
Spectrum of a one-atom laser in photonic crystals

Lucia Florescu
Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 126-347, 4800 Oak Grove Drive, Pasadena, California

91109-8099, USA
�Received 29 September 2006; published 26 December 2006�

The emission spectrum of a single-emitter laser in a photonic crystal is presented. We consider a coherently
pumped two-level emitter strongly coupled to a high-quality microcavity engineered within a photonic crystal.
We show that the cavity spectrum consists of both elastic and inelastic components, for which we derive
analytical expressions. Our study reveals enhanced, spectrally narrower emission resulting from the radiation
reservoir of the photonic crystal. The cavity field spectral characteristics are fundamentally distinct from those
of a corresponding microcavity in ordinary vacuum. At high pump intensities and for large discontinuities in
the photon density of states between Mollow spectral components of atomic resonance fluorescence, the
emitted intensity originating from the elastic spectral component increases with the intensity of the pump and
the elastic component dominates the spectrum. In the case of a vanishing photon density of states in the
spectral range surrounding the lower Mollow sideband and no dipolar dephasing, the cavity spectrum is elastic.
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I. INTRODUCTION

A microlaser with a single atom or a quantum dot inter-
acting with the quantized field of a high-Q microcavity rep-
resents an important tool for the investigation of novel quan-
tum electrodynamic effects. In free space, in the optical
domain, high-Q optical cavities have enabled the investiga-
tion of the vacuum Rabi splitting �1�, photon antibunching
�2�, and conditional phase shifts for quantum logic gates �3�.
Recently, a one-atom laser consisting of a single atom
trapped inside a high-quality factor microcavity and exter-
nally pumped has been realized �4�. It was shown that the
characteristics of the pumped atom-cavity system are quali-
tatively different from those of the familiar many-atom la-
sers. In particular, this one-atom laser produces nonclassical
light and can act as an efficient source for deterministic gen-
eration of single-photon pulses �5�.

On the other hand, the unique properties of photonic crys-
tals �6,7�, engineered periodic dielectric materials, led to
novel optical phenomena, such as photon-atom bound states
�8�, fractionalized single-atom inversion �9�, optical bistabil-
ity and switching in multiatom systems �10�, or coherent
control of spontaneous emission through quantum interfer-
ence �11�. One of the key features that distinguishes the pho-
tonic radiation reservoir associated with a photonic crystal
from its free-space counterpart is that the photonic density of
states �DOS� within or near a photonic band gap �PBG� can
nearly vanish or exhibit discontinuous changes as a function
of frequency with appropriate engineering. Also, novel phe-
nomena in quantum electrodynamics in photonic crystals
stem from the possibility of simultaneously realizing ex-
tremely small microcavity-mode volumes and very high cav-
ity Q factors. For instance, in a two-dimensional �2D� pho-
tonic crystal, a microlaser with a cavity volume of 0.03 �m3

has already been demonstrated �12�. Within a 3D PBG, with
complete light localization �13,7�, there is no fundamental
upper bound to the microcavity Q factor. Recently, remark-
able experimental progress in coupling single quantum dots
to a photonic crystal microcavity has been made. Significant

modifications of the spontaneous emission and photon anti-
bunching have been demonstrated for single emitters embed-
ded in a photonic crystal microcavity �14�. Also, determinis-
tic coupling of a single quantum dot to a photonic crystal
cavity has been realized �15�, and a thresholdless laser oper-
ating on a single quantum dot is expected to be achieved
�16�. In parallel with these experimental advances, a detailed
quantum theory of a one-atom laser in an engineered PBG
microchip was put forward recently �17�, and novel one-
atom laser features have been unveiled. In particular, strong
enhancement of the cavity field relative to that of a cavity in
ordinary vacuum and better coherence resulting from the ra-
diation reservoir of the PBG microchip have been predicted.

In this paper we investigate the emission spectrum of a
two-level atom coupled to a high-quality microcavity embed-
ded within a photonic crystal and coherently pumped by a
strong external field. In this study, the cavity field is tuned on
resonance with the Mollow central component of atomic
resonance fluorescence. Using a secular approximation �19�,
our model yields an analytical solution for the emission spec-
trum. We show that the cavity spectrum, consisting of both
elastic and inelastic components, has distinct characteristics
from those corresponding to a conventional cavity. In a pho-
tonic crystal, the strong enhancement of the cavity field is
accompanied by a narrowing of the emission spectrum. Also,
the elastic spectral component is shown to be dominant at
large values of the pump intensity, in contrast to the case of
a conventional cavity in ordinary vacuum, where the inelas-
tic spectral component dominates the cavity spectrum.

II. MODEL

We consider a single two-level atom driven by a coherent
external laser field and coupled to a high-Q microcavity en-
gineered within a photonic crystal. Such a system can be
realized, for instance, by embedding a quantum dot in a di-
electric microcavity �defect� placed within a two-mode
waveguide channel in a 2D PBG microchip �17�. One mode
of the waveguide channel is engineered to produce a large
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discontinuity in the local photon density of states near the
atom, and another mode is used to propagate the pump beam.
By suitable engineering, it is possible to realize a strong
coupling of the quantum dot to both the pumping waveguide
mode and the high-Q cavity mode �17�. The atom has excited
state �2�, ground state �1�, and transition frequency �a. The
coupling constant between the atomic transition and the mi-
crocavity mode is denoted by g. The atom is driven near
resonance by a coherent external field at a frequency �L and
Rabi frequency �intensity� �. For simplicity, we treat the
driving external field classically and work in the interaction
picture. The excited atomic system decays by spontaneous
emission to the modes of the radiation reservoir associated
with the engineered photonic crystal. The dephasing of the
atomic system, which may arise from scattering of phonons
of the host crystal on the atom embedded in the solid part of
the dielectric material, takes place at a rate �p, and the cavity
field is damped at the rate �, caused by the extraneous cou-
pling of the cavity mode to the engineered waveguide modes
or possible leakage of light from the microcavity in the ver-
tical direction. The master equation for the density operator
� of the atom-cavity field-reservoir system has the form

�

�t
� =

1

i�
�H,�� +

�

2
�2a�a† − a†a� − �a†a� + �p�2�3��3 − �� ,

�2.1�

where H=H0+H1 is the Hamiltonian of the system in the
interaction picture. Here,

H0 = � 	ca
†a +

1

2
� 	a�3 + � ���12 + �21� + � �


	
a

†a
,

�2.2�

and the individual terms describe the unperturbed microcav-
ity field, the atomic system, the interaction between the
atomic system and the monochromatic pump laser field, and
the remainder of the radiation reservoir of the photonic crys-
tal �responsible for the radiative decay of the atom�. The
interaction Hamiltonian H1 is written as

H1 = i � g�a†�12 − �21a� + i � �



g
�a

†�12 − �21a
� ,

�2.3�

where the individual terms describe the interaction between
the atomic system and the microcavity field, and the interac-
tion between the atomic system and the remainder of the
photonic crystal radiation reservoir, respectively. Here, a and
a† are the cavity-mode annihilation and creation operators.
�ij are the bare atomic operators, �ij = �i��j� �i , j=1,2�, and
�3=�22−�11 describes the bare atomic inversion. The cou-
pling constant between the atom and the cavity mode is
given by g= ��ad21/ � ��� /2�0�cV�1/2e ·ud, where d12 and ud

are the absolute value and the unit vector of the atomic di-
pole moment, V is the volume of the cavity mode, e is the
polarization mode of the cavity radiation field, and �0 is the
Coulomb constant. In the optical regime, dipole moments of
d21	10−29 C m, and a microcavity-mode volume of V
	�1 �m�3 yield a coupling constant of the order g

	10−5�a. a
 and a

† are the photonic crystal radiation reser-

voir annihilation and creation operators. 	a=�a−�L, 	c
=�c−�L, and 	
=�
−�L, are the detuning of the atomic
resonance frequency, of the cavity-mode frequency �c, and
of the frequency �
 of a mode 
 of the photonic crystal
radiation reservoir from the pump laser frequency. g
 is the
coupling constant between the atom and the mode 
 of the
radiation field of the photonic reservoir. The relevant fre-
quencies for this study and their relative position are pre-
sented in Fig. 1.

The master equation �2.1� is written in the basis 
�i��i=1,2

of bare atomic states. We introduce instead the dressed states


�ĩ��i=1,2 �10,18�, which are the states of the atomic system
dressed by the driving field,

�1̃� = c�1� − s�2� , �2.4�

�2̃� = s�1� − c�2� . �2.5�

Here, c�cos���, s�sin���, with � the rotation angle that
belongs in the interval �0, � and is defined by

cos2 � =
1

2
1 +

	a

�
� , �2.6�

where

� = �4�2 + 	a
2�1/2 �2.7�

is the generalized Rabi frequency.
In the dressed-state basis, the bare-state atomic operators

�ij in the system Hamiltonian H are replaced by the dressed-

state atomic operators Rij = �ĩ�� j̃�, according to the transforma-
tion

�12 =
1

2
sin�2��R3 − sin2 �R21 + cos2 �R12, �2.8a�

�22 − �11 = cos�2��R3 − sin�2���R12 + R21� . �2.8b�

This leads to the dressed-state Hamiltonian

FIG. 1. The relative position of the relevant frequencies consid-
ered in our study. �a, �L, and �c are the atomic transition fre-
quency, the frequency of the coherent pump field, and the micro-
cavity field frequency, respectively. �±2� describe the sideband
components of the Mollow spectrum �� is the generalized Rabi
frequency�, and �b is the photonic DOS band edge frequency.
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H0 = � �R3 + � 	ca
†a + � �




	
a

†a
. �2.9�

Further, we define the time-dependent interaction picture

Hamiltonian H̃1�t�=U†�t�H1U�t�, where U�t�=exp�
−iH0t / � �. In this interaction picture, the interaction Hamil-
tonian takes the form

H1 = i � g�sca†R3ei	ct + c2a†R12e
i�	c−2�� − s2a†R21e

i�	c+2���

+ i � �



g
�sca

†R3ei	
t + c2a


†R12e
i�	
−2��

− s2a

†R21e

i�	
+2��� + H.c. �2.10�

Hereafter, we drop the tilde on the interaction picture opera-
tors, for the sake of notational simplicity.

The master equation for the reduced density operator of
the system of atom plus cavity, �=TrR�, in the dressed-state
basis, is derived from the resulting master equation obeyed
by the density operator � �obtained from Eq. �2.1�� by trac-
ing over the photonic crystal radiation reservoir variables
�20� �an operation denoted here by TrR�. This equation has
been derived in Ref. �17� in the secular �19� and Born-
Markov �20� approximations. The Born approximation as-
sumes a weak coupling between the atomic system and the
radiation reservoir of the photonic crystal, and also that
changes in the photonic reservoir as a result of atom-
reservoir interaction are negligible. The Markov approxima-
tion assumes a fast time scale for the decay of the reservoir
correlations, which is implied in our case by the assumption
that the photonic density of modes is constant over the spec-
tral regions surrounding the dressed-state resonant frequen-
cies. The secular approximation is based on the assumption
that the driving field is strong enough that the generalized
Rabi frequency � is much larger than the decay rates. The
validity of these approximations for the case of a photonic
crystal is discussed in detail in Refs. �9,21,17�. The master
equation for the system of atom + cavity field is �17�

��

�t
= g
sc�a†R3ei	ct − R3ae−i	ct,�� + c2�a†R12e

i�	c−2��t

− R21ae−i�	c−2��t,�� − s2�a†R21e
i�	c+2��t

− R12ae−i�	c+2��t,��� + �A0

2
�R3�R3 − �� +

A−

2
�R21�R12

− R11�� +
A+

2
�R12�R21 − R22�� + H.c.� +

�

2
�2a�a†

− a†a� − �a†a� . �2.11�

The first group of terms in the master equation �2.11� corre-
sponds to the interaction between the dressed atomic system
and the cavity mode, the second group of terms describes the
spontaneous emission of the dressed atom into the modes of
the photonic crystal radiation reservoir, and the last group of
terms describes the damping of the cavity mode via cavity
decay. In Eq. �2.11�, A0=�0s2c2+�p�c2−s2�, A−=�−s4

+4�ps2c2, and A+=�+c4+4�ps2c2, and the spontaneous emis-
sion decay rates �0=2 �
 g


2���
−�L�, �−=2 �
 g

2���


−�L+2��, and �+=2 �
 g

2���
−�L−2�� are propor-

tional to the density of modes at the dressed-state transition
frequencies �L and �L±2�. We note that, for �0=�+=�−
=�, Eq. �2.11� has the same form as for the case of a con-
ventional cavity �22�. Within the secular approximation that
we use here, the generalized Rabi frequency, �, is consid-
ered much larger than the decay rates �0, �+, and �−.

We consider the case when the cavity field is tuned on
resonance with the central component of the Mollow spec-
trum �	c=0�. Assuming a strong pump field �����, one
can invoke the secular approximation to ignore the rapidly
oscillating terms at frequencies 2� and 4� in the master
equation �2.11�. The master equation �2.11� reduces in this
case to

��

�t
= g1��a† − a�R3,�� + �A0�R3�R3 − �� +

A−

2
�2R21�R12

− R11� − �R11� +
A+

2
�2R12�R21 − R22� − �R22��

+
�

2
�2a�a† − a†a� − �a†a� , �2.12�

where g1�gcs is the pump-dependent “effective” coupling
constant. The master equation �2.12� is employed to derive
the properties of the one-atom laser in the engineered
vacuum of a PBG material.

III. SPECTRUM OF THE CAVITY FIELD

In this section we investigate the spectrum of the cavity
field, defined as the Fourier transform of the two-time corre-
lation function �a†�t�a�s of the interaction picture cavity field
operators:

S��� = 2 Re�
0

�

dt ei��−�L�t�a†�t�a�s. �3.1�

Here � is the spectral frequency, s indicates steady-state av-
erages, and the operators without time argument refer to their
values at t=0.

By rewriting the cavity field operators in the form a�t�
= �a�t��+�a�t�, where �a�t�=a�t�− �a�t�� describes the fluc-
tuations about the average value and satisfy ��a�t��=0, one
obtains that �a†�t�a�s= �a†�s�a�s+ ��a†�t��a�s, such that the
cavity spectrum decomposes into a coherent �elastic� part,
determined by the average value of the cavity field, and an
incoherent �inelastic� part, arising from quantum fluctua-
tions,

S��� = Sel��� + Sinel��� . �3.2�

Here, the elastic spectral component Sel��� is expressed as

Sel��� = 2�a†�s�a�s��� − �L� , �3.3�

and the inelastic spectral component Sin��� is defined by

Sinel��� = 2 Re�
0

�

dt ei��−�L�t��a†�t��a�s. �3.4�

The elastic spectral component corresponds to the elastic
scattering of the pump photons by the atom into the cavity
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mode, while the inelastic component is associated with
atomic fluorescence and cavity decay. In practice, the elastic
spectral component contributes to the measurements as a
peak of finite width because of the finite spectral resolution
of the detector and of the fact that the exciting field is not
strictly monochromatic. As a result of the presence of the
elastic component, the spectral linewidth of the cavity field
can be much smaller than the cavity linewidth. Moreover, the
properties of the photonic reservoir associated with the pho-
tonic crystal may contribute to a further narrowing of the
emission spectrum, as we shall present below.

Generally, the two-time correlation function ��a†�t��a�s in
the definition �3.4� of the inelastic component of the cavity
spectrum may be calculated approximately using the numeri-
cal solution of the master equation �2.12�, or by means of
certain factorization schemes. However, our model enables
an exact and simple analytical solution for the emission spec-
trum. From the master equation �2.12� one can derive the
equations of motion for the expectation values of the atomic
and cavity field operators. Using the fact that the cavity and
atomic operators are time-independent Schrödinger opera-
tors, the equations of motion for their expectation values
follow from the master equation �2.12�. The following closed
set of equations of motion for the expectation values of vari-
ous operators is obtained:

d

dt
�a� = −

�

2
�a� + g1�R3� , �3.5a�

d

dt
�R3� = − �2 − �1�R3� , �3.5b�

d

dt
�a†a� = − ��a†a� + g1�R3a†� + g1�R3a� , �3.5c�

d

dt
�R3a� = − ��1 + �/2��R3a� + g1 − �2�a� , �3.5d�

where �1,2 are defined by

�1 =
�+c4 + �−s4

2
+ 4�ps2c2, �3.6a�

�2 =
�+c4 − �−s4

2
. �3.6b�

For a Markovian system, like the one assumed here, one
can apply the quantum regression theorem �20� to derive the
two-time correlation function �a†�t�a�s. According to the
quantum regression theorem, the two-time correlation func-
tions of the system obey exactly the same dynamical law of
evolution as the one-time correlation functions. We obtain

d

dt
�a†�t�a�s = −

k

2
�a†�t�a�s + g1�R3�t�a�s, �3.7�

d

dt
�R3�t�a�s = − �2�a�s − �1�R3�t�a�s. �3.8�

The initial conditions for Eqs. �3.7� and �3.8� are �a†�0�a�s

= �a†a�s and �R3�0�a�s= �R3a�s, where �a†a�s and �R3a�s are
the steady-state values of the single-time correlation func-
tions �a†a� and �R3a�. Equations �3.7� and �3.8� can be
solved exactly, and the two-time correlation function
��a†�t��a�s can be written as

��a†�t��a�s =
2g1

k − 2�1
�R3a�s +

�2

�1
�a�s�e−�1t + ��a†a�s

−
2g1

k − 2�1
�R3a�s +

2�2

k
�a�s��e−kt/2. �3.9�

Here, the expectation values �a�s, �a†a�s, and �R3a�s are ob-
tained from Eqs. �3.5a�, �3.5b�, �3.5c�, and �3.5d� as

�a�s = �a†�s
* = −

2g1

�

�2

�1
, �3.10�

�a†a�s =
4g1

2

�2

���1 + 2�2
2�

�1�� + 2�1�
, �3.11�

�R3a�s =
2g1

k

���1 + 2�2
2�

�1�� + 2�1�
. �3.12�

It is apparent from Eq. �3.9� and the definition �3.4� that
the inelastic emission spectrum contains two Lorentzian
components with the linewidths 2�1 and k, respectively. Us-
ing the expressions �3.10�–�3.12�, the two-time correlation
function �3.9� can be written as

��a†�t��a�s = ��1
2 − �2

2�
g1

2

�1��k/2�2 − �1
2�
 e−�1t

�1
−

e−kt/2t

k/2
� ,

�3.13�

and the cavity spectral components defined by �3.3� and �3.4�
take the forms

Sel��� =
8g1

2

k2

�2
2

�1
2��� − �L� �3.14�

and

Sinel��� = ��1
2 − �2

2�
2g1

2

�1

1

��� − �L�2 + �1
2���� − �L�2 + �k/2�2�

.

�3.15�

We first note that, in general, both the elastic and inelastic
components of the emission spectrum are present. This is a
direct consequence of the fact that �1

2��2
2. In the case of

vanishing mode density on the lower Mollow sideband ��−
=0, which corresponds to a full photonic band gap� and no
dipolar dephasing ��p=0�, �1=�2 and the spectrum of the
cavity field consists only of the elastic component. In this
case the atom scatters photons only elastically, similar to a
perfect classical scatterer �23�. This is in contrast to the case
of a conventional cavity in vacuum, when the inelastic com-
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ponent is always present. Thus, the measured cavity spec-
trum is the narrowest in the case when the microcavity reso-
nance occurs in a photonic band gap. This effect is
accompanied by strong emission enhancement, Poissonian
photon statistics, and quadrature coherence of the cavity
field, which have already been predicted for the full photonic
band gap case �17�.

The spectrum of the cavity field has distinct characteris-
tics from those corresponding to a conventional cavity in
ordinary vacuum. This can be inferred from Figs. 2 and 3,
where we plot the integrated elastic and inelastic spectral
components as a function of the driving field intensity, for
various values of the discontinuity in the photonic density of
states, �− /�+, ranging from the case of a large discontinuity
in the photonic density of states, �− /�+=0.01, to the case of
a cavity in free space, �− /�+=1. We consider negative de-
tuning between the atomic resonant frequency and the driv-
ing field frequency, 	a�0, and a cavity decay rate given by

� /�+=0.1. We obtain that at larger values of the driving field
intensity �but corresponding to nanowatt pump power �24��,
the elastic spectral component of the cavity in a photonic
crystal increases with the driving field intensity and domi-
nates the emission spectrum, being also strongly enhanced in
photonic structures presenting large jumps in the photonic
density of states. This is different from the case of a cavity in
free space, when the elastic spectral component decreases
with increase of the driving field intensity and the inelastic
component dominates the emission spectrum at larger values
of the pump field intensity. Equivalently, the inelastic spec-
tral component of the cavity in a photonic crystal decreases
with increase of the driving field intensity, as opposed to the
case of a conventional cavity in free space, where the inelas-
tic component increases with increase of the pumping field
intensity. The dephasing processes have a deleterious effect
on the light generation, lowering the number of photons in
the cavity mode relative to the case when no dipolar dephas-

FIG. 2. �Color online� The emitted intensity originating from the
elastic component of the emission spectrum as a function of the
scaled driving field Rabi frequency � / �	a� for negative detuning
between the atomic resonant frequency and the driving field fre-
quency, 	a�0, and for various values of the jump in the photonic
DOS, �− /�+, �a� in the absence of dipolar dephasing ��p=0� and �b�
in the presence of dipolar dephasing, �p=0.05�+. We have set �
=0.1�+ and g=10� in the calculations.

FIG. 3. �Color online� The emitted intensity originating from the
inelastic component of the emission spectrum as a function of the
scaled driving field Rabi frequency � / �	a� for negative detuning
between the atomic resonant frequency and the driving field fre-
quency, 	a�0, and for various values of the jump in the photonic
DOS, �− /�+, �a� in the absence of dipolar dephasing ��p=0� and �b�
in the presence of dipolar dephasing, �p=0.05�+. We have set �
=0.1�+ and g=10� in the calculations.
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ing is present, but the general spectral characteristics are pre-
served.

To understand these characteristics, recall first that the
elastic spectral component is determined by the average cav-
ity field, determined, in turn, by the dressed atomic popula-
tion inversion �according to Eq. �3.5a��. The resulting depen-
dence of the elastic spectral component on the dressed
atomic population inversion can be expressed in the form

Sel��� =
8g1

2

k2 �R3�s
2��� − �L� . �3.16�

In Fig. 4 we plot the atomic population inversion as a func-
tion of the driving field intensity, for various values of the
discontinuity in the photonic density of states. We note that,
for photonic structures characterized by small jumps in the
photonic DOS and in free space, the dressed atomic popula-
tion inversions �R3�s approach zero at large values of the
driving field. Thus, the source for the cavity field is very

small in this case, and the field amplitude decreases in time
and reaches a very small steady-state value, leading to re-
duced light generation into the elastic spectral component.
On the other hand, large values of the discontinuity in the
photonic density of states of the radiation reservoir facilitate
an entirely different behavior of the atomic system. In this
case, at large driving field intensities, the dressed atomic sys-

tem is trapped in the dressed ground state �1̃�, and the
dressed-state atomic population inversion achieves values
close to −1. This is accompanied by positive bare atomic
population inversion. As a result, the steady-state cavity field
amplitude, and implicitly the elastic spectral component, at-
tain finite values that increase with increase of the pump
intensity and the jump in the photonic density of states. The
possibility of inverting a two-level system in photonic crys-
tals represents the basis of a series of novel effects in quan-
tum optics and has been explained in detail in Ref. �25�. It
results from the very different spontaneous emission rates
experienced by the Mollow spectral components in photonic
crystals. More specifically, for large jumps in the photonic
density of states and large values of the driving field inten-
sity, the rate of depopulation of the atomic dressed excited

state �2̃� state, A+, exceeds that of population, A−, and the

atomic system remains in the dressed ground state �1̃�
�mostly comprised of the excited bare state �2��. This is in
contrast to the free space case, where always A−�A+ �for
negative atom-field detunings�, and the atomic system is

trapped in the excited dressed state, �2̃� �mostly comprised of
the bare ground state �1��.

From the analytical expressions �3.3� and �3.4�, it follows
that the elastic spectral component as a function of the inten-
sity of the driving field exhibits a local minimum where it
vanishes, concomitant with the inelastic component exhibit-
ing a local maximum. This occurs at the pump intensity that
causes the atomic inversion ��R3�s=0�. In addition, other in-
teresting single-atom laser features, such as a maximal quan-
tum degree of second-order coherence, corresponding to the
tendency to emit photons in pairs, have been predicted at this
inversion threshold �17�.

The linewidth of the inelastic spectral component �full
width at half maximum� is calculated from Eq. �3.4� as

	� = ��k2 + 4�1
2�2 + 16�1

2k2�1/2 − �k2 + 4�1
2�

2
�1/2

.

�3.17�

In Fig. 5, we plot the inelastic spectral linewidth 	� as a
function of Rabi driving field frequency � in the case when
no dipolar dephasing is present in the system, for various
values of the magnitude of the discontinuity in the photonic
density of states, �− /�+. We obtain that for all values of the
driving field intensity the emission spectral linewidth is re-
duced in photonic structures presenting large jumps in the
photonic density of states, relative to that of a conventional
cavity in free space.

In Fig. 6, we plot the spectral linewidth as a function of
the cavity decay rate at the inversion threshold, when only
the inelastic component is present ��2=0�. This occurs for a

FIG. 4. �Color online� The steady-state �a� dressed and �b� bare
atomic population inversion, �R3�s and ��3�s as functions of the
scaled Rabi driving field frequency � / �	a� for negative detuning
between the atomic resonant frequency and the driving field fre-
quency, 	a�0, and for various values of the magnitude of the jump
in the photonic density of states, �− /�+.
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driving field intensity given by � / �	a � = ��− /�+�1/4 / �1
− ��− /�+�1/2�, which decreases with increase of the disconti-
nuity in the photonic density of states, �− /�+. Clearly, the
emission spectral linewidth is strongly reduced for larger
jumps in the photonic density of states for all values of the
cavity decay rate, even when additional dephasing is intro-
duced in the system.

In general, both the elastic and inelastic spectral compo-
nents contribute to the measurements, and the dominance of
the elastic component in the emission spectrum together with
the narrowing of the inelastic spectrum strongly reduce the
total emission linewidth in the case when emission occurs in
a photonic crystal. This can be seen in Fig. 7 which presents
the linewidth of the measured cavity spectrum obtained by a
convolution of the expression �3.2� with an instrumental pro-
file, considered, for simplicity, of Lorentzian shape with a
width �=0.005�+. We obtain a strong reduction of the emis-
sion spectral linewidth for large values of the discontinuity in
the photonic density of states and at reasonably large driving
field intensities. This is accompanied by a strong enhance-
ment of the emitted intensity, as shown in Fig. 8, where the
scaled steady-state emitted intensity is plotted as a function
of Rabi driving field frequency, for various values of the
magnitude of the discontinuity in the photonic density of
states. We note that, for smaller values of the driving field
intensity, the spectrum is narrower for a cavity in free space.
However, in this case, the number of photons in the cavity
field is smaller compared with that in a cavity in a photonic
crystal at slightly larger values of the driving field intensity.
The local maximum presented by the spectral linewidth as a
function of the driving field intensity originates from the
vanishing of the elastic spectral component at the inversion
threshold, when only the broader inelastic component con-
tributes to the cavity spectrum.

IV. CONCLUSIONS

We have studied the emission spectrum of a one-atom
laser with coherent pumping in photonic crystals. We have
considered the case of the cavity frequency tuned on reso-
nance with the Mollow central component of the atomic
resonance fluorescence spectrum. We have shown that the
cavity spectrum consists of an elastic component, corre-
sponding to the elastic scattering of pump photons by the
atom into the cavity mode, and an inelastic component, as-
sociated with fluorescence and cavity decay. In the limit of
strong pumping, we have an derived an analytical expression
for the cavity spectrum. Novel characteristics of the one-
atom laser spectrum are facilitated by the photonic crystals.
We have shown that for a microcavity embedded into a pho-
tonic crystal, the elastic spectral component increases with
the pump field intensity and dominates the spectrum at large
values of the pump field. This is fundamentally different
from the case of a microcavity in ordinary vacuum, where
the inelastic spectral component dominates the spectrum at

FIG. 5. �Color online� The inelastic spectral linewidth 	� as a
function of Rabi driving field frequency � / �	a� in the absence of
dipolar dephasing, for negative detuning between the atomic reso-
nant frequency and the driving field frequency, 	a�0, and for vari-
ous values of the magnitude of the jump in the photonic density of
states, �− /�+. We have set �=0.1�+ and �p=0 in the calculations.

FIG. 6. �Color online� The spectral linewidth 	� as a function
of the scaled cavity decay rate � /�+ at the inversion threshold, for
negative detuning between the atomic resonant frequency and the
driving field frequency, 	a�0, and for various values of the jump
in the photonic DOS, �− /�+, �a� in the absence of dipolar dephasing
��p=0� and �b� in the presence of dipolar dephasing, �p=0.05�+.
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large values of the pump field. We have argued that these
distinguishable features of the cavity spectrum are a direct
consequence of the possibility of inverting a two-level sys-
tem in photonic crystals, resulted from the discontinuous
changes with frequency of the photonic density of states. We
have shown that for a photonic density of states of the pho-
tonic radiation reservoir presenting a large discontinuity, the
fluorescent intensity emerging from the cavity is strongly
enhanced and spectrally narrower relative to the correspond-
ing cavity in a free-space reservoir. The spectral narrowing
of the cavity field in a photonic crystal is caused by the
strong dominance of the elastic spectral component over the
inelastic component as well as by the decrease of the fluo-

rescence rate. Our study suggests that in order for these char-
acteristics to be attained, a discontinuity of the photonic den-
sity of states by a factor of 100 is enough. Ultimately, if the
microcavity resonance occurs in a full photonic band gap,
the laser spectrum consists only of an elastic component.
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