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Thermodynamics of a three-level maser was studied in the pioneering work of Scovil and Schulz-DuBois
�Phys. Rev. Lett. 2, 262 �1959��. In this work we consider the same three-level model, but treat both the matter
and the light quantum mechanically. Specifically, we analyze an extended �three-level� dissipative �ED� Jaynes-
Cummings model �JCM� within the framework of a quantum heat engine, using formulas for heat flux and
power in bipartite systems introduced in our previous work �E. Boukobza and D. J. Tannor Phys. Rev. A 74,
063823 �2006�� Amplification of the selected cavity mode occurs even in this simple model, as seen by a
positive steady state power. However, initial field coherence is lost, as seen by the decaying off-diagonal field
density matrix elements, and by the Husimi-Kano Q function. We show that after an initial transient time the
field’s entropy rises linearly during the operation of the engine, which we attribute to the dissipative nature of
the evolution and not to matter-field entanglement. We show that the second law of thermodynamics is satisfied
in two formulations �Clausius, Carnot� and that the efficiency of the ED JCM heat engine agrees with that
defined intuitively by Scovil and Schulz-DuBois. Finally, we compare the steady state heat flux and power of
the fully quantum model with the semiclassical counterpart of the ED JCM, and derive the engine efficiency
formula of Scovil and Schulz-DuBois analytically from fundamental thermodynamic fluxes.
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I. INTRODUCTION

Thermodynamics of quantum-optical systems has in-
trigued scientists ever since masers and lasers were realized
experimentally. Scovil and Schulz-DuBois �1� analyzed a
three-level maser in the framework of a heat engine. Based
on a Boltzmann distribution of atomic populations, they gave
an intuitive definition of the engine’s efficiency, and showed
it to be less than or equal to the Carnot efficiency. Using the
concept of negative temperature �2� and motivated by Ram-
sey’s �3� work on “spin temperature,” Scovil and Schulz-
DuBois �4� extended their analysis of three level systems to
cases where the reservoirs’ temperature is negative, and in-
troduced the concept of negative efficiencies. Alicki studied
a generic open quantum system coupled to heat reservoirs,
and under the influence of varying external conditions �such
as a time dependent field� �5�. Alicki partitioned the energy
of a quantum system into heat and work using the time de-
pendencies of the density and Hamiltonian operators. Based
on Alicki’s definitions for heat and work, Kosloff analyzed
two coupled oscillators interacting with hot and cold thermal
reservoirs in the framework of a heat engine, and showed
that the engine’s efficiency complies with the second law of
thermodynamics �6�. In later work, Geva and Kosloff studied
a three-level amplifier coupled to two heat reservoirs �7,8�.
In their model the external field influences the dissipative
terms, and the second law of thermodynamics is generally
satisfied.

This paper is to some extent a continuation of the studies
discussed in the previous paragraph. In contrast with previ-
ous work, in our approach the matter and the radiation field
are treated as a bipartite system that is fully quantized, as
opposed to a forced unipartite system. This treatment of the
working medium �the material system� and the work source
�the radiation field� on an equal footing requires some new

thermodynamic developments, that we adapt from Ref. �9�.
The general methodology is applied to an extended dissipa-
tive �ED� Jaynes-Cummings model �JCM�, which consists of
a three-level material system coupled to two thermal heat
baths and a quantized cavity mode. We show that this system
provides a simple model of light amplification, which can
then be analyzed using formulations of the first and second
law of thermodynamics for bipartite systems. The heat flux
and power calculated with this model lead to an engine effi-
ciency that is in quantitative agreement with the efficiency
formula intuitively defined by Scovil and Schulz-DuBois. A
semiclassical counterpart of the ED JCM equations is then
presented and solved completely at steady state, giving the
efficiency formula of Scovil and Schultz-DuBois analytically
from fundamental thermodynamic fluxes.

This paper is arranged in the following manner. Section II
is a brief introduction to the thermodynamics of bipartite
systems. In Sec. III we define the ED JCM master equation.
In Sec. IV we present numerical results for the ED JCM
model, showing that it acts as a simple model for a quantum
amplifier. In Sec. V we discuss the entropic behavior of the
full system and its individual components, its behavior at
steady state and the role of entanglement. In Sec. VI we give
a thermodynamical analysis of the ED JCM. We formulate
the first law of thermodynamics in two different ways. We
then show that the second law of thermodynamics is satisfied
in two formulations �Clausius, Carnot�, and that the effi-
ciency of the ED JCM heat engine agrees with that defined
intuitively by Scovil and Schulz-DuBois. In Sec. VII we
compare the steady state heat flux and power of the fully
quantum model with a semiclassical version of the ED JCM,
and derive the engine efficiency formula of Scovil and
Schulz-DuBois analytically from fundamental thermody-
namic fluxes. Section VIII concludes.
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II. THERMODYNAMICS OF BIPARTITE SYSTEMS

A bipartite system is described by a density matrix of a
Cm � Cn Hilbert space. The partial density matrix of one part
is obtained by tracing over the other:

�A�B� = TrB�A���AB� . �1�

The entropy of a quantum system is given by the von Neu-
mann entropy �10�:

S = − kB Tr�� ln �� . �2�

The evolution of a bipartite system is given by the follow-
ing master equation:

�̇AB = Lh��AB� + Ld��AB� , �3�

where Lh��AB�=− i
� �H ,�AB� is the Hamiltonian part of the

Liouvillian super operator, and Ld��AB� is the dissipative part
of the Liouvillian super operator. The bipartite time indepen-
dent Hamiltonian is given by

H = HA + HB + VAB, �4�

where HA=HA � 1B and HB=1A � HB are the Hamiltonians of
subsystems A and B, and VAB is the coupling term between
them. Here and throughout the article, we use bold letters to
signify operators that have a tensor product structure.

Heat flux and power of the individual parts of the system
are defined by �9�

Q̇A�B� � Tr�Ld��AB�HA�B��

PA�B� � −
i

�
Tr��AB�HA�B�,VAB�� . �5�

The energy flux of the full system is due only to the dissipa-
tive part of the Liouvillian

ĖAB = Tr�Ld��AB�H� . �6�

III. THE ED JCM MASTER EQUATION

Consider a three-level system interacting resonantly with
one quantized cavity mode and two thermal photonic reser-
voirs as depicted in Fig. 1. The system is governed by the

following master equation in the interaction picture:

�̇mf = Lh��mf� + LdC��mf� + LdH��mf� . �7�

The letters in the subscripts have the following significance:
m�matter, f�field, d�dissipative, h�Hamiltonian, C�cold,
H�hot. The Hamiltonian part of the Liouvillian is given by

Lh��mf� = −
i

�
�Vmf,�mf� , �8�

where

Vmf = ���21 � a† + �21
†

� a� �9�

is a resonant JCM type interaction Hamiltonian, � being the
matter-field coupling constant. LdC��mf� and LdH��mf� are
the dissipative cold and hot Lindblad super operators, respec-
tively,

LdC��mf� = �02��n02 + 1����02�mf,�02
† � + ��02,�mf�02

† ��

+ n02���02
† �mf,�02� + ��02

† ,�mf�02��� ,

LdH��mf� = �01��n01 + 1����01�mf,�01
† � + ��01,�mf�01

† ��

+ n01���01
† �mf,�01� + ��01

† ,�mf�01��� , �10�

where �02 and �01 are the Weiskopf-Wigner decay constant
associated with the cold and hot reservoirs, respectively, and
n02 and n01 are the number of thermal photons in the cold and
hot reservoirs, respectively. Note that direct dissipation oc-
curs only through matter-reservoir coupling �the cold photo-
nic reservoir couples levels �0	 and �2	, the hot photonic res-
ervoir couples levels �0	 and �1	�, and is typically used to
represent atomic decay in quantum optics �11�. The matter
creation and annihilation operators are in tensor product
form �ij=�ij � 1 f, and their matrix form is given by

�21 = 
0 0 0

0 0 0

0 1 0
�, �01 = 
0 1 0

0 0 0

0 0 0
�, �02 = 
0 0 1

0 0 0

0 0 0
� .

The reservoirs’ temperature is given by

TC�H� =
��C�H�

kB ln�1/n02�01� + 1�
, �11�

where �C�H� is the central frequency of the cold �hot� reser-
voir. The ED JCM master equation �Eq. �7�� can be obtained
by summing the Hamiltonian contribution and the two dissi-
pative contributions. Alternatively, it can be derived for a
three-level system with a break in symmetry using the weak
coupling �to the reservoirs�, Markovian, and Weiskopf-
Wigner approximations in a similar fashion to the simple
JCM master equation with atomic damping which is derived
in Appendix A.

The Hamiltonian �energy operator� of the full matter-field
system is given by

H = Hm + Hf + Vmf, �12�

where Hm=Hm � 1 f, Hm= �� and Hf=1m � Hf, Hf = �� fa
†a

are the matter and field Hamiltonians, respectively, and � is
given by

2

1

0

Th

Tc

FIG. 1. �Color online� Three level system interacting with two
heat reservoirs �hot and cold� and a quantized cavity mode.
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� = 
�0 0 0

0 �1 0

0 0 �2
� .

Under matter-field resonance ��m=�1−�2=� f� the Hamil-
tonian in the interaction picture is unchanged and is not time
dependent (HI=exp��i / � ��H0tH exp��i / � �H0t�=H; H0

�Hm+Hf) since �H0 ,Vmf�=0 �when there is no resonance
one can still transform to an interaction picture in which the
Hamiltonian is unchanged �12��. However, as indicated pre-
viously �Eq. �8��, in the interaction picture, the Hamiltonian
part of the evolution of the density matrix is only via the
interaction term Vmf=HI−H0.

Before we move on to discuss the ED JCM as a quantum
amplifier, we wish to discuss the main differences between
the ED JCM and the quantum theory of the laser due to
Scully and Lamb �SL� �13,14�. First, in the SL model the
material system �the atom� has either four levels �14� or five
levels �11�, whereas in the ED JCM the matter has three
levels. Secondly, in the SL model the transitions between the
two upper lasing levels and the two lower levels is achieved
through a phenomenological decay, whereas in the ED JCM
population may also be pumped from the ground state to the
two upper lasing levels through the full dissipative Lindblad
super operator. Thirdly, in the SL model the atom is assumed
to be injected into the cavity in the upper lasing level and
interact with the cavity for a time 	, whereas in the ED JCM
the matter is in continuous contact with the quantized cavity
mode, and amplification is achieved for a wide range of ini-
tial states. Finally, in the SL model the field is allowed to
decay using the Weiskopf-Wigner formalism, whereas in the
ED JCM discussed in this paper the field does not decay. In
principle, cavity losses can be introduced to the ED JCM.
However, we do not consider field damping in this paper,
which allows us to compare the thermodynamical fluxes in
the quantum ED JCM with their analog in a semiclassical
ED JCM �Sec. VII� and a similar model by Geva and Kosloff
in which field damping is not included �7,8�. The differences
between our model and that of the SL model will be seen
below to play a crucial role in our ability to give a thermo-
dynamic foundation of amplification.

IV. THE ED JCM AS A QUANTUM AMPLIFIER

The ED JCM master equation �7� was solved using the
standard Runge-Kutta method �fourth-order �15�� for various
choices of parameters. The accuracy of the solution was
checked by decreasing the step size. Furthermore, in order to
test whether the numerical solution captures all time scales
�especially the rapid oscillations�, the algorithm was tested
on the simple JCM �16� which can be solved analytically
�17,18�. In all plots presented here �02=�01=�=0.001, �
=1, n02=0.1, n01=10, and quantities are given in atomic
units. The condition ��� corresponds physically to a situ-
ation where the coupling between the matter and the selected
quantized cavity mode is much stronger than the matter-
reservoir coupling.

The energy flux of the full matter-field system and the
individual subsystems is given by

Ėmf � Tr��̇mfH� = Tr�Ld��mf�H� ,

Ėm � Tr��̇mHm� = −
i

�
Tr��mf�Hm,Vmf�� + Tr�Ld��mf�Hm�

= Pm + Q̇m,

Ėf � Tr��̇ fHf� = −
i

�
Tr��mf�Hf,Vmf�� = Pf , �13�

where Ėmf, Ėm, and Ėf are the energy fluxes of the full
matter-field system, the matter, and the field, respectively. �m
and � f are obtained from �mf by a partial trace over the field
or a partial trace over the matter, respectively. Hm and Hf are
the Hamiltonians of the matter and field subsystems, respec-
tively, without the tensor product with the identity. Note that
the energy fluxes of the individual subsystems in Eq. �13� are
defined via �m and � f together with the subsystem Hamilto-
nians Hm ,Hf. In the next two subsections we discuss the
transient and steady state energetic behavior of the ED JCM.
Since there is direct dissipation only through matter-reservoir
coupling, there is no heat flux associated with the field �this
is physically expected, and was shown analytically else-
where �9��.

A. Transient behavior

The energy of the full matter-field system and of the in-
dividual subsystems is plotted in Fig. 2 for an initial state
where the matter is in state �1	 and the selected cavity mode
has no photons ��mf�0�= ��1	�1 � �m � ��0	�0 � � f�. At short
times, t
�eff

−1, the matter and field energies oscillate at a
frequency of �=�� �17�. Here �eff=�

n01+n02

2 is the effective
decay constant.

Moreover, at short times the well known collapse and
revival phenomena �19,20� is observed for a sufficiently ex-
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FIG. 2. Energy of the full matter-field system �solid line� and the
individual subsystems �field dotted line, matter dash-dot line� for an
initial state where the matter is in state �1	 and the selected cavity
mode has no photons ��mf�0�= ��1	�1 � �m � ��0	�0 � � f�. Note that at
long times there is a steady state increase in the field’s energy.
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cited initial coherent state as depicted in Fig. 3.
In order to monitor the field’s coherence we calculate the

quantum optical Husimi-Kano Q function which is defined
by �21�

Q�r,i� =
1

�
��� f�	 , �14�

where �	 is a �generally complex� coherent state. In Fig. 4
we plot the Q function at four different times �t=0, t
=0.026�eff

−1, t=0.4�eff
−1, t=253�eff

−1� for the initial state �mf�0�
= ��1	�1 � �m � ��	� � � f, ��2=5. The Q function at t=0 is that
of a coherent state with the phase centered around the real
axis �Fig. 4�a��. At transient times, the Q function spreads in

phase space, but it is not homogeneous as seen in Figs. 4�b�
and Fig. 4�c�.

B. Steady state behavior

At much longer times t��eff
−1, the matter energy decreases

to a steady state value, while the field energy increases with
a steady state power of Pf

ss=4.5975e−5 �the numerical value
of a linear fit to the last 10 000 points, R2=1.000� as seen in
Fig. 2. Another indication for an increase in the field’s energy
is seen in the steady state increase in the full system energy.
Thus, the field and the matter-field system as a whole never
reach a steady state for the type of evolution discussed in this
paper. The relation between the full system energy and the
energy of the individual component subsystems will be dis-
cussed in the next sections. A steady state increase in the
field’s energy is clearly an amplification of the selected cav-
ity mode. This behavior contrasts with the simple JCM in
which the atom and field oscillate forever �the atom oscil-
lates between the excited and ground states while the field
oscillates between the �0	 and �1	 Fock states�. Amplification
of the selected cavity mode will occur with any other coher-
ent state, including the �0	 Fock state. The fact that the field’s
energy increases monotonically is not unreasonable, since
the harmonic oscillator is infinite, and since we do not con-
sider direct dissipation of the cavity mode �which could be
modeled by transmissive mirrors if desired�.

The collapse and revival phenomenon at longer times is
completely damped due to the dissipative contribution to the
Liouvillian as seen in Fig. 3. At these long times all phase
�internal coherence� information is lost: the Q function is
radially symmetric and is dispersed on a bigger area �bottom
of Fig. 4�c��. From this time onwards the shape of the Q
function remains unchanged, and it expands fully symmetri-
cally. The decay of the initial field coherence is also reflected
in the decay of the off-diagonal field density matrix ele-
ments. At t=10�eff

−1, the off-diagonal matrix elements are
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FIG. 3. Matter energy at short times �t
2�eff
−1�. The revival

time �top� is tr=
2�m�n	

� ; �n	= ��2=100, where m is a positive inte-
ger. The Rabi oscillation time �bottom� is tRabi=

�

��n	 .

FIG. 4. Husimi-Kano Q function of the se-
lected cavity mode, � f�0�= �	� � ; ��2=5. �a� At
t=0 the Q function is a narrow 2D Gaussian. �b�
and �c� at t=0.026�eff

−1, t=0.4�eff
−1 the Q function is

spread in phase space inhomogeneously. �d� At
t=253�eff

−1 the Q function has expanded �due to
amplification of the selected mode� into a radially
symmetric annulus �all the initial phase informa-
tion is lost�.
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10−13 times smaller than their initial value, and are practi-
cally zero. All the remaining density matrix elements are
diagonal with a Poissonian-like photon distribution whose
average number of photons increases with time.

The full density matrix can be divided into a 3�3 block
matrix, each block associated with one element of the matter
density matrix. At long times, t�2�eff

−1, the matter-field inter-
coherence is maintained by the nonvanishing matrix ele-
ments �1;n,2;n+1 ,�2;n+1,1;n of the full density matrix. These
elements correspond to matter-field coupling, maintained via
the structure of the JCM Hamiltonian. Other density matrix
elements at these long times are 5−9 orders of magnitude
smaller than the dominant nonvanishing elements discussed
above.

V. ENTROPY IN THE ED JCM

We consider now the entropy in the ED JCM. In the next
two subsections we discuss the transient and steady state
entropic behavior. In Sec. V C we discuss the relation be-
tween the entropies of the individual subsystems and en-
tanglement, both at transient and steady state times.

A. Transient behavior

In Fig. 5 we plot the entropy of the full matter-field sys-
tem and the individual subsystems for the initial state
�mf�0�= ��1	�1 � �m � ��	� � � f, ��2=25. The entropy plots at

the top of Fig. 5 show that there is a rapid rise �	�
�eff

−1

2
� in the

entropies of the matter �dash-dot line�, the field �dotted line�,
and the full matter-field system �solid line�. This overall rise
in entropy is discussed in Sec. V C and is attributed to the
dissipative nature of the evolution.

At times t
�eff
−1, the entropy of the individual subsystems

�matter or field� is oscillatory, as seen by the matter entropy
plot in the middle of Fig. 5. This behavior is typical of the
simple JCM �17,18�. At this stage Sm+Sf �Smf; in Sec. V C
we attribute the excess entropy to entanglement.

B. Steady state

Figure 5�a� suggests that at t��eff
−1 the matter-field system

has reached a steady state. Indeed, at times t��eff
−1 the energy

of the matter remains constant �dash-dot line in Fig. 2�.
However, as was indicated in the previous section, the field
energy plot �dotted line in Fig. 2� and the matter-field energy
plot �solid line in Fig. 2� both show a constant rise for t
��eff

−1. Furthermore, a closer inspection of the matter-field
entropy �Fig. 5�b�� reveals a constant slight rise in entropy at
times t��eff

−1 �a similar rise in the field entropy is also ob-
served�. Moreover, the field density matrix eigenvalues
change in the second and third significant figures over a �eff

−1

time scale. These findings give further proof of the fact that
the field and matter-field system as a whole never reach a
steady state.

C. Entanglement

We will now analyze the nature of the entropies associ-
ated with the subsystems. The entropy of the individual parts
of a bipartite system is closely tied to the issue of entangle-
ment �22,18�. An important measure for entanglement is the
conditional entropy, defined for the matter-field system by

S�m�f� � Smf − Sf ,

S�f �m� � Smf − Sm, �15�

where S�m � f� is the conditional entropy of the matter, and
S�f �m� is the conditional entropy of the field. In contrast
with the conditional entropy in classical bipartite systems,
the conditional entropy in quantum bipartite systems can as-
sume negative values. In this case, the correlation between
the two parts of the system is of a purely quantum nature,
and the system is therefore entangled. A fine example for
entanglement in the context of our work is the simple JCM.
Consider an initial state given by �mf�0�= ��e	�e � �a � ��0	
��0 � � f, where the atom �indicated by subscript a� is in the
excited state and the cavity mode is empty. Under the JCM
Hamiltonian �pure Hamiltonian dynamics�, the full atomic-
field entropy is constant Saf�t�=0. However, during most of
the evolution time the conditional entropies of both the atom
and field �which are equal� are negative. In our case, at short

times, 0
 t�
�eff

−1

5 we find that the matter’s conditional en-
tropy is negative. Thus, the excess entropy Sm+Sf �Smf at
these times is attributed to entanglement.

A more powerful test for entanglement, introduced origi-
nally by Peres �23�, is the negativity of the partially trans-
posed density matrix. The partially transposed density matrix
is defined by

�i�,j�
T2 � �i�,j�. �16�

A sufficient condition for entanglement is the negativity of
�T2. However, since this test applies only to finite dimen-
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FIG. 5. Entropy of the ED JCM for the initial state �MF�0�
= ��1	�1 � �m � ��	� � ; ��2=25� f. �a� Entropy of the full matter-field
system �solid line� and the individual subsystem �field dotted line,
matter dash-dot line� for the full evolution. �b� Matter entropy for

times t�
�eff

−1

2 . �c� Entropy of the full matter-field system for times
t�2�eff

−1.
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sional density matrices, one should take care not to mistake
truly negative eigenvalues with negative eigenvalues that are
an artifact of truncation of an infinite Hilbert space �18�.
Indeed, at times smaller than the typical decay time �	
=�eff

−1�, we find that the matter-field partially transposed den-
sity matrix �mf

T2 is negative �negative eigenvalues with a sub-

stantial absolute value are found up to a time t�
3�eff

−1

4 , and
hence the matter-field system is entangled.

At t��eff
−1 the matter and field conditional entropies are

positive. Moreover, the conditional entropies are almost

equal to the partial entropies
S�m�f�

Sm
,

S�f �m�

Sf
�99%, and �mf

T2 is
positive �as was indicated before�. All these findings lead us
to conclude that in all likelihood at long times the matter-
field system is only weakly classically correlated.

We summarize this section by stating that at short times
�t��eff

−1�, when the partial entropies are oscillatory �see bot-
tom of Fig. 5�, the matter-field system is entangled, as veri-
fied by the negative conditional entropies and the negative
partially transposed full density matrix. However, as dissipa-
tion sets in, the matter-field system becomes less and less
entangled. At t��eff

−1, when the partial entropies are not os-
cillating any more, the matter-field system in all likelihood is
not entangled �as verified by the positive conditional entro-
pies and the positive partially transposed full density matrix�,
and the overall rise in entropy is attributed to the dissipative
Lindblad super operator.

VI. THERMODYNAMIC ANALYSIS OF THE STEADY
STATE SOLUTION

A. The first law

The first law of thermodynamics is essentially given in
Eq. �13�. However, some fine details need more clarification.
The first law of thermodynamics for the full matter-field sys-
tem in differential form is given by

Ėmf � Tr��̇mfH� = Tr�Ld��mf�H� = Q̇m + Q̇f + Q̇V = Q̇m + Q̇V,

�17�

where Q̇f �Tr�Ld��mf�Hf�=0 as was shown elsewhere �9�,
and Q̇V�Tr�Ld��mf�Vmf�. Q̇m�Tr�Ld��mf�Hm�
=Tr�LdC��mf�Hm�+Tr�LdH��mf�Hm�= Q̇mC+ Q̇mH is the heat
flux associated with the matter and it is composed of heat
fluxes from/to the cold and hot heat reservoirs. Note that to
an observer looking on the matter-field system as a whole,
the full system is only dissipating heat.

Another way to formulate the first law of thermodynamics
is based on the energy flux of individual subsystems. The
first law of thermodynamics for the matter and field sepa-
rately �in differential form� is given by

Ėm � Tr��̇mHm� = −
i

�
Tr��mf�Hm,Vmf�� + Tr�Ld��mf�Hm�

= Pm + Q̇m, �18�

Ėf � Tr��̇ fHf� = −
i

�
Tr��mf�Hf,Vmf�� = Pf , �19�

where Pm�− i
� Tr��mf�Hm ,Vmf��, and Pf �− i

� Tr��mf

��Hf ,Vmf�� are the power terms. Since we are considering
the case of perfect matter-field resonance Pm=−Pf
��Hm ,Vmf�=−�Hf ,Vmf��, hence

Ėm + Ėf = Ėmf − Q̇V. �20�

It may be shown that Q̇V vanishes if the off-diagonal matrix
elements of �mf are purely imaginary. Note that to an ob-
server looking on the matter alone work flux �power� and
heat fluxes are identified according to Eq. �18�, in agreement
with the traditional thermodynamic partitioning of energy
into work and heat. The field, which is the work source,
either receives or emits energy to the working medium �the
matter� in the form of power. In this paper we are interested
in optical amplification. Under such conditions, at steady

state the energy flux balance is such that Pm
ss
0, Q̇mH

�0, Q̇mC
0 and the three-level system operates thermody-
namically as a heat engine.

B. Second law: Clausius formulation

The second law of thermodynamics is obtained via the
entropy production function of the full bipartite matter-field
system, which is defined by �24,5�

�Q �
�Smf

�t
+ J , �21�

where
�Smf

�t is the entropy production associated with the bi-
partite matter-field density matrix �via differentiation of the
von Neumann entropy�, and J is the entropy production as-
sociated with the reservoirs �via the heat flux from/to the
reservoirs� given by

J = − �CQ̇C − �HQ̇H, �22�

where �C�H�= �kBTC�H��−1 and Q̇C�H��Tr�LdC�H���mf��Hm

+Vmf��= Q̇mC�H�+ Q̇VC�H�. Spohn showed that for a com-
pletely positive map �such as the Lindblad super operator�
�24�

�Q � 0. �23�

Equation �23� represents the differential form of the second
law of thermodynamics in Clausius’s formulation, since the
sum of the entropy changes of the system and reservoirs is
guaranteed to be positive.

C. Second law: Carnot’s formulation

We now define a new entropy production function

�m �
�Sm

�t
+ Jm, �24�

where
�Sm

�t is the entropy production associated with the mat-
ter density matrix �via differentiation of the matter von Neu-
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mann entropy�, and Jm is the entropy production associated
with the reservoirs

Jm = − �CQ̇mC − �HQ̇mH, �25�

taking into account the contribution only from the matter
heat flux

Q̇m = Q̇mC + Q̇mH. �26�

The physical idea behind �m is that it is built only from
matter thermodynamic fluxes: the intrinsic entropy flux

�Sm

�t
and the entropy flux Jm arising just from matter heat fluxes.

For many initial matter states Q̇VC�H�=0 at all times, and
hence Jm=J. Moreover, when the matter reaches a steady
state we always find numerically �irrespective of the initial

matter state� that Q̇VC�H�=0. This is the case also in the semi-
classical ED JCM discussed in Sec. VII, where it can be

shown analytically that Q̇VC�H�
ss =0. Therefore, at steady state,

�m is physically similar to the entropy production function in
the semiclassical case �SC, where the field is not quantized.
In contrast with �SC and �Q, �m is not guaranteed to be
positive at all times �especially at times t
 �2��−1, due to the
highly oscillatory nature of the partial entropy at short
times�. However, when the matter reaches a steady state
� �Sm

�t =0�, the increase in the field’s entropy is marginal �as
was indicated before�, and the main source of entropy pro-
duction is the heat flux from/to the heat reservoirs �J�

�Smf

�t
�.

Thus, when the matter reaches a steady state

�m = Jm = J � 0, �27�

and since the matter operates in a heat engine mode �Q̇mH

�0 and Q̇mC
0�, we obtain Carnot’s efficiency formula

� � −
Pa

Q̇mH

=
Q̇mC + Q̇mH

Q̇mH

�
TH − TC

TH
, �28�

where we have used Eq. �18� with Eq. �26�, and Eq. �27�
with Eq. �25�. For example, the efficiency of the heat engine
for the choice of parameters discussed in the previous plots
and for various initial field strengths �ranging from an empty
cavity up to 100 photons� is 75%, which is less than the
Carnot efficiency which is 99%.

Scovil and Schulz-DuBois gave an intuitive, but non-
thermodynamics definition of the efficiency of the three-level
system operating as a maser �1�

�M =
�s

�p
, �29�

where �s is the signal �maser� frequency, and �p is the pump
frequency �central frequency of the hot reservoir, �1−�0 �.
By substituting our initial choice of parameters ��s=�
=0.075, and �p=�1−�0=0.1� we see that our numerical re-
sult �Eq. �28�� agrees precisely with the efficiency estimated
by Scovil and Schulz-DuBois�29�. Although we do not have
analytic proof of this equivalence for the case of quantized
light, we show below that this equivalence can be derived
analytically when the light is treated classically.

D. The ED JCM: A work source with an entropy content

A work source is the physical entity on which work is
done, or which performs work on a system �working me-
dium�. Conventional wisdom in classical thermodynamics
states that a work source’s entropy is constant during the
operation of a heat engine �25�. Whether the classical engine
operates cyclically, as in the usual Carnot cycle, or synchro-
nously, the working medium returns to its initial state. The
working assumption in thermodynamics is that entropy may
be produced at the boundary of the working medium and the
heat reservoirs, but not at the boundary with the work source.

The work source in the quantum amplifier discussed in
this paper is the selected cavity mode which is amplified. At
steady state, the density matrix of the matter becomes con-
stant and thus its entropy is unchanged from this time on-
wards. Since energy is flowing from the hot reservoir to the
cold reservoir and work is produced in the form of amplifi-
cation of the cavity mode, this corresponds to the engine
operating in synchronous mode with the cavity mode as the
work source. Inspection of Fig. 5 shows that the entropy of
the light is not constant. Even after the matter reaches a
steady state, the entropy of the light continues to grow lin-
early in time.

VII. THE SEMICLASSICAL ED JCM

A. Equations of motion

The semiclassical ED JCM master equation is similar to
the quantum ED JCM master equation given by Eq. �7�.
However, since the selected quantized cavity mode is re-
placed by a time dependent field, major differences arise.
The field is considered as an external degree of freedom, and
hence it has no entropy content. We propagate a 3�3 den-
sity matrix representing the matter only, and all operators are
represented by 3�3 matrices �as opposed to �3 � n�� �3
� n� in the fully quantized case�. Finally, the Hamiltonian
part of the Liouvillian assumes a different form, where the
creation and annihilation field operators are replaced by
clockwise and anti-clockwise oscillating exponents. Despite
the last difference, we note that in perfect matter-field reso-
nance the Hamiltonian part of the Liouvillian in the interac-
tion picture is time independent. The semiclassical Hamil-
tonian is given by

H = Hm + V , �30�

where Hm is the matter Hamiltonian as given in Eq. �12�
�without the tensor product with 1 f�, and

V = �SC��21e
i�t + �21

† e−i�t� �31�

is the interaction Hamiltonian with a classical single coher-
ent mode in the RWA. �SC is the semiclassical matter-field
coupling constant �which can be obtained via the semiclas-
sical coupling matrix element �26�� given by �atomic units�:

�SC = D̂ · �̂
E0

2
, �32�

where D̂ is the dipole operator, �̂ is the field polarization, and
E0 is the field amplitude which can be estimated by calculat-
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ing the average value of the quantum field operator for a
coherent state �26�:

E0 = �8��

V̄
�−1/2

�� , �33�

where � is the mode frequency �not necessarily in resonance

with the atomic transition�, V̄ is the cavity volume, and �� is
the field strength. The quantum matter-field coupling con-
stant is given by �atomic units� �26�

� = D̂ · �̂�2��

V̄
�−1/2

. �34�

Combining Eqs. �32�–�34� we obtain

�SC = ��� . �35�

The dissipative part of the Liouvillian is identical to Eq. �10�
�without the tensor product with 1 f�.

Substitution of Eqs. �30� and �10� �not in tensor product
form� into Eq. �7� yields a set of equations for the matter
density matrix elements. In the interaction picture �with H0
given by Hm� and assuming perfect matter-field resonance,
these equations take the form

�̇00 = 2�01�n01 + 1��11 − 2�01n01�00 − 2�02n02�00

+ 2�02�n02 + 1��22,

�̇11 = − i�sc�21 + i�sc�12 − 2�01�n01 + 1��11 + 2�01n01�00,

�̇22 = − i�sc�12 + i�sc�21 − 2�02�n02 + 1��22 + 2�02n02�00,

�̇12 = − i�sc�22 + i�sc�11 − �01�n01 + 1��12 − �02�n02 + 1��12,

�̇01 = i�sc�02 − �01�2n01 + 1��01 − �02n02�01,

�̇02 = i�sc�01 − �02�2n02 + 1��02 − �01n01�02,

�̇21 = �̇12
* ,

�̇10 = �̇10
* ,

�̇20 = �̇20
* . �36�

B. Thermodynamics of unipartite systems

Heat flux �Q̇� and power �P� for unipartite systems with
external �time dependent� forcing were originally defined by
Alicki �5�:

Q̇ = Tr� ��

�t
H� = Tr�Ld���H� �37�

P = Tr��
�H

�t
� . �38�

C. Steady state solution of the semiclassical ED JCM

Before we derive the steady state power and heat flux we
wish to discuss the main differences between the semiclassi-
cal ED JCM and the semiclassical theory of the laser due to
Lamb �27�. First, in Lamb’s model the material system �the
atom� has two levels, whereas in the semiclassical ED JCM
the matter has three levels. Secondly, in Lamb’s model
pumping and decay of the two lasing levels are phenomeno-
logical �where the pumping function affects the field and
thus the interaction term in the Hamiltonian�, whereas in the
semiclassical ED JCM pumping and dumping of matter
population from the ground state to the two upper lasing
levels is achieved through the full dissipative Lindblad super
operator. Thirdly, in Lamb’s model the field is allowed to
decay phenomenologically, whereas in the semiclassical ED
JCM discussed in this paper the field does not decay. Finally,
in Lamb’s model, Maxwell’s equations for the classical field
are solved self-consistently with a quantum perturbative so-
lution of the atomic density matrix, whereas in the semiclas-
sical ED JCM discussed here the field is not accounted for
directly. As was mentioned previously, in the semiclassical
model of Geva and Kosloff the field is not accounted for
directly as well. Therefore, cavity damping is not incorpo-
rated, and negative steady state power in the atom signifies
an increase in the field’s energy.

The steady state solutions for �01 and �02 is �01=�02=0,
since ��01=0, �02=��01, and � ,��0 �after applying the
steady state condition �̇02= �̇01=0�. Combining the equations
for �̇12 and �̇21 at steady state ��̇12= �̇21=0� yields a central
equation

��12�cos ���01�n01 + 1� + �02�n02 + 1�� = 0, �39�

where � is the phase of the �12 density matrix element. There
are now three possible physical solutions.

�A� ��12 � =0. This yields

�00 =
1

1 + 2z
,

�11 = �22 = z�00, �40�

where z=
n01

n01+1 =
n02

n02+1 . Note that this corresponds to a very
specific choice of parameters.

�B� cos �=0, �= 3�
2 . This yields a situation where there is

no inversion of the atomic levels

�11 − �22 = −
��12�
�SC

��01�n01 + 1� + �02�n02 + 1�� 
 0.

�41�
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Moreover, it leads to a positive atomic steady state power
which corresponds to attenuation of the electromagnetic
field. This is outside the scope of the current paper and will
be explored in more detail elsewhere �28�.

�C� cos �=0, �= �
2 . This yields a situation where there is

an inversion of the atomic levels

�11 − �22 =
��12�
�SC

��01�n01 + 1� + �02�n02 + 1�� � 0. �42�

The steady state solutions for the �11, �22, and ��12� density
matrix elements is obtained through the solution of the fol-
lowing set of equations:



− �01�2n01 + 1� − �01n01 − �SC

− �02n02 − �02�2n02 + 1� �SC

�SC − �SC −
�01�n01 + 1� + �02�n02 + 1�

�SC

�
 �11

�22

��12�
� = 
− �01n01

− �02n02

0
� . �43�

The solution of Eq. �43� can be written as

�ss = 
�00 0 0

0 �11 i��12�
0 − i��12� �22

� = 
A/F 0 0

0 B/F iD/F

0 − iD/F C/F
� ,

�44�

where A ,B ,C ,D ,F are given in Appendix B.

D. Steady state heat flux and power in the semiclassical ED
JCM

We are now in position to compare the steady state heat
fluxes and power of the fully quantum model with the ana-
lytical solutions of the semiclassical model. Applying Alic-
ki’s definitions �Eqs. �37� and �38�� to the semiclassical ED
JCM at steady state yields

PSS = −
2�01�02�SC

3 �n01 − n02��
F

,

Q̇H
SS =

2�01�02�SC
3 �n01 − n02���1 − �0�

F
,

Q̇C
SS = −

2�01�02�SC
3 �n01 − n02���2 − �0�

F
, �45�

where F=F��01,�02,n01,n02,�SC� is a positive constant
given in the appendix. We note that at steady state

Tr�LdH�C���ss�V�=0, and thus Q̇H�C�
ss =Tr�LdH�C���ss�Hm�.

Under the condition ���, the reservoir heat fluxes and
power for the fully quantum ED JCM are found numerically
to be independent of �� for the range 0� � � �10 �which
corresponds to an initial coherent state ranging from no pho-
tons at all to 100 photons in the cavity�. There are 0.5%
deviations for the higher field strength range �where the ini-
tial number of photons in the cavity is close to 100� due to a
slightly rougher truncation of the Fock space.

The analytical semiclassical hot reservoir heat flux and
power in the range 0.1� � � �10 are practically independent

of ��, and agree almost perfectly with the numerical steady
state fluxes in the fully quantum model. However, as ��
decreases below 0.1 the semiclassical reservoir heat fluxes
and power change dramatically. This is of course expected,
as �SC� ��, and thus when the field’s amplitude decreases
below 0.1, �SC is no longer much bigger than �. Under the
condition ���, we find essentially perfect agreement be-
tween the numerical steady state fluxes of the fully quantum
ED JCM and the analytical steady state fluxes of the semi-
classical ED JCM. Therefore we can state that as far as ther-
modynamical fluxes are considered, the semiclassical ED
JCM captures the true physical picture. One important ex-
ception is that in the semiclassical treatment, if there is no
initial field present at all �E0=0�, amplification cannot take
place.

For completeness, we note that the steady state amplifica-
tion described above is only one of several thermodynamic
modes of operation of the light-matter system. Consider the
expression for the steady state power

PSS = Tr��SS�V

�t
� = − 2�SC���12

SS� , �46�

where ��12
SS � =

�SC
2 �01�02�n01−n02�

E . A mathematically feasible solu-
tion for ��12

SS� is obtained only when n01�n02 �E is a positive
constant�. Substituting ��12

SS� into Eqs. �42� and �46� reveals
that atomic inversion and amplification go together hand in
hand. Inversion in the two excited state levels implies nega-
tive power �corresponding to an amplification of the electro-
magnetic field� and vice versa. However, a full solution of

case B reveals that ��12
SS � =−

�SC
2 �01�02�n01−n02�

E . In this case, a
mathematically feasible solution for ��12

SS� is obtained only
when n02�n01. Therefore, ��12

SS� is a symmetric function of
�n01−n02�. The absolute value of the atomic coherence at
steady state is plotted in Fig. 6 for three parameter ranges.
The different thermodynamic modes of operation will be de-
scribed in more detail in a forthcoming publication �28�. It
can be seen that substantial atomic coherence is observed
only when ���.
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E. Engine efficiency

What about the engine’s efficiency? In the previous sec-
tion we mentioned that the �numerical� efficiency of the
quantum amplifier always matches the ratio obtained from
Scovil and Schulz-DuBois’s intuitive definition. Before we
calculate the engine’s efficiency, we wish to obtain Carnot’s
formulation of the second law in differential form. We begin
with Spohn’s entropy production function

�SC =
�S

�t
−

Q̇H

TH
−

Q̇C

TC
� 0, �47�

where �S
�t is the three-level system entropy change and −

Q̇H�C�

TH�C�

is the entropy flux from/to the hot �cold� reservoir. At steady

state �S
�t =0. We now wish to rewrite Q̇C

SS in terms of Q̇H
SS and

PSS. The quantity Ė�Tr��Ḣ�, which measures the energy
flux including the atomic-field interaction energy is given by

Ė = Tr� ��

�t
H� + Tr��

�H

�t
� = Q̇H + Q̇C + P . �48�

At steady state

ĖSS = Q̇H
SS + Q̇C

SS + PSS

=
2�01�02�SC

3 �n01 − n02��� − ��1 − �2��
F

. �49�

The quantity ĖSS is zero only at perfect atomic-field reso-

nance. However, the quantity Ėm�Tr��̇Hm�, which measures
the energy flux without the atomic-field interaction energy,
and was introduced originally in Ref. �9�, is zero at steady

state, as Hm does not depend on time. Expanding Ėm yields

Ėm � Tr��̇Hm� = Q̇Hm + Q̇Cm + Pm, �50�

where Q̇H�C�m=Tr�LdH�C����Hm� and Pm=
− i

� Tr���Hm ,V�t��� are the alternative definitions for heat
flux and power introduced in Ref. �9�. At steady state: �1�
Ėm=0 and hence Q̇Cm

SS =−�Q̇Hm
SS + Pm

SS� and �2� since

Tr�LdH�C���SS�V�=0, Q̇H�C�m
SS = Q̇H�C�

SS . Therefore we can re-

place Q̇C
SS in Eq. �47� with −�Q̇H�C�

SS + Pm
SS�, where

Pm
SS = −

2�01�02�SC
3 �n01 − n02���1 − �2�

F
, �51�

and obtain

� � −
Pm

SS

Q̇H
SS

�
TH − TC

TH
, �52�

which is Carnot’s efficiency formula in differential form. We
note that Eq. �52� is always true regardless of a resonance
condition. Moreover, we wish to emphasize that rewriting

Q̇C
SS in terms of Q̇H

SS and Pm
SS for nonresonant cases is possible

only through the alternative approach to energy flux in uni-
partite systems discussed in Ref. �9�.

Substitution of Pm
SS �which is identical with PSS at perfect

resonance� and Q̇H
SS into the engine’s efficiency formula at

steady state � �Sm

�t =0� yields

� = −
Pm

SS

Q̇H
SS

=
�1 − �2

�1 − �0
=

�s

�p
, �53�

which is identical with the maser’s efficiency defined intu-
itively by Scovil and Schulz-DuBois. Our model offers a
statistical description for the reservoirs, and it allows us to
derive thermodynamic fluxes, which in turn yield Scovil and
Schulz-DuBois’s efficiency formula.

We note that Geva and Kosloff �8� also considered a semi-
classical model for a three-level amplifier. The main differ-
ence between their model and the semiclassical ED JCM is
that in Geva and Kosloff’s model the time dependence of the
classical field affects the dissipative super operator. As a re-
sult, the steady state efficiency in the model by Geva and
Kosloff depends on the power of the field, and hence it is
generally not the same as in Scovil and Schulz-DuBois’s
intuitive definition.

F. Steady state inversion ratio

In their early work �1� Scovil and Schulz-DuBois asserted
that the ground state population ��00� is bigger than the popu-
lations in the two excited states ��11 and �22�. This is indeed
verified in Appendix B. They also asserted that the inversion
ratio between the two excited levels is given by

FIG. 6. Semiclassical atomic
coherence. �a� ���. �b� �=�. �c�
���.
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r �
�11

�22
= e−��E1−E0�/kBTHe��E0−E2�/kBTC

= e−���1−�0�/kBTHe���0−�2�/kBTC. �54�

This assertion appears to be well motivated physically, since
it would seem that at steady state the population ratios be-
tween the two excited levels and the pumping level should
be related by Boltzmann factors. However, it turns out that
this is not correct. While it is true that the matter reaches a
steady state, as seen in both the quantum and semiclassical
models, the matter-field system as a whole does not reach a
steady state, as was seen by solving the fully quantum model
in this paper. Moreover, there is no a priori requirement of
what steady state populations will be attained. We will now
demonstrate that the ratio between the two excited levels
asserted by Scovil and Schulz-DuBois is not correct. Substi-
tuting the expressions for the reservoirs’ temperatures given
in Eq. �11� into Eq. �54� yields

r = eln�1/n02+1�e−ln�1/n01+1� =
n01�n02 + 1�
n02�n01 + 1�

. �55�

Substituting n01=10,n02=0.1 yields r=10. In Appendix B
we give analytical expressions for all the density matrix el-
ements at steady state, from which a closed formula for r
may be obtained:

r = r��01,�02,n01,n02,�SC� =
B

C
,

where B ,C are positive constants given in Appendix B. Sub-
stituting n01=10,n02=0.1,�01=�02=�=0.001 in the analyti-
cal expression for r yields �similarly to the quantum model�
only a marginal inversion ratio between the two excited lev-
els r= �1.01,1.00001,1.00000001� for field strengths E0

= �0.1,1 ,10�, respectively, where Eq. �55� yields r=10.

VIII. CONCLUSION

We have analyzed a fully quantum model in which a
three-level material system is coupled to a single quantized
cavity mode and two thermal photonic reservoirs in a frame-
work of a heat engine. This gives what is arguably the sim-
plest possible quantum model for light amplification. At the
same time, it permits a full thermodynamic analysis. Unlike
previous work �8�, the field is not considered as an external
time dependent force acting on the matter, but it is an inte-
gral part of the quantum system, allowing us to treat both
light and matter on equal footing. We solved the ED JCM
master equation numerically, and showed that indeed ampli-
fication of the selected cavity mode occurs even in this
simple model. However, initial field coherence is lost, as
seen by the radially symmetric Q function for t� �2��−1.
Moreover, we find that the quantized field mode has an en-
tropy content that changes dramatically at short times, and
increases very slowly for t� �2��−1. The matter-field system
as a whole never reaches a steady state: at t� �2��−1 the
energy in the field continues to increase linearly in time,
which can be analyzed thermodynamically in terms of power

generation from energy in the hot reservoir. The three-level
matter system, obtained by performing the partial trace of the
full system over the field, does reach a steady state as seen
by constant steady state energy and entropy.

Another aspect of the quantum treatment that cannot be
dealt with at all within the framework of the semiclassical
ED JCM is entanglement. We showed that at short times t

2�eff

−1 the matter-field system is entangled, as seen by the
negative conditional entropies and the negativity of the par-
tially transposed density matrix. However, at longer times t
�2�eff

−1 we believe that the matter-field system is classi-
cally correlated but not entangled, as the conditional entro-
pies �which are almost equal to the partial entropies� and the
partially transposed density matrix are both positive.

Based on our previous work on bipartite systems gov-
erned by a time independent master equation �9� we were
able to derive the fundamental laws of thermodynamics. The
first law is obtained both for the full matter-field system and
for the individual �partially traced� subsystems, using ther-
modynamical fluxes of heat flux and power. The second law
of thermodynamics in differential form is guaranteed to exist
for the full matter-field system through Spohn’s �24� entropy
production function. We define a new entropy production
function �m based on matter thermodynamical fluxes.
Through �m we show that at steady state, when the main
entropy production is due to heat fluxes from/to the heat
reservoirs, Carnot’s efficiency formula is obtained in differ-
ential form.

A strong motivation for this work comes from an early
paper by Scovil and Schulz-DuBois �1� in which they ana-
lyze a three-level maser as a heat engine. In their work, they
intuitively defined the engine’s efficiency as the ratio be-
tween the maser frequency and the pumping frequency.
However, they do not connect this efficiency with explicit
expressions for work and heat, as expected from a thermo-
dynamical analysis of a heat engine. In our quantized field
treatment, the efficiency formula of Scovil and Schulz-
DuBois was found to be in complete agreement with numeri-
cal calculations based on thermodynamical power and heat
fluxes.

We have also analyzed a semiclassical version of the ED
JCM. We obtained closed analytical expressions for power
and heat flux at steady state that are in virtually perfect
agreement with those obtained numerically for the fully
quantum ED JCM. One may conclude from this that as far as
steady state thermodynamical fluxes are concerned, the semi-
classical model is sufficient. Furthermore, from our analyti-
cal results for power and heat flux we were able to recover
Scovil and Schulz-DuBois’s efficiency formula analytically.
One of the assertions in the work of Scovil and Schulz-
DuBois is that the ratio of populations in the two excited
levels is given by a product of Boltzmann factors. We
showed analytically that this last assertion does not hold in
general.

In future work, we intend to explore further the other
thermodynamic scenarios implied by the present model, both
semiclassically and quantum mechanically. Of particular in-
terest is the reversal of the present mode of operation of the
engine so that it operates as a refrigerator for light.
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APPENDIX A: DERIVATION OF THE DAMPED JCM
MASTER EQUATION

The master equation for the resonant Jaynes-Cummings
model �JCM� with atomic damping in the interaction repre-
sentation is given by

�̇af
I = Lh��af

I � + Ld��af
I � , �A1�

where �af
I is the combined atom-field density matrix in the

interaction picture, and Lh��af
I � and Ld��af

I � are given by

Lh��af
I � = −

i

�
�VI,�af

I � = − i����−a† + �+a�,�af
I �

Ld��af
I � = ��nth + 1����−,�af

I �+� + ��−�af
I ,�+��

+ �nth���+,�af
I �−� + ��+�af

I ,�−�� , �A2�

where �+ �a†� and �− �a� are atomic �field� creation and
annihilation operators ��+�−−�−�+=�z; �z being the Pauli
z matrix�. �, �, nth are the atomic-field coupling constant,
Weiskopf-Wigner decay constant, and the number of thermal
photons, respectively. Note that since Eq. �A1� is a master
equation of a bipartite system, all the operators in equation
�A2� are implicitly tensor products. For example, �+�−�af

I is
shorthand notation for ��+ � 1 f���− � 1 f��af

I . The damped
JCM master equation is usually obtained by adding the
Hamiltonian part and the dissipative part. We note that van
Wonderen gave an analytical solution for the atomic density
matrix in the damped JCM �29�, and later studied the en-
tropic behavior of the atom �30�. In this appendix, we derive
the full JCM master equation by applying the weak-coupling,
Markovian and Weiskopf-Wigner approximations, and using
a set of unitary transformations. The derivation of the dissi-
pative part follows closely the derivation given by Scully and
Zubairy �11�.

We start with the full system �atom-field�-bath Hamil-
tonian in the Schrödinger picture

Ĥ = Ĥs + Ĥb + V̂sb, �A3�

where Ĥs, Ĥb, V̂sb are given by

Ĥs = Ĥa + Ĥf + V̂af = �
�a

2
�̂z+�� fâ

†â+����̂−â† + �̂+â� ,

Ĥb=��
k

�kâk
†âk,

V̂sb = � �
k

�k��̂−âk
† + �̂+âk� . �A4�

We denote by s the atom-field system, by b the bath which is
composed of an infinite number of oscillators where the op-

erators of each oscillator are denoted by subscript k, and by
�k the atomic-kth mode coupling constant. The hat notation
indicates that all operators are implicitly tensor products with
the appropriate identity operators. For example, �̂−=�− � 1 f
� 1b, â=1a � a � 1b, and âk=1a � 1 f � ak. The above Hamil-
tonian is written under the rotating wave approximation
�RWA� meaning that only energy conserving terms are con-
sidered. Note that only the atom is coupled directly to the
bath modes. The evolution of the full system-bath is purely
Hamiltonian:

�̇sb = Lh = −
i

�
�Ĥ,�sb� . �A5�

We now move to the system-bath interaction picture �de-

noted by superscript Ī�:

�sb
Ī = e

i
�

H̄
ˆ

0t�sbe
−�i/��H̄

ˆ
0t

�̇sb
Ī = −

i

�
�V̂sb

Ī ,�sb
Ī � , �A6�

where

H̄
ˆ

0 = Ĥa + Ĥf + V̂af + Ĥb,

V̂sb
Ī = � �

k

�k��̂̄−�t�ak
†ei�kt + �̂̄+�t�ake−i�kt� , �A7�

where �̂̄−�+��t�=e�i/��Ĥst�̂−�+�e−�i/��Ĥst. In the derivation of Eq.

�A6� we made use of the identity �Ĥs ,Ĥb�=0. A perturbation

expansion to second order in V̂sb yields

�̇sb
Ī = −

i

�
�V̂sb

Ī �t�,�sb
Ī �0�� −

1

�2�
0

t

dt��V̂sb
Ī �t�,�V̂sb

Ī �t��,�sb
Ī �t���� .

�A8�

Consider the weak system-bath coupling limit, that is �sb�t�
=�s�t� � �b�0�+�c, where �c is any correlation between the
system and bath which fulfills Trb��c�=0 �this holds for
�sb�t� both in the Schrödinger and interaction pictures�. In
this case the atom-field system evolves according to

�̇s
Ī � Trb��sb

Ī � = −
i

�
Trb��V̂sb

Ī �t�,�s
Ī�0� � �b�0���

−
1

�2 Trb��
0

t

dt��V̂sb
Ī �t�,�V̂sb

Ī �t��,�s
Ī

� �b�0���� .

�A9�

Note that in equation �A9�, �b�0�=�b
Ī�0� and �s

Ī

=e�i/��Ĥst�se
−�i/��Ĥst. The explicit form of equation �A9� is

given by
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�̇s
Ī = − i�

k

�k�âk
†	��̂̄−�t�,�s

Ī�0��ei�kt − �
0

t

dt��
k,k�

�k�k����̂̄
−�t��̂̄+�t���s

Ī�t�� − �̂̄+�t���s
Ī�t���̄−�t��ei�kt−i�k�t��ak

†ak�	

+ ��̂̄+�t��̂̄−�t���s
Ī�t�� − �̂̄−�t���s

Ī�t���̄+�t��e−i�kt+i�k�t��akak�
† 	 + ��̂̄−�t��̂̄−�t���s

Ī�t�� − �̂̄−�t���s
Ī�t���̂̄−�t� − �̂̄−�t��s

Ī�t���̂̄−�t��

+ �s
Ī�t���̂̄−�t���̂̄−�t��ei�kt−i�k�t��ak

†ak�
† 	� + H.c., �A10�

where H.c. refers to all terms on the right-hand side. The
bath density matrix is now assumed to be composed of a
product of oscillatory modes each being in a thermal state,
that is

�b = �
k

�k;�k = �
nk

n̄k
nk

�n̄k + 1��nk+1� �nk	�nk� , �A11�

where n̄k is the average number of thermal photons in the kth
mode. With this assumption Eq. �A10� reduces to

�̇s
Ī = − �

0

t

dt��
k

�k
2���̄−�t��̄+�t���s

Ī�t���

− �̄+�t���s
Ī�t���̄−�t��ei�k�t−t��n̄k �A12�

+ ��̄+�t��̄−�t���s
Ī�t�� − �̄−�t���s

Ī�t���̄+�t��e−i�1�t−t��

� �n̄k + 1� + H.c. �A13�

The sum over k is now replaced by an integral

�
k

→ 2
V

�2��3�
0

2�

d��
0

�

d� sin ��
0

�

d�k

�k
2

c3 ,

where V is the quantization volume and �k is the kth mode
oscillation frequency. Substituting �k

2=
�k

2��0VD2 cos2 � �D is
the transition dipole matrix element, and � is the angle be-
tween D and the electric field polarization vector�, and inte-
grating in the Weiskopf-Wigner approximation �extending
the lower limit of the integral over �k from 0 to −�, and
replacing �k=2��k by �� simplifies Eq. �A13�:

�̇s
Ī = L̄d��s

Ī� = − �nth��̄−�t��̄+�t��s
Ī�t� − �̄+�t��s

Ī�t��̄−�t��

− ��nth + 1���̄+�t��̄−�t��s
Ī�t� − �̄−�t��s

Ī�t��̄+�t�� + H.c.,

�A14�

where nth� n̄k0
�k0=� /c� is the average number of thermal

photons, and �= �3D2

6���0c3 is the decay rate.
We now move to the system Schrödinger picture

�s = e−�i/��Hst�s
Īe�i/��Hst

�̇s = −
i

�
�Hs,�s� + e−�i/��HstL̄d��s

Ī�e�i/��Hst. �A15�

Using the definitions for �̄−�+��t� and �s
Ī �after tracing out the

bath� it is easily shown that e−�i/��HstL̄d��s
Ī�e�i/��Hst=Ld��s�.

Finally, the master equation for the system in the
Schrödinger picture is given by

�̇s = Lh��s� + Ld��s� ,

Lh��s� = −
i

�
�Hs,�s� ,

Ld��s� = ��nth + 1����−,�s�+� + ��−�s,�
+��

+ �nth���+,�s�
−� + ��+�s,�−�� , �A16�

where we deliberately omitted the superscript S labeling the
Schrödinger picture.

To summarize, we went through the following path:

�sb → �sb
Ī → �s

Ī → �s.

The first transition takes us from the system-bath
Schrödinger picture to the system-bath interaction picture
through a unitary transformation. Tracing over the bath under
the weak coupling, Markovian, and Weiskopf-Wigner ap-
proximations leads us to the system dissipative interaction
picture. Finally, by applying a unitary transformation we
move to the system Schrödinger picture.

To complete the analysis we now move to the standard
interaction picture which includes both the Hamiltonian and
the dissipative parts

�s
I = e�i/���Ha+Hf�t�se

�i/���Hat+Hf�t,

�̇s
I = −

i

�
�V,�s

I� + e�i/���Ha+Hf�tLd��s�e�i/���Ha+Hf�t,

�A17�

where it can be shown that e−�i/���Ha+Hf�tLd��s�e�i/���Ha+Hf�t

=Ld��s
I�. Equation �A17� is now identical with Eq. �A2�,

with subscript s replacing subscript af .

APPENDIX B: DENSITY MATRIX OF THE
SEMICLASSICAL ED JCM AMPLIFIER AT STEADY

STATE

The density matrix for the semiclassical ED JCM operat-
ing as an amplifier ��11−�22�0� is given by
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�ss = 
�00 0 0

0 �11 i��12�
0 − i��12� �22

� = 
A/F 0 0

0 B/F iD/F

0 − iD/F C/F
� ,

�B1�

where A ,B ,C ,D ,F are given by

A = �SC
3 �02 + �SC

3 �01 + �SC
3 �02n02 + �SC

3 �01n01 + �02�01
2

+ �02�01
2 n02 + 2�02�01

2 n01 + �02�01
2 n01

2 + 2�02�01
2 n02n01

+ �02�01
2 n02n01

2 + �02
2 �01 + 2�02

2 �01n02 + 2�02
2 �01n02

+ �02
2 �01n01 + 2�02

2 �01n02n01 + �02
2 �01n02

2 n01,

B = �SC
3 �02n02 + �SC

3 �01n01 + �02�01
2 n01 + �02�01

2 n01
2

+ �02�01
2 n02n01 + �02�01

2 n02n01
2 + �02

2 �01n01

+ 2�02
2 �01n02n01 + �02

2 �01n02
2 n01,

C = �SC
3 �02n02 + �SC

3 �01n01 + �02�01
2 n02 + 2�02�01

2 n02n01

+ �02�01
2 n02n01

2 + �02
2 �01n02 + �02

2 �01n02
2 + �02

2 �01n02n01

+ �02
2 �01n02

2 n01,

D = �SC
2 �02�01�n01 − n02� ,

F = �SC
3 �02 + �SC

3 �01 + 3�SC
3 �02n02 + 3�SC

3 �01n01 + �02�01
2

+ 3�02�01
2 n01 + 2�02�01

2 n01
2 + 5�02�01

2 n02n01

+ 3�02�01
2 n02n01

2 + �02
2 �01 + 3�02

2 �01n02 + 2�02
2 �01n02

2

+ 5�02
2 �01n02n01 + 3�02

2 �01n02
2 n01. �B2�

A ,B ,C ,F are all positive constants, and since A
�B ,C⇒�00��11,�22. Thus the population in the zeroth
�pumping� level is always greater than the population in ei-
ther level �0	 or �1	. Since D /F= ��12�, a mathematical fea-
sible expression is obtained only if n01�n02.
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