of the presence of the boundary.
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I. INTRODUCTION

Quantum entanglement has now been recognized as a key
resource in quantum information science �1�, since it plays a
primary role in quantum communication �2�, quantum tele-
portation �3�, quantum cryptography �4�, and so on. An in-
teresting issue in the discussions for the essence of entangle-
ment, which has attracted a lot of attention, is the
relationship between entanglement and environment. It is
known that an environment usually leads to decoherence and
noise, which may cause entanglement that might have been
created before to disappear. However, in certain circum-
stances, the environment may enhance entanglement rather
than destroying it �5–10�. The reason is that an external en-
vironment can also provide an indirect interaction between
otherwise totally uncoupled subsystems through correlations
that exist. For example, correlations in vacuum fluctuations
or fluctuations at finite temperature can provide such an in-
teraction, when entanglement generation is considered in
systems in external quantum fields.

Recently Benatti et al. have discussed, in the framework
of open systems, entanglement generation for two, indepen-
dent uniformly accelerating two-level atoms interacting with
a set of scalar fields in vacuum. In the weak coupling limit,
the completely positive dynamics for the atoms as a sub-
system has been derived by tracing over the field degrees of
freedom �11�, and there it has been shown that the
asymptotic equilibrium state of the atoms turns out to be
entangled even if the initial state is separable. Similar results
have been obtained by considering two atoms immersed in a
thermal bath of scalar particles at a finite temperature �12�,

where, in contrast to Ref. �11�, two atoms are assumed to be
at a finite separation. It is found that for any fixed finite
separation, there always exists a temperature below which
entanglement generation occurs as soon as time starts to be-
come nonzero and for the vanishing separation the entangle-
ment thus generated persists even in the late-time asymptotic
equilibrium state. Therefore, one can manipulate the en-
tanglement production by controlling two controllable pa-
rameters: the bath temperature and the separation of the at-
oms.

In the above studies, the field correlation functions that
characterize the fluctuations of fields play a very important
role in determining whether entanglement is generated. On
the other hand, it is well-known that the presence of bound-
aries in a flat spacetime modifies the fluctuations of quantum
fields, and it has been demonstrated that this modification
can lead to a lot of novel effects, such as the Casimir effect
�13�, the light-cone fluctuations when gravity is quantized
�14�, the Brownian �random� motion of test particles in an
electromagnetic vacuum �15�, and the modification for the
radiative properties of uniformly accelerated atoms �16�.

A question then arises naturally as to what happens to the
entanglement generation if the field correlations are modified
by the presence of a reflecting boundary. Now we have one
more controllable parameter other than the separation and
the bath temperature, i.e., the distance of the atoms from the
boundary and another interesting question is what is the role
that the new parameter plays in the entanglement generation.
These are questions we are going to address in the present
paper. We shall examine the entanglement generation of two
noninteracting two-level atoms immersed in a thermal bath
of scalar particles subjected to a perfectly reflecting plane
boundary. With the help of the master equation that describes
the evolution of the open system �atoms plus external ther-
mal fields� in time, we find that the presence of the boundary
may play an significant role in controlling the entanglement
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creation in some circumstances and the new parameter, the
distance of the atoms from the boundary, gives one more
freedom in controlling the entanglement generation. It is,
however, interesting that the probable remaining entangle-
ment for the asymptotic equilibrium state at late times is not
dependent on the presence of the boundary.

II. TWO ATOM MASTER EQUATION

The system we shall examine is composed of two inde-
pendent two-level atoms in weak interaction with a set of
massless quantum scalar fields at a finite temperature, T. We
assume that a perfectly reflecting plane boundary for the sca-
lar fields is located at z=0 in space and one atom is placed at
point x1 and the other at x2. Without loss of generality, we
take the total Hamiltonian to have the form

H = Hs + H� + �H�. �1�

Here Hs is the Hamiltonian of the two atoms,

Hs = Hs
�1� + Hs

�2�, Hs
��� =

�

2
ni�i

��� �� = 1,2� , �2�

where �i
�1�=�i � �0, �i

�2�=�0 � �i, �i �i=1,2 ,3� are the Pauli
matrices, �0 the 2�2 unit matrix, n= �n1 ,n2 ,n3� a unit vec-
tor, � the energy level spacing, and summation over repeated
index is implied. H� is the standard Hamiltonian of massless,
free scalar fields, details of which is not relevant here and H�
is the Hamiltonian that describes the interaction between the
two atoms with the external scalar fields which is assumed to
be weak. The general form for H� can be written as

H� = �
�=0

3

���� � �0����t,x1� + ��0 � ������t,x2�� . �3�

Now we assume that the scalar fields can be expanded as

���x� = �
a=1

N

�	�
a ��−��x� + �	�

a �*��+��x�� , �4�

where ��±��x� are positive and negative energy field opera-
tors of the massless scalar field, and 	�

a are complex coeffi-
cients that “embed” the field modes into the two-dimensional
detector Hilbert space and play the role of generalized cou-
pling constants �11�. It should be pointed out that the cou-
pling constant � in �1� is small, and this is consistent with the
assumption that the interaction of the atom with the scalar
fields is weak.

It is well-known that the evolution of the total system
density �i.e., the two atoms plus the environment� in time
obeys the Liouville equation �t
tot�t�=−i�H ,
tot�t�� with the
initial total density having a generic form 
tot�0�=
�0� � 
B,
where the environment fields are taken to be in a thermal
state characterized by 
B and the atom in an initial state 
�0�.
Since our interest is in the dynamics for the two atoms only,
we must trace over the environment degrees of freedom and
concentrate on the analysis of the reduced time evolution,

�t�=Tr��
tot�. Provided that the field correlations decay suf-
ficiently fast at large time separations, or much faster than

the characteristic evolution time of the subsystem alone, the
reduced density of the two-atom subsystem can be proven, in
the limit of weak-coupling, to obey an equation in the
Kossakowski-Lindblad form �9,11,12,17�

�
�t�
�t

= − i�Heff,
�t�� + L�
�t�� , �5�

with

Heff = Hs −
i

2 �
�,�=1

2

Hij
�����i

���� j
��� �6�

and

L�
� =
1

2 �
�,�=1

2

Cij
�����2� j

���
�i
��� − �i

���� j
���
 − 
�i

���� j
���� .

�7�

The coefficients of the matrix Cij
���� and Hij

���� are determined
by the field correlation functions in the thermal state 
�:

Gij
�����t − t��=���i�t,x��� j�t�,x����. �8�

The corresponding Fourier and Hilbert transforms read, re-
spectively,

Gij
������� = �

−�

�

dtei�tGij
�����t� , �9�

Kij
������� = �

−�

�

dt sgn�t�ei�tGij
�����t� =

P


i
�

−�

�

d�
Gij

�������
� − �

,

�10�

where P denotes principal value. One can show that the
Kossakowski matrix Cij

���� can be written explicitly as

Cij
���� = �

�=+,−,0
Gkl

���������ki
����lj

�−��, �11�

where

�ij
�0� = ninj, �ij

�±� = 1
2 ��ij − ninj ± i�ijknk� . �12�

For the sake of simplicity of our treatment, we now assume
that the field correlation functions are diagonal such that

Gij
�����t − t�� = �ijG�t − t�,x� − x�� . �13�

This requirement can be fulfilled by demanding that the cou-
pling coefficients 	�

a satisfy the following condition

�
a=1

N

	�
a �	�

a�* = ��� �14�

or by assuming that the field components �i�x� are indepen-
dent.

III. THE CONDITION FOR ENTANGLEMENT CREATION

With the basic formalism established, now we shall start
to examine whether entanglement can be generated between
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two independent atoms in external thermal fields at a finite
temperature T subjected to a reflecting boundary �i.e., fields
are constrained to vanish on the boundary�, in particular,
what is the influence the presence of a boundary that modi-
fies the quantum correlations of the fields will have on en-
tanglement generation.

For the sake of simplicity, let us further assume that two
atoms are separated from each other by a distance L and are
at an equal distance z from the boundary �Fig. 1�, i.e., z1
=z2=z. Due to the assumption that the fields reflect from the
boundary completely, we can use the method of images �18�
to find the field correlation functions �Eq. �8��,

Gij
�11��t − t�� = Gij

�22��t − t��

= −
1

4
2 �
m=−�

� 	 �ij

�t − t� − im� − i��2

−
�ij

�t − t� − im� − i��2 − �2z�2
 , �15�

Gij
�21��t − t�� = Gij

�12��t − t��

= −
1

4
2 �
m=−�

� 	 �ij

�t − t� − im� − i��2 − L2

−
�ij

�t − t� − im� − i��2 − �2z�2 − L2
 , �16�

where �=1/ �kT�. Plugging Eqs. �15� and �16� into the Eq.
�9�, we can easily obtain

Gij
�11���� = Gij

�22���� =
�ij

2


�

1 − e−�� −
�ij

2


�

1 − e−��

sin�2z��
2z�

,

Gij
�12���� = Gij

�21����

=
�ij

2


�

1 − e−��

sin�L��
L�

−
�ij

2


�

1 − e−��

sin��L2 + 4z2��
�L2 + 4z2�

.

�17�

According to Eq. �11�, we can write

Cij
�11� = Cij

�22� = A1�ij − iB1�ijknk + C1ninj ,

Cij
�12� = Cij

�21� = A2�ij − iB2�ijknk + C2ninj , �18�

and the corresponding coefficients are

A1 =
�

4


1 + e−��

1 − e−��	1 −
sin�2z��

2z�

 ,

A2 =
�

4


1 + e−��

1 − e−��	 sin�L��
L�

−
sin��L2 + 4z2��

�L2 + 4z2�

 ,

B1 =
�

4

	1 −

sin�2z��
2z�


 ,

B2 =
�

4

	 sin�L��

L�
−

sin��L2 + 4z2��
�L2 + 4z2�


 ,

C1 =
�

4


1 + e−��

1 − e−��	− 1 +
sin�2z��

2z�

 ,

C2 =
�

4


1 + e−��

1 − e−��	−
sin�L��

L�
+

sin��L2 + 4z2��
�L2 + 4z2�


 .

�19�

Similarly, the Kij
���� for the Hamiltonian Heff can be obtained

easily, but here we do not give the formulas in detail. As has
already been discussed in detail elsewhere �11,12�, the effec-
tive Hamiltonian Heff can be expressed as a sum of three
pieces. The first two correspond to the corrections of the
Lamb shift at a finite temperature which should be regular-
ized according to the standard procedures in quantum field
theory and, nevertheless, they can be accounted for by re-
placing � in the atom’s Hamiltonian Hs with a renormalized
energy level spacing

�̃ = � + i�K�11��− �� − K�11����� . �20�

Meanwhile, the third is an environment generated direct cou-
pling between the atoms and it is temperature independent.
So the term associated with Heff in �5� can be ignored, since
we are interested in the temperature-induced effects. Hence-
forth, we will only study the effects produced by the dissi-
pative part L�
�t��.

L

ato m1

ato m2z

z

FIG. 1. The infinite conducting plate is taken to lie along the
plane z=0, the distance between each atom and the plate is z, the
atom separation is L.
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Using the explicit form of the master equation �5�, we can
investigate the time evolution of the reduced density matrix
and figure out whether the state of the two-level atom system
is an entangled one or not with the help of partial transposi-
tion criterion �19�: a two-atom state 
�t� is entangled at t if
and only if the operation of partial transposition of 
�t� does
not preserve its positivity. In general, the two-atom system in
the thermal bath will be subjected to decoherence and dissi-
pation, which may counteract the entanglement production,
so that the final equilibrium state is very likely to be sepa-
rable �however, this may not always be true as we will dem-
onstrate later�. But if we consider the system evolving in a
finite time, during which the decoherence and dissipation are
not dominant, the initial separable state may evolve to an
entangled one. Here we adopt a simple strategy for ascertain-
ing the entanglement creation at a neighborhood of the initial
time t=0, which has been introduced in Ref. �9�. For sim-
plicity, we let the initial pure, separable two-atom state be

�0�= �+ ��+� � �−��−� and consider the quantity

Q�t� = �	�
̃�t��	� , �21�

where the tilde signifies partial transposition and �	� is a
properly chosen four-dimensional vector. According to the

results of Refs. �9,12�, entanglement is created at the neigh-
borhood of time t=0 �i.e., �tQ�0��0�, if and only if

�u�C�11��u��v���C�22��T��v� � ��u�Re�C�12���v��2, �22�

where the subscript T means matrix transposition and the
three-dimensional vectors �u� and �v� can be chosen in a
simple form as ui=vi= 
1,−i ,0�. Using Eq. �19�, we can cal-
culate Eq. �22� for the vector n along the third axis directly
and deduce that the condition �22� becomes

�A2

A1
�2

+ �B1

A1
�2

� 1, �23�

where

�B1

A1
�2

= �1 − e−��

1 + e−���2

, �24�

�A2

A1
�2

= � sin�L��
L�

−
sin���L2 + 4z2�

��L2 + 4z2 �2��1 −
sin�2�z�

2z�
�2

. �25�

For a given energy gap for the atoms, B1
2 /A1

2 takes the
values in the interval �0, 1� and is only temperature-
dependent, while the value of A2

2 /A1
2 is determined by two

parameters, z and L and is temperature independent. One can
see that when the temperature is zero, i.e., �→� and L is not
infinite, the inequality �23� is always satisfied, therefore en-
tanglement is generated. At the same time, if the separation
is vanishing �L=0�, then A2

2 /A1
2 becomes unity and the in-

equality �23� is always obeyed and thus entanglement cre-
ated too, no matter where the atoms are placed, as long as the
bath temperature is not infinite.

Let us now discuss what happens when z→0 or z�L, and
z→� or z�L, i.e., when the atoms are placed very close to
and very far from the boundary. Expansion of Eq. �25� in
power series of z /L yields

�A2

A1
�2

�
9

�6L6 �− �L cos��L� + sin��L��2

+
18

5�6L6 ��L cos��L� − sin��L��

���L�− 15 + �2L2�cos��L�

+ 3�5 − 2�2L2�sin��L��� z

L
�2

. �26�

The corresponding form for z /L→� reads

�A2

A1
�2

�
sin2��L�

�2L2 +
L

z

sin��L�
�3L3 �sin��L�sin�2�z�

− �L sin��L�1 + 4z2/L2�� , �27�

where sin2��L� /�2L2 is just the value of A2
2 /A1

2 without the
presence of the boundary �12� �i.e., the corresponding value
of A2

2 /A1
2 in the limit of z→��. It is interesting to note that

in the limit of z /L→0, the leading term of A2
2 /A1

2 is inde-
pendent on z and is only a function of �L �refer to Eq. �26��.
This leading term differs from the value of A2

2 /A1
2 in the

case without the boundary. As a result, when the atoms are
placed very close to the boundary, the presence of the bound-
ary will have a significant effect in determining whether the
inequality �23� is satisfied or whether entanglement is cre-
ated. In Fig. 2, the leading term of A2

2 /A1
2 when z /L→0 is

plotted as a function of �L vs A2
2 /A1

2 in the case without the
boundary. This figure reveals that when �L is small, approxi-
mately smaller than 3, that is when the separation, L, is ap-
proximately less than three times the characteristic wave-
length of the atom’s radiation �but L is still large enough to
maintain z�L�, the value of A2

2 /A1
2 in the case with the

presence of a boundary will be appreciably larger than that
without as long as L is not vanishingly small. This means
that at a certain temperature the presence of a boundary
would make the atoms be entangled which otherwise still be
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separable. Therefore, the presence of the boundary provides
us more freedom in controlling entanglement creation in this
case. However, when �L is large, i.e., the separation is much
larger than the characteristic wavelength of the atom’s radia-
tion, the value of A2

2 /A1
2 with the presence of the boundary

generally becomes smaller than that without, since it de-
creases faster �as power of ��L�−6 as opposed to ��L�−2� as
�L grows. Therefore, in this case the presence of the bound-
ary will make the atoms less likely to be entangled than
otherwise. Meanwhile when z /L is very large, i.e., when the
atoms are very far from the boundary, the influence of the
presence of the boundary on the entanglement generation is
negligible as expected and this can be easily seen from Eq.
�27� since now the leading term is the same as the value of
A2

2 /A1
2 in the unbounded case.

To have a better understanding, we also plot, in Fig. 3,
A2

2 /A1
2 as a function of two dimensionless variables, z /L

and �L, according to Eq. �25�. One can see from this figure
that, as z /L varies, appreciable oscillations occur when �L is
of order one and when �L is very small, the value of A2

2 /A1
2

is very close to unity and does not oscillate significantly as
z /L varies. At same time, A2

2 /A1
2 also decays very fast with

the increase of �L and the oscillations �as z /L varies� is
damped dramatically. So we conclude that both when �L is
very small or very large, the variation of location of the
atoms has no significant influence on the entanglement gen-
eration. Note, however, that this by no means suggests that
the presence of the boundary does not affect the entangle-
ment generation �refer to the discussions in the preceding
paragraph�.

The next question we want to ask is what is the maximum
difference between the value of A2

2 /A1
2 with the presence of

a boundary and that without. We will try to answer the ques-
tion numerically and approximately. For this purpose, let us
plot, in Fig. 4, A2

2 /A1
2 as a function of z /L with a set of

fixed values of the dimensionless parameter �L in both the
cases with and without a boundary. Our numerical calcula-
tions as shown illustratively in Fig. 4 indicate that the maxi-
mum fluctuation of A2

2 /A1
2 in the case with the presence of

the boundary around that without as a function of z /L is at
the neighborhood of �L�2.027. Setting �L�2.027, we find
that the function of A2

2 /A1
2 vibrates around

sin2��L� / ��L�2�0.196. Due to the fact that the swing of
vibrating function A2

2 /A1
2 is slowly decreasing with the in-

creasing z /L, we can find out the maximum value of
A2

2 /A1
2, by adjusting the parameter z /L, to be approximately

0.416 achieved at z /L�1. This gives the maximum effects
of the presence of the boundary on A2

2 /A1
2 or, equivalently,

on entanglement creation.
To get a more concrete picture, let us take a typical tran-

sition frequency of a hydrogen atom, ��1014 Hz, for an
example. Then �L�2.027 means L�6.08�10−6 m which
is much larger than the usual size of an atom. It is easy to
find that in the unbounded space the inequality �23� is
satisfied or entanglement is created between two atoms if the
temperature is below 262.663 K. However, with the presence
of a boundary, we find that the upper bound in temperature
for entanglement generation can be increased to
T�379.731 K. This is a hundred Kelvins improvement.
Note for L�6.08�10−6 m, we still have a plenty of room to
satisfy z /L�1, so the maximum value of 0.416 is used for
A2

2 /A1
2 here.

Finally, let us briefly discuss what happens if the two-
atom system is not aligned strictly parallel to the plane

FIG. 2. The dashed line represents A2
2 /A1

2 in the limit of
z /L→0, and the solid line denotes the function, sin2��L� / ��L�2,
i.e, A2

2 /A1
2 without presence of a boundary. Approximately in the

interval �0,3� of �L, the value of A2
2 /A1

2 with the presence of the
boundary is always larger than that without.

FIG. 3. A2
2 /A1

2 as a function of two dimensionless variables,
z /L and �L.

FIG. 4. The ratio A2
2 /A1

2 is described as a function of the
z /L in the real line, with the parameter are selected
�L= �0.5,1 ,1.5,2.027,2.8�. The dashing line expresses the value of
sin2��L� / ��L�2 which is the value of A2

2 /A1
2 without the boundary

conditions. As we can easily see that all the values of A2
2 /A1

2

vibrate around the sin2��L� / ��L�2.
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boundary. Take the distance from the plane of the atom
which is closer as z, then the distance of the other atom from
the plane will be be larger or smaller than z depending on
whether the system is inclined away from or towards the
boundary. Therefore, the effect of inclination of the system is
that the field correlation function with respect to the
atom which is displaced and cross correlation function
Gij

�21��t− t��=Gij
�12��t− t�� effectively get a smaller effective z

if the system is inclined towards the plane and a larger ef-
fective one if otherwise �refer to Eqs. �15� and �16��. Conse-
quently, taking into account the fact that A2

2 /A1
2 is an oscil-

lating function of z when the system is parallelly placed, one
would expect that if the two atom system is originally lo-
cated parallel to the plane at where this function is at its peak
value the inclination in either direction will make the en-
tanglement creation less likely to occur. In contrast, if the
system is located at where this function is at its local mini-
mum the inclination in either direction will make the en-
tanglement generation more likely to happen. However,
when the system is placed at any point in the interval where
function A2

2 /A1
2 is monotonically increasing, the atoms will

be less likely to entangle if the inclination is towards the
plane and more likely if otherwise. Similarly, when the sys-
tem is located at any point in the interval where function
A2

2 /A1
2 is monotonically decreasing, the entanglement gen-

eration will be more likely to come about if the inclination is
towards the plane and less likely if otherwise.

IV. THE ENTANGLEMENT OF THE EQUILIBRIUM
STATE WITH THE BOUNDARY

In the preceding section we find that, in certain circum-
stances, the presence of a boundary plays a significant role in
generating entanglement between atoms initially prepared in
a separable state in a thermal bath of external quantum scalar
fields and, in fact, entanglement is created as soon as time
starts if the inequality �23� is satisfied. However, the condi-
tion �23� does not tell us whether the entanglement thus gen-
erated can persist in late times, or whether the final equilib-
rium state is still entangled or not.

At late times, the two-atom subsystem will be in the
asymptotic equilibrium state. Though the effects of decoher-
ence and dissipation will generically make the state be sepa-
rable so that no entanglement is left in the end, there are also
cases in which the entanglement still exists at late times. To
examine whether the final equilibrium state is entangled or
not, let us assume, without loss of generality, the reduced
density matrix to have the form


�t� = 1
4 ��0 � �0 + 
0i�t��0s�i + 
i0�t��i � �0

+ 
ij�t��i � � j� , �28�

where the components 
0i�t�, 
i0�t�, 
ij�t� are real. Substitut-
ing Eq. �28� into Eq. �5�, we can obtain, with setting
Heff=0,

�
0i�t�
�t

= − 4A1
0i�t� − 4B1ni − 2B2ni� + 2B2nk
ik�t�

− 2C1
0i�t� + 2C1nink
0k�t� , �29�

�
i0�t�
�t

= − 4A1
i0�t� − 4B1ni − 2B2ni� + 2B2nk
ki�t�

− 2C1
i0�t� + 2C1nink
k0�t� , �30�

�
ij�t�
�t

= − 8A1
ij�t� − 4A2
 ji�t� + 4A2��ij

− 4B1�ni
0j�t� + nj
i0�t�� − 2B2�ni
 j0�t� + nj
0i�t��

+ 2B2�nk�
k0�t� + 
0k�t����ij − 4C1
ij�t� − 4C2
 ji�t�

+ 4C2�nink
 jk�t� + njnk
ki�t� − ninj��

+ 2C1�nink
kj�t� + njnk
ik�t��

+ 4C2�� − nknl
kl�t���ij . �31�

Here, � is the trace of the density matrix �=�i=1
3 
ii�t�. Recall

that ni are the components of the unit vector appearing, for
example, in Eqs. �2� and �12�. If we symmetrize and anti-
symmetrize the density matrix components 
oi�t�, 
ij�t�, we
can split the above system of differential equations into two
independent sets. One can then show that the antisymme-
trized components decay exponentially as time grows while
the symmetrized ones approach a nonzero asymptotic value.
Therefore, there exists a final equilibrium state 
̂, the explicit
form of which, for a nonzero atom separation, can be found
by setting the right-hand side of Eqs. �29�–�31� to be zero,
since any equilibrium state satisfies �t
̂=0, and the solution
is

� =
�2A1 + A2�B1�B1 − B2�

2A1
3 − A1

2A2 − A2B1B2 + A1�B2
2 − A2

2�
,


̂0i = 
̂i0 = −
�A1 − A2�B1�2A1 + A2�ni

2A1
3 − A1

2A2 − A2B1B2 + A1�B2
2 − A2

2�
,


̂ij =
�A1 − A2�B1�2B1 + B2�ninj

2A1
3 − A1

2A2 − A2B1B2 + A1�B2
2 − A2

2�
. �32�

To see if the equilibrium state is entangled or not, we
will calculate its concurrence which is defined to be
C�
�=max
�1−�2−�3−�4 ,0�, where ��, �=1,2 ,3 ,4, are
the square roots of the non-negative eigenvalues of the ma-
trix 

* in decreasing order. Here, the auxiliary matrix 
*

= ��2 � �2�
T��2 � �2�. Substituting Eq. �32� into Eq. �28�,
we can easily calculate the concurrence for the unit vector n
along the third axis via the above the equations. It is found
that the concurrence is zero, which means that the equilib-
rium state is separable and entanglement generated initially
does not persist at late times. The same results can be ob-
tained for n along other directions.

However, it should be pointed out that all the expressions
of Eq. �32� become indefinite �of the form 0/0� when the
separation of the atom approaches zero which results in
A1=A2, B1=B2, C1=C2. Therefore, the case for the vanishing
atom separation should be dealt with separately. Taking the
trace of both sides of Eq. �31� for the vanishing atom sepa-
ration, we find that �=�i=1

3 
ii�t� is actually a constant of mo-
tion, which is determined by the initial reduced density,
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while the expression for � in Eq. �32� is no longer valid. In
fact, the positivity of the initial density matrix requires that
−3���1. Consequently, we should take � as a new inde-
pendent parameter, and components of the density matrix for
the equilibrium state, 
̂, in the present case, read


̂0i = 
̂i0 = −
R

3 + R2 �� + 3�ni,


̂ij =
1

3 + R2 ��� − R2��ij + R2�� + 3�ninj� , �33�

where R=B1 /A1. The corresponding concurrence can be cal-
culated directly

C�
̂� = max� �3 − R2�
2�3 + R2�	5R2 − 3

3 − R2 − �
,0� , �34�

which is nonzero provided � for the initial state 
�0� obeys

� �
5R2 − 3

3 − R2 . �35�

This reveals that when the atom separation is zero �L=0�, the
entanglement generated initially persists at late time despite
of the decoherence and dissipation of the external environ-
ment and the late-time equilibrium state is still entangled, as
long as �35� holds. This is in sharp contrast with the case of
a nonzero separation. However, the presence of the boundary
has on effect on deciding whether the initially created en-
tanglement can be maintained at late times in the equilibrium
state, since the concurrence is only dependent on � and R,
and factors containing the boundary parameter z are all can-
celed out in the expression of R if one recalls Eq. �19�, thus
the concurrence for the final equilibrium state is independent
of the presence boundary.

V. DISCUSSION

In summary, we have examined the entanglement genera-
tion between two mutually independent two-level atoms im-
mersed in a thermal bath of scalar particles subjected to a
perfectly reflecting plane boundary. With the help of the mas-
ter equation that describes the evolution in time of the atom
subsystem obtained by tracing over environment �external

scalar fields� degrees of freedom, we find that the presence of
the boundary may play a significant role in controlling the
entanglement creation in some circumstances and the new
parameter, the distance of the atoms from the boundary,
gives one more freedom in controlling the entanglement gen-
eration.

In particular, when two atoms are placed very close to the
boundary, i.e., z /L�1 and �L is approximately less than
three, that is, when the separation, L, is approximately less
than three times the characteristic wavelength of the atom’s
radiation, then for a certain temperature the presence of the
boundary will make the atoms be entangled which would
otherwise still be separable. Therefore, the presence of the
boundary gives us more power in creating entanglement.
However, when �L is large, i.e., the separation is much
larger than the characteristic wavelength of the atom’s radia-
tion, the presence of the boundary will make the atoms less
likely to be entangled than otherwise. Meanwhile when z /L
is very large, i.e., when the atoms are very far from the
boundary, the influence of the presence of the boundary on
the entanglement generation is negligible as expected.

At the same time, we find that the variation of location of
the atoms has significant influence on entanglement genera-
tion between two initially independent atom only when �L is
of order one or, in different words, both when �L is very
small or very large, the variation of location of the atoms has
no appreciable effect on the entanglement generation. Note,
however, that this by no means suggests that the presence of
the boundary does not affect the entanglement generation.

Our analysis also reveals that the entanglement generated
because of the correlations induced by the environment will
persist in the late time asymptotic equilibrium state if the
separation between the atoms is vanishing. However, when
the separation is nonzero, the entanglement will disappear at
late times and the asymptotic equilibrium state becomes un-
entangled again. Finally, the presence of a boundary gener-
ally has no effect on maintaining the entanglement initially
generated in the asymptotic equilibrium state.
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