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We predict stable, collapse-free solitonslike structures in two-dimensional nonlinear Schrödinger systems in
subdiffractive regimes, accomplished by a spatiotemporal modulation of the external potential. We investigate
the scaling laws, the stability, and the dynamical properties of these subdiffractive solitons.
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Nonlinear waves in two-�2D� and three-dimensional �3D�
systems with self-focusing, or attracting, cubic interactions
are subject to collapse �1�. Quoting Bergé �1� “wave collapse
concerns the formation of singularities in the solutions of
evolution equations governing the fate of nonlinear wave
forms” in a finite blowup time. Obviously such discontinuity
is not physical �other nonlinear interaction processes enter
into play before the collapse, resulting in quintic, or higher
order, models �2�� but anyway has a dramatic, negative effect
on soliton stability �1�. Accordingly, ways to arrest collapse
have been explored, such as the use of spatially periodic
lattice potentials �3�, or the management of diffraction �4�.
Other, intrinsic effects, such as the nonlinearity nonlocality,
have also proven to be effective in the collapse arresting �5�.
In this paper we present an alternative way to yield stable
solitons in 2D systems with cubic nonlinearity that applies,
in particular, to optical and matter waves. The proposal is
triggered by recent work on spatiotemporal modulation of
one-dimensional �1D� systems �6,7�, where it is demon-
strated that the diffraction properties of the system can be
manipulated in such a way that a “subdiffractive” regime,
characterized by an almost absence of diffraction, leads �7�
to unique 1D solitonic families. As in a hypothetical,
diffraction-free case collapse cannot occur �there is no spatial
coupling�, we guess that subdiffractivity can help in stabiliz-
ing solitons. The rest of this paper is devoted to demonstrate,
analytically and numerically, this conjecture.

We consider the following dimensionless, nonlinear
Schrödinger equation �NLSE� in two spatial dimensions:

�t��r,t� = i��2 + V�r,t� − ���2�� , �1a�

V�r,t� = 4f cos��0t�Vs�r� , �1b�

Vs�r� = �
j=1

s

cos�q j · r� , �1c�

where r= �x ,y� denotes spatial coordinates, �2=�2 /�x2

+�2 /�y2 is the Laplace operator, and t is the evolution pa-
rameter, which we call time. The external potential V is pe-
riodically �harmonically� modulated both in time, with fre-
quency �0, and in space, where it is given by the
superposition of s lattices of wave vectors �q j� j=1

s of equal

length ��q j � =1 without loss of generality� rotated each other
by � /s, corresponding to potentials of 2s-fold spatial sym-
metry. Finally f denotes the potential modulation amplitude.

The NLSE �1� applies to two basic physical problems: On
the one hand it describes the dynamics of 2D BECs with
repulsive atomic interactions in countermoving potential lat-
tices represented by V �8�, in which case t denotes true time.
On the other hand �1� describes the paraxial propagation of
monochromatic light beams through 3D defocusing PCs
�here “time” t plays the role of the spatial propagation coor-
dinate, usually denoted by z, and the spatial coordinates
r= �x ,y� are transverse to it� whose linear refractive index
modulation is proportional to V �9�.

In order to understand why stable 2D solitons of �1� are
found we note that, in the limit of weak potential modulation
and weak nonlinearity, and when the modulation parameters
are properly tuned, solutions of �1� exist in the form ��r , t�
=A�r , t��B�r , t�, �B�r , t� being a Bloch mode of the linear
part of �1a� characterized by a null quasimomentum, and
A�r , t� a complex envelope of the Bloch mode. In the 1D
case �7� the envelope equation is a modified NLSE of the
form

�tA�r,t� = i�d2�x
2 + d4�x

4 − �A�2�A , �2a�

which contains both a second-order spatial derivative �the
usual diffraction operator� and a fourth-order one, signaling
subdiffraction �6,7�. In 2D geometries one can expect a simi-
lar result, i.e.

�tA�r,t� = i�d2�
2 + d4�

4 − �A�2�A , �2b�

which, remarkably, supports stable 2D solitons �10�. Here we
give arguments to understand those results in �10�, based on
scaling arguments. In the purely subdiffractive case d2=0
and d4=1 �set to unity after normalization�, and assuming a
localized, bell-shaped solution with peak amplitude A0,
width r0, and chemical potential �or propagation constant� �,
the following relations follow from �2b�: A0

2r0
4=const and

�r0
4=const. Alternatively, in terms of the normalized number

of particles �photons in case of optics, or condensed atoms in
BECs�, N0=	d2r �A�2, the above solitonic relations become
N0r0

2=const and �N0
−2=const, where the constants, of order

of one, depend on the precise definition of r0. Finally, the
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Vakhitov-Kolokolov criterion �10,11�, which requires
dN0 /d �� � �0 for the �generalized� NLSE solitons to be
stable, clearly predicts the existence of stable solitons in the
2D subdiffractive NLSE.

However the 2D case is more involved than the 1D case
and the transformation �2 /�x2→�2 used in the passage
from �2a� to �2b� above needs not be right. Hence our first
goal is to determine under which conditions the envelope
satisfies the subdiffractive NLSE �2b�, what is tightly related
with the properties of the Bloch modes of the linear part of
�1a� �12�. These modes can be written as �B�r , t�
=exp�i�K ·r−�t��P�r , t� �6,7�, being K= �Kx ,Ky� the Bloch
mode quasimomentum and � its quasienergy �quasipropaga-
tion constant in PCs or quasichemical potential in BECs�,
and P a function of space and time, formed by the superpo-
sition of periodic functions �in 1D such function is strictly
periodic�. A simple group-theory argument allows us to iden-
tify the kind of spatial potentials, Eq. �1c�, that can lead to an
envelope equation such as �2b�, as follows. We remind ev-
eryone that we are assuming the q j’s to be rotating each other
by � /s, corresponding to potentials of 2s-fold symmetry.
This implies that the quasienergy � of any Bloch mode must
be invariant under � /s-rotations of the quasimomentum K.
For small �K�, which is the case of interest �12�, a Taylor
expansion is justified

� = �xKx
2 + �yKy

2 + �xxKx
4 + �xyKx

2Ky
2 + �yyKy

4 + ¯ , �3�

where only even powers of the quasimomentum are consid-
ered owed to the reflection symmetry of �1�. Imposing that
�3� remains invariant under rotations by � /s, one obtains
�x=�y and �xx=�yy for any value of s. Additionally one
finds �xx=�yy =�xy /2 whenever s�3. As the linear part of
the equation governing the envelope of the Bloch mode must
coincide with the Fourier transform of �3� �12�, we conclude
that �2b� will be verified whenever s�3. The applicability of
�2b� to the case s=2 is however not granted.

We note that in the 1D case �r→x, �2→�2 /�x2, s=1 in
�1�� the diffraction coefficients in �2� were calculated analyti-
cally �6,7� in the limit f2�1 and �1−�0 � �1, which we
exploit here as well. Indeed, a rigorous derivation of �2b� can
be done by assuming that the modulation parameters in �1�
verify

�0 = 1 − �, 4sf2 = �3 + 	�4, �4�

0
��1 is a smallness parameter, and 	 is a quantity of
order �0 which measures the deviation from “zero diffrac-
tion” �6,7�. One can then show �we skip the details,
which follow the lines of �7�� that solutions to �1� exist that

can be written as ��r , t�=A�r , t��B�r , t�exp�−i�̄t�+O��5/4�,
where the envelope A is of order �2, the Bloch mode

reads �B�r , t�=1− �� /s�1/2Vs�r�exp�−i�0t�+O��3/2�, and 2�̄
=−�2+ �1/2−	��3�1−��. We note that the Bloch mode
above is the one with K=0 �7,12� as we are considering
�almost� static solitons. The equation for A is found to de-
pend on the symmetry parameter s, as expected. If s�3, �2b�
is obtained with d2= �2−	�� and d4=3/�2. In the square-
symmetry case s=2 an equation similar to �2b� is
obtained but with the term d4�

4 being replaced by

4�−2��4 /�x4+�4 /�y4�, which does not possess rotational
symmetry. These results are obtained going up to the order
�5/2 in a multiple scale analysis of �1� that uses �1/2 as a
smallness parameter �7�. At higher orders of the expansion
the envelope equations for potentials with hexagonal �s=3�
and octagonal �s=4� symmetries are no more equivalent �the
former looses the rotational symmetry, while the latter still
keeps it�.

We concentrate on the following in the octagonal case
s=4 �a quasiperiodic potential�, which possesses improved
rotational symmetry as compared to the hexagonal case
s=3 as commented. By renormalizing the space as
�x� ,y��=3−1/4�1/2�x ,y�, one obtains �2b� as the envelope
equation with d2= �2−	��23−1/2 and d4=1. Note that for
	=2 the purely subdiffractive case d2=0 is obtained.

The dispersion relation ��K� for the linear Bloch modes
of �1� was numerically determined by extending the analysis
of �6,7� to two spatial dimensions. Figure 1 represents the
lowest quasienergy surface in the octagonal case. We note
the wide plateau around the origin, which signals subdiffrac-
tion �6,7�.

We integrated numerically the microscopic model �1�, us-
ing the octagonal quasiperiodic potential, with the param-
eters as in Fig. 1. We performed the calculations on a grid of
256�256 points by using the split step method. Solitons
were seeded by using an initial condition for the field,
��r , t=0�, in the form of a Gaussian beam. Due to periodic
modulation of the potential, as well as to the mismatch of the
initial conditions with the true envelope of the solitons, ra-
diation was observed. We used “softly absorbing” boundary
conditions �simulated by a hyper-Gaussian function of
losses� in the initial stage of the calculations in order to “ab-
sorb” the outgoing radiation, and then continued the calcula-
tions using periodic boundary conditions. An example of
stable soliton of �1� is given in Fig. 2.

FIG. 1. Propagation constant �upper plot�, and its cross section
on Ky =0 axis, and the axis rotated by � /8 �lower plot�, as obtained
by a Bloch mode expansion of �1� for a quasiperiodic potential with
f =0.056 and �0=0.75.
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After proving the stable solitons in the microscopic model
�1� and after establishing the relation between microscopic
�1� and macroscopic �2� models, we studied analytically and
numerically solitons of �2�. We keep below d4=1 �without
losing generality due to normalization of spatial coordi-
nates�, and consider three sets of coefficients: �i� d2=0,
which is the purely subdiffractive case; �ii� d2=1, which cor-
responds to a nearly subdiffractive case, on the side of posi-
tive �normal� diffraction; and �iii� d2=−1, which corresponds
to a nearly subdiffractive case, on the side of negative dif-
fraction �antidiffraction�. As we are considering a nonlinear-
ity with negative sign, the case d2
0 �d2�0� corresponds to
weak focusing �defocusing�. Numerical integrations of the
NLSE �2b� were performed as described above, but now
typically on a grid of 128�128 points, owed to its larger
simplicity as compared with �1�. Radially symmetric solitons
were always found. Examples of stable solitons are given in
Fig. 3. On the logarithmic scale the fringes around the soli-
tons are clearly visible. These fringes are most strongly pro-
nounced for the parameter range corresponding to the nega-
tive �and also for zero-� diffraction. On top of the fringes the

slopes seem to follow an exponential decay law.
Next we plot the families of solitons in the �N0 ,r0� space,

by calculating numerically the number of particles, and the
full width of the soliton. We performed this procedure by
“injecting” solitons of different width and amplitude, and
again, filtering the outgoing radiation, getting finally a sta-
tionary solution. The families, corresponding to three sets of
the parameters, are depicted in Fig. 3 in linear and logarith-
mic scales. The purely subdiffractive case results in a straight
line in log-log scale, corresponding to the power law depen-
dence obtained by the scaling analysis above. The weakly
diffractive and antidiffractive cases do not correspond to a
pure power law, and are estimated analytically below.

Next we reproduce analytically the curves in Fig. 4, and
also perform the stability analysis using the Vakhitov-
Kolokolov stability criterion. We look for a radially symmet-
ric localized solution A�r , t�=B�r�exp�−i�t� of �2b� where �
is the propagation constant and B�r� is the stationary enve-
lope that corresponds to the minimum of the Hamiltonian

H =
 �d2��B�2 − ��2B�2 +
�B�4

2
− ��B�2�d2r . �5�

We use the Gaussian ansatz B�r�=A0 exp�−�r /�r�2� with
half width �r and minimize �5� with respect to A0 and
�r �dH /dA0=0, dH /d�r=0�. This allows calculating the re-

FIG. 2. Spatial profile of the soliton obtained by numerical so-
lution of �1� with potential of octagonal symmetry in real space �a�,
and in Fourier space �b�. The parameters are as in Fig. 1. The size of
the integration region is 30�2�.

FIG. 3. Spatial profiles of the solitons obtained by numerical
solution of �2b�. The modulus of the field crossing the center of the
solitons is depicted in linear �left� and linear-logarithmic �right�
scales. The parameters are: �a�,�b� d2=0, �c�,�d� d2=−1, �e�,�f�
d2=1.

FIG. 4. The solitons width versus the number of particles in
three different families of solitons corresponding to: d2=−1 �upper
curves�, d2=0 �middle curves�, and d2=1 �lower curves� in linear
�a�, and logarithmic �b� representation, as obtained by numerical
integration of �2b�. The dashed line in �b� corresponds to the power
law N0r0

2=const as following from the scaling analysis. The solid
lines in �a� are analytical evaluations �7�. The circles with error bars
in �b� denote solitons obtained by numerical solutions of �1� corre-
sponding to d2=0 �middle curves�: The filled circle is for the soli-
tons from Fig. 1, and the open circles are for the solitons from the
same family but different form parameter.
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lations between the soliton half width �r and the number of
particles in the soliton, N0= 1

2���r�2A0
2 for a given propaga-

tion constant �

N0 = − 4�d2 +
32�

�r2 , � = −
2d2

�r2 +
24

�r4 . �6�

Equation �6� describes well the numerically calculated
curves in Fig. 4 �note that the half width in the Gaussian
ansatz �r and the numerically calculated width r0 related by
r0=�r�� /2�1/2�. Equation �6� predicts that these three curves
are simply the horizontal translations of the one curve in the
linear scale, since only parameter d2 is different for them.
Analysis of numerical data, Fig. 4�a�, shows indeed that the
curves with d2=0 and d2=−1 can be well matched by the
horizontal translation. The matching of curves with d2=0
and d2=1 is worse at N0→0, which corresponds to the
breakup of the Gaussian ansatz �see the appearance of
fringes in Fig. 3�.

We also note good qualitative correspondence with the
results of numerical integration of the full model �1�, as in-
dicated by circles with error bars in Fig. 4�b�. The precise
qualitative coincidence could be hardly expected since the
smallness parameter is �=0.25, i.e., is not extremely small.

Equation �6� also indicates that for d2�0 one can obtain
solitons of finite width, but of extremely small number of the
particles. The expression �6� for the propagation constant
also leads to the values corresponding to the numerically
ones found.

The Vakhitov-Kolokolov criterion �11� �N0 /� �� � �0 cal-
culated from �6�, �N0 /� �� � ��N0 /��r� / �� �� � /��r�, im-

plies d4 / �−d2+24/�r2��0, and holds for arbitrary d2. It
does obviously for d20 and, as it becomes apparent con-
sidering �6�, also for d2�0.

The appearance of fringes follows from the linear
analysis of the weak tails �slopes� of the solitons A�r , t�
=1/r exp�−qr− i�t� leading to q2= �−d2±�d2

2−4�� /2. Thus
for d2
−2�� results in the real values of decay exponents q
�i.e., in nonoscillating fronts�. For d2�0 the values of q are
nearly imaginary, which results in strongly oscillating fronts.
This is well compatible with the numerics, where the fringes
appear predominantly for d2�0, but also �less pronounced�
for d2=0.

In conclusion, we propose a method for stabilizing NLSE
solitons in 2D by means of a spatiotemporally modulated
potential. Unlike other proposed methods based on spatial
modulations of the potential �not spatiotemporal ones�,
which require the presence of a full 2D gap �3� and only
work above a given soliton power �proportional to the par-
ticle number�, the results presented here are not affected by
those aspects.

We note that the Vakhitov-Kolokolov stability criterion
also holds in the 3D case, as followed by the direct extension
of our 2D analysis with the Gaussian ansatz and applying the
scaling arguments. The numerical proof of solitons stability
in the 3D case has however not been performed.
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