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Density fingerprint of giant vortices in Fermi gases near a Feshbach resonance
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The structure of multiply quantized or giant vortex states in atomic Fermi gases across a Feshbach resonance
is studied within the context of self-consistent Bogoliubov—de Gennes theory. The particle density profile of
vortices with k>1 flux quanta is calculated. Owing to « discrete branches of vortex-core bound states, inside
the core the density oscillates as a function of the distance from the vortex line and displays a nonmonotoic
dependence on the interaction strengths, in marked contrast to the singly quantized case, in which the density
depletes monotonically. This feature can make a direct visualization of the giant vortices in atomic Fermi gases.
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One of the hallmarks of the superfluidity of quantum flu-
ids, be it fermionic or bosonic, is the appearance of quan-
tized vortices. In condensed matter physics, the vortex states
have been studied widely in various systems, ranging from
the conventional Bardeen-Cooper-Schrieffer (BCS) super-
conductors to rotating helium superfluids. The recently ma-
nipulated ultracold atomic °Li and *°K gases emerge as a
promising test bed for vortex physics [1]. Their interactions
can be arbitrarily and precisely enhanced using a Feshbach
resonance. Upon sweeping a magnetic field downward
through the resonance, these Fermi systems undergo a
smooth crossover from BCS superfluidity to Bose-Einstein
condensation (BEC) of tightly bound pairs [1]. As the under-
lying statistics of systems changes from fermionic to bosonic
across the resonance, it is interesting to ask how the proper-
ties of vortices evolve around the crossover.

A singly quantized vortex in the BCS-BEC crossover has
been discussed to a certain extent [2-9]. The presence of
strong interactions is shown to lead to a significant depletion
of the particle density in the region of the vortex core [2,5],
which was indeed confirmed experimentally by Zwierlein et
al. for a °Li gas [1]. The properties of giant vortex states with
multiple flux quanta [10-12], on the other hand, is less
known. Generically, in a bulk system giant vortices are not
energetically favorable and are not expected to persist if cre-
ated. In the confined geometry, however, the situation may
be different. A number of methods have been proposed to
overcome this vortex dissociation instability, including the
use of an external repulsive pinning potential [13] or a trap-
ping potential steeper than the harmonic traps [14]. As a
counterpart, giant vortex structures have been recently pro-
duced in rapid rotating trapped BEC’s [15]. They have also
been observed in nanoscale superconductors where the
sample size becomes comparable to the superconducting co-
herence length & [16].

Given all the recent advances in experimental techniques,
in this Rapid Communication we discuss the evolution of the
giant vortex structure from weak to strong-coupling super-
fluidity in trapped Fermi gases across a broad Feshbach reso-
nance. In marked contrast to the singly quantized vortex, we
find a nontrivial oscillation behavior in the particle density
profile of giant vortices inside the core in the strongly inter-
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acting BCS-BEC crossover regime. The oscillation pattern,
unique to the number of flux quanta at particular couplings,
relates directly to the microscopic electronic spectrum of the
local density of states (LDOS), which acquires an intriguing
structure owing to the multiple branches of vortex-core
bound states, the so-called Caroli-de Gennes—Matricon
(CAGM) states [17]. In this respect, it provides a density
fingerprint for giant vortices in neutral Fermi gases. Towards
the deep BEC limit, these oscillation patterns cease to exist,
and finally the density profile returns back to that of a BEC.
Our results are obtained by numerically solving the
Bogoliubov—de Gennes (BdG) equations in a fully self-
consistent fashion. As strongly interacting Fermi systems can
be found also in various fields of physics, such as high-
temperature superconductors and neutron stars, our results
can have implications beyond cold atom physics.

To be concrete, we consider a two-dimensional (2D)
Fermi gas that can be prepared readily in a single “pancake”
trap or at the nodes of 1D optical lattice potentials. It is
sufficient to model the broad Feshbach resonance using a
single-channel Hamiltonian [18]. We therefore assume a 2D
contact interaction parametrized by a coupling constant g.
The two-body interaction problem under this circumstance
involves two length scales: the characteristic length in the
tightly confined direction a, and the 3D s-wave scattering
length a,.. A peculiar 2D bound state of two atoms appears
for an arbitrarily weak attraction [19], with binding energy
E, /(hwy)=0.915/ 1 exp(—V2may/a,) <1, where )
=ﬁ/(ma%). The bare coupling constant can then be regular-
ized via the s-wave scattering phase shift [20]—i.e.,

1 1 m E
- = In| =% 1
g+§k:ﬁ2k2/m+E 4h? n(E) W

where the relative collision energy E is of the order of the
Fermi energy Er and drops automatically out of the final
results. For a uniform gas at zero temperature, the mean-field
theory of the BCS-BEC crossover in 2D admits simple ana-
Iytic expressions for the order parameter and chemical po-
tential: A=(2EzE,)"? and u=Ep—E,/2, respectively [20].
Hence, E,<E}. corresponds to the weak-coupling BCS limit,
while in the opposite BEC limit of very strong attractions,
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E, > Er. The crossover occurs approximately at E,=0.5E¢
[21].

In BdG approach the quasiparticle wave functions u
v, are determined by the coupled equations [22]

{ Mo AG) Hun(r) ] . {u,,(r) ] o)
A'(r) —Ho JLv,(r) "Lv,(r)

where E, is the excitation energy and the single-particle
Hamiltonian in traps is Ho=—A>V?/2m+maw*r?/2— . As the
BdG equations are invariant under the replacement u,(r)
ij](r), v,(r) H—u’;(r), and E,—~E,, we restrict our cal-
culations to E,=0 only. The order parameter A(r) and the
chemical potential w are determined, respectively, by the
self-consistency equation A(r)=g= nun(r)v;(r)[l -2f(E,)]
and the particle density n(r)=23 {u,(r)[*f(E,)+|v,(r)]*[1
—f(E,)1} so that [drn(r)=N. Here f(x)=1/(e"*s"+1) is the
Fermi distribution function and N is the number of total at-
oms. Numerically one has to truncate the summation over
the energy levels. In practice, we develop a hybrid procedure
by introducing a high-energy cutoff E., above which we use
a local density approximation (LDA) for the high-lying
modes. Thus the regularization prescription (1) leads natu-
rally to an effective coupling constant in the self-consistency
equation A(r)=g€ﬁ(r)E,7u,7(r)v;(r)[l -2f(E,)], where X,
is now restricted to E,<E,. Further expression of g,(r)
and the detailed LDA contributions to the particle density
will be reported elsewhere. Below E. we solve the BAG
equations by taking A(r)=A(r)e™*¢, where x denotes the
number of vortex flux quanta. Accordingly, we write, for the
normalized modes, u,y(r)=unm(r)e"(m)“’/ V27 and v,(r)
=v,,,(r)e’"*9¢/\2 7. The BdG equations then decouple into
different m sectors and reduce to a matrix diagonalization
problem if one expands u,,,(r) and v,,(r) in a basis set of 2D
harmonic oscillators.

We have performed self-consistent computations for a gas
with N=1000 for « up to 10 and have set a;,,=(A/mw)"? and
hw as the units of length and energy, respectively. In the
absence of vortices, an interesting aspect of the 2D mean-
field theory is that the density profile is essentially indepen-
dent of the interactions, though the chemical potential is ap-
preciably reduced. Within the LDA we find that n(r),o
=(VN/ W)(l—rz/r%F)azj with rpe=+v2N"a,, and u,_o=Er
-E,/2, where Ep=\Nhw=kzTr. The resulting maximum
value of the order parameter is Ag=(2E,/Er)"*Ey. We have
chosen E.=4FE, which is already sufficient large to ensure
the cutoff independence of our results. The characteristic
length scale of the core size of giant vortices is &= k&,
where  the  coherence  length  §=fivp/mA)~ k;l
=\1/2N""qa,, in the BCS-BEC crossover regime.

Our main results are summarized in Figs. 1 and 2 where
we report the vortex particle density profiles and center par-
ticle densities for several values of the number of flux quanta
and the interaction strengths at nearly zero temperature 7
=0.01T. The most unexpected feature of these profiles is the
prominent oscillation behavior in the region of the vortex
axis for giant vortices with =2, in sharp contrast to the
monotonic depletion of the particle density in case of a sin-
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FIG. 1. (Color online) Particle density profiles, normalized by
nyp=\N/ wa;(%, for several values of the interaction strengths: E,
=0.1E (solid lines), E,=0.2Ey (dashed lines), E,=0.5E (dotted
lines), and E,=2.0E (dash-dotted lines).

gly quantized vortex as shown in Fig. 1(a). In addition, the
center particle density oscillates with « and displays a non-
monotonic dependence on the interactions. The oscillations
in the density profile are most pronounced on the BCS side
and at large numbers of flux quanta. However, they get sup-
pressed appreciably with increasing interaction strengths.
Nevertheless, they are clearly visible around the crossover
regime and should be easily detected by the absorption im-
aging in experiments. For a given interaction strength, there
is a critical value of the number of flux quanta required to
exhibit the oscillations, which increases as the interaction
increases. In the nearly BEC regime at E,=1.5Ep, the oscil-
lation occurs for k=6 only, as displayed by the triangles in
Fig. 2(a). We thus expect that in the extreme BEC limit,
these oscillation patterns in the density profiles of all giant
vortices should vanish identically, in accordance with the
general picture of a fully condensed BEC.

The appearance of the intriguing oscillations in the par-
ticle density profile for giant vortices is in close connection
to the multiple branches of CdGM bound states inside the
vortex core [17]. In the weak-coupling limit, a simple semi-
classical treatment of the CdGM states leads to a linear spec-
trum [12]

1 « K
€um = n+5—5 Eo+ m+§ KE, ., (3)

where m is the angular momentum and the branch index n
may take x integrate values, i.e., from —«/2 to (k—1)/2,
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FIG. 2. (Color online) Center particle density as a function of
the number of flux quanta (a) and the interaction strengths (b). The
symbols in the left panel denote different values of the interaction
strengths: E,=0.1Er (BCS side, squares), E,=0.5E (crossover
point, circles), and E,=1.5E (BEC side, triangles). The lines in the
right panel show the results with different numbers of flux quanta:
k=1 (solid line), k=2 (dashed line), and k=3 (dash-dotted line).
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FIG. 3. (Color online) Local fermionic density of states at the
vortex axis for (a) E,=0.1Ep, (b) E,=0.5E, (¢) and E,=1.5EF.

according to the index theorem established by Volovik for
the number of anomalous branches of low-energy quasipar-
ticles inside the core [23]. E. o =mhvp/(2€,) ~2Aq/« and
E, =h2/(2mé) ~ (A}/Ep)/ «* are the bound-state level spac-
ings [12].

To illustrate the relation between CAdGM states and our
results on the particle density profiles, we calculate the
LDOS N(r,E), given by 23 [|u,(r)?8(E-E,)+|v,(r)]*8E
+E,)], which, when integrated over negative energy, gives
rise to the density profiles n(r). The CdGM states would
exhibit themselves as peaks in the LDOS. As the radial func-
tions behave as u,,,(r) ~r™*2 and v,,,(r) ~ r"*2 close to
the origin, the quasiparticle probability amplitudes |u(r)|?
and |v(r)|* have maxima at r=|m|/k because of the angular
momentum of the states [ 10]. Therefore, the principal contri-
bution to the LDOS at given (r,E) arises from the bound
states with (|m|, €,,,) = (kpr,E) [10].

Let us first focus on the center particle density with m
~0. Figure 3 shows the LDOS at the vortex axis for differ-
ent values of the interactions. On the BCS side, where E,q
>FE,, [see, e.g., Fig. 3(a)], there are peaks located both be-
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FIG. 4. (Color online) Spatial variations of the local density of
states for k=4 and =5 at several values of the interaction
strengths as labeled.

low and above the Fermi surface of E=0 for k=2, and their
weights may change periodically as a function of k. As a
result, the center density oscillates with the number of flux
quanta. With increasing the interactions, however, the level
spacing E,; becomes progressively larger due to the en-
hancement of A, and therefore E,,<E,; across the cross-
over point. Hence, the interaction turns to expel the bound
states towards the positive-energy side. This results a sudden
drop of the center density at a critical coupling strength once
the lowest bound state shifts up across E=0, as shown in Fig.
2(b). The value of the critical coupling increases with the
number of flux quanta.
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FIG. 5. (Color online) Order parameter profiles and current dis-
tributions at the vortex core for several values of the interaction
strengths: E,=0.1Eg (solid lines), E,=0.2Er (dashed lines), E,
=0.5Ef (dotted lines), and E,=1.5E} (dash-dotted lines). The cur-
rents are in units of nypvy, where vp=fikp/m is the Fermi velocity.
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We now consider the oscillations in the particle density
profiles of giant vortices, which may be understood from the
spatial dependence of the LDOS, as displayed in Fig. 4 for
k=4 and k=5. In the weak-coupling limit, the « branch
spectra of CdGM states are quasicontinuous. It is easy to see
from Eq. (3) that a wedge-shaped pattern of maxima in the
LDOS is formed [10,11], as shown in Fig. 4(a). There are «
rows of peaks as one moves away from the vortex axis, with
decreasing number of peaks one by one due to the increase
of the angular momentum m. Therefore, integration over the
negative energy of the LDOS naturally yields the oscillation
behavior of the density profiles. However, as noted above,
the increase of the interaction will make the CdGM states
more discrete, with a larger level spacing. This destroys
gradually the regular pattern of maxima in the LDOS and the
resulting oscillations in the density profile. For a sufficient
attraction [see, e.g., Fig. 4(c)], the LDOS exhausts at the
negative energy, and therefore the density profile of giant
vortices depletes completely inside the core, resembling that
of an ideal BEC as expected.

Finally, in Fig. 5 we report the order parameter profiles
and the current circulating around the vortex core. Formally
the current density is given by j(r)=(2if/mr)Z,v n8¢v;
f(=E,)&. The order parameter inside the core expands as the
flux quanta increase, in accordance with the asymptotic
Ginzburg-Landau form A(r)~r* (r=<¢,), and is enhanced
with increasing the strength interactions. On the other hand,
the current density exhibits a similar oscillation behavior as
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the particle density for weak interactions. These oscillations
are attributed to the interplay between the paramagnetic
bound states and the diamagnetic scattering states, which
give opposite contributions to the current, as discussed in
Ref. [24] for a two-quantum vortex.

We have so far confined ourselves to the 2D geometry. By
allowing a free motion of atoms in a box of length L in the z
axis, we have also studied the 3D situation for a strongly
interacting gas of N=10* atoms in a cylinder with L~ ryp
and have observed qualitatively the same features.

In conclusion, by self-consistently solving the mean-field
Bogoliubov—de Gennes equations we have analyzed the
structure of giant vortices in a superfluid atomic Fermi gas in
the strongly interacting BCS-BEC crossover regime. The
multiple branches of the CdGM bound states are shown to
have a significant impact on the local density of states and
consequently lead to nontrivial oscillations in the giant vor-
tex density profiles. These distinct oscillations, which could
be visualized after expanding the cloud, can make a useful
diagnosis of giant vortices in atomic Fermi gases.
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