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Few-cycle nonlinear optics of multicomponent media
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Using Maxwell-Bloch equations, we analyze the response of a two-component medium of two-level atoms
driven by a two-cycle optical pulse beyond the traditional approach of slowly varying amplitudes and phases.
We show that the notions of carrier, envelope, phase, and group velocities can be generalized to this situation.
For optical pulses of a given duration, we show that the optical field can form a temporal soliton.
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I. INTRODUCTION

The recent success in solid-state mode-locked lasers has
resulted in the generation of two-cycle optical pulses [1,2].
These pulses have been immediately exploited to generate
both unipolar single-cycle electromagnetic pulses and even
shorter, attosecond pulses in extreme UV in a variety of non-
linear media [3,4] where their wide spectra and intense elec-
tric fields raised concerns of an adequate description of a
few-cycle pulse (FCP) laser-matter interaction within the
slowly varying envelope approximation (SVEA) operating
with a quasimonochromatic field [5-12]. Considerable
progress has been made in obtaining a description of both
resonant [5,6,9,17] and nonresonant [7,8,11-23] spatiotem-
poral dynamics of the FCP beyond the SVEA.

In the Maxwell-Bloch formulation [8-11,16,17], the dy-
namic response of a medium is modeled by truncating the
density-matrix equation either using a long- or short-wave
approximation. This enables us to arrive at an integrable non-
linear evolution equation and build up a two-soliton solution
that can be treated as a correct envelopeless representation of
a single-cycle optical pulse [11,12,17]. More recent numeri-
cal solutions of its natural extension onto the (2+1)-D
propagation [14,18] have exhibited noticeable departures
from the Brabec-Krausz results [10], which were obtained
within the SVEA. However all this research in the FCP phe-
nomenology has been elaborated for a single-component me-
dium that can be either a two-level resonant system or non-
resonant nonlinear matrix alone.

In this paper, we consider a more general case of the
two-component medium where we can derive a nonlinear
evolution equation, and its respective two-cycle solution. In
the integrable case of the FCP plane-wave propagation, an
adequate interpretation of the breather solution allows the
demonstration of the physically meaningful quantities of car-
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rier frequency, envelope, and phase and group velocity,
which emerge self-consistently outside the limitations of the
SVEA. In the nonintegrable case, we show that the FCP
dynamics are extremely sensitive to the relative strength of
the two qualitatively different optical nonlinearities and
third-order dispersion. Moreover, when analyzing the impact
of the coherent absorption and cubic nonlinearity on a two-
cycle optical pulse a remarkable feature is distinguished: a
stabilization of carrier-envelope phase.

This article is organized as follows. In Sec. II, we recall
the nonlinear evolution equation for the electric field and its
derivation from the Maxwell-Bloch equations for the two-
component medium. In Sec. III, the reinterpretation of the
breather solution is presented whereas in Sec. IV we show
numerically that the propagation of the two-cycle soliton and
envelope-phase stabilization also occurs in the nonintegrable
case.

II. TWO-CYCLE OPTICAL PULSE IN TWO-COMPONENT
NONLINEAR MEDIUM—A MODEL

Citing the examples of ions embedded in a crystal host,
multiple bands in semiconductors, and defects generated in a
guiding structure, we note that optically nonlinear condensed
matter often contains more than one polarizable component,
even though only one may be of primary interest. Here we
formulate the evolution beyond the SVEA approximation for
optically nonlinear materials, which have more than one po-
larizable component. The equation governing the evolution
of an optical FCP in a two-component medium was first
derived in Ref. [21]. We recall briefly the derivation below.

We consider the time-dependent propagation of a two-
dimensional femtosecond pulse through a two-component
medium. The response of the medium upon interaction with
the femtosecond electromagnetic field E(x,z,t) is described
by the total macroscopic polarization P obtained by sum-
ming over all components, P=Re{2?=1N R}, d; being the
dipole transition matrix element and N; the atomic density of
the jth component. The time dependence of the off-diagonal
density-matrix elements pgl) =R, is given by the Maxwell-
Bloch equations,
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where W; is the inversion population (=1/2<W;<+1/2)
and w; is the atomic transition frequency of the jth compo-
nent. It is assumed that the pulse duration 7, is much shorter

than any of the decay times 7,7, of eitherp of the two-level
components, which places an upper bound on 7,. It is con-
venient to rewrite Egs. (2) and (3) in terms of the quantity U,
such that Re{Rj}=w]7119Uj/¢9t.

We can see that by knowing a functional relationship be-
tween E, R;, and W;, by using Egs. (2) and (3) we can find
the dependence P;=P,(E) and, by substituting this relation
into the wave equation (1), we obtain a nonlinear equation in
terms of £ alone. We assume that the FCP duration 7, is such

that
g~ w7, <1 4)

for the first component, and

g~ w,7,> 1 (5)
for the second component, correspondingly. In terms of the
underlying physics, these quite controversial requirements
can be met when a two-cycle pulse of a Ti:sapphire laser at
780 nm traverses, for example, a Yb-doped KGd(WO,),
crystal where condition (4) is satisfied for the dopant and
condition (5) for the wolframate matrix. Notice that the two-
component medium under assumptions (4) and (5) can be
considered as a simplified model of a general transparent
dielectric. Let us consider indeed the lossless propagation of
a wave with frequency w in some medium: the latter must be
transparent at this frequency, and hence all transitions of the
medium are assumed to be far off from w. Consequently,
some of the transition frequencies w; are much smaller than
o, and all others much larger. In the case of the FCP, the
inverse of the pulse duration 7, is assumed to have the same
order of magnitude as the central frequency w of the spec-
trum, and this statement coincides with assumptions (4) and
(5). From this standpoint, the model we suggest here simply
consists in reducing the lower and the upper absorption
bands to two single transitions.

Then for the first component where condition (4) is valid,
exploiting a short-wave approximation yields the following
solution of the Bloch equations (2) and (3):

W, (t) = Wi(=»)cos 6, R;=- W, (—»)sin 6,

t
6=2d,h"" f Edt’, (6)

where W,(—=) is the initial population difference [e.g., in the
case of a medium in the ground state W;(-%)=~1/2]. Cor-
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respondingly, the FCP interaction with the second compo-
nent is described within a long-wave approximation so that
the level population renders almost intact,

_ 2dE 2d,Wo(=») PE
Us(t) =~ hoo, W (1) + T el A
d>E \?
Wy(t) = Wy(=)| 1 -2 P E (7)
L)

Making use of Egs. (6) and (7) and eliminating the inversion
W; enables one to rewrite the wave equation (1) in terms of
the pulse area 6. We then introduce a local time 7=t—zny/c
and a “slow” propagation variable {=&z. In the second order
of the small parameter &, and returning back to the physical
propagation variable z, we arrive at the nonlinear propaga-
tion equation,

a20+ - a(aa)3 50 0 ®)
— sin—c,—| — ) —c3—5 =0,
gzar ¢! P e

where  ¢,=—8mdjw,N\W,(=0)/(nohic),  c,=d5c3/(2d}),
c3==8md3N,W,(=)/ (nolicw3). The linear refractive index
of the medium is ny=[1—-167d3N,W,(-*)/ (hw,)]">.

If we neglect the “resonant” term in Eq. (8), i.e., if we set
¢;=0, this reduces to the modified Korteweg-de Vries
(mKdV) equation. In turn, setting c,=c3=0 transforms Eq.
(8) into a sine-Gordon (sG) equation by cutting off the “non-
resonant” nonlinearity and dispersion, respectively. Both
equations are completely integrable by the inverse scattering
transform (IST) method and have been extensively studied as
a lowest-order approximation to the complete set of
Maxwell-Bloch equations beyond the SVEA [11,17,18].
Then, it seems only natural that the spatiotemporal evolution
of the FCP having a pulse width such that 0, <1/7,<w,
will obey Eq. (8), which is the superposition of the mKdV
and sG equations. This equation has already appeared in the
dynamics of anharmonic crystals with dislocations. If ¢,
=c;/2, then Eq. (8) becomes integrable by the IST method
[24,25]. Physically, this requirement in our case reads as d,
=d,. Although this imposes severe restrictions to the medium
composition, this model can still be recognized as a reliable
tool for the propagation of the FCP to be assessed.

Before proceeding to our results it is worth noticing an-
other interesting effect provided by Eq. (8). This is the dy-
namics of the third-harmonic signal 3w, that is generated by
an intense FCP of carrier frequency w,. If the spectral width
7'1;1 of the FCP is comparable with w,, then one should ex-
pect the appearance of even harmonics, the second harmonic
as a low-frequency sideband, and the fourth harmonic as a
high-frequency one, even for materials with zero quadratic
nonlinearity. The phenomenon of the low-frequency side-
band generation denoted as “a third-harmonic generation in
disguise of a second-harmonic generation” has already been
addressed in the literature [26—28] but, to the best of our
knowledge, no theoretical treatment relevant to the optics of
few-cycle pulses has been given so far. The other example
worth noticing is a transverse stability of superluminal pulse
propagation [29,30].
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III. INTEGRABLE CASE: ENVELOPE, PHASE AND
GROUP VELOCITIES IN THE TWO-CYCLE REGIME

Setting Z=-c;z reduces Eq. (8) to
aa)zaze 70

P

with a=c/c5 and b=c,/c5 and which in turn is integrable at
b=1/2, i.e., as seen above, at d;=d,, which we assume to be
satisfied throughout this section. Following Ref. [24] we can
write the two-soliton solution of Eq. (9) as

0
—asm0+3b< ——O

20T ©

or

0=—4tan”'[Q(e™1,e72)], (10)
where
€20
0X,Y)= ( X+ —Y)
27, 2m
(7 - 7]2)2 B
X(l—c 0C20 XY s (11)
1 dnym(m + 7]2)2
3 a
Sj=2Ajoz+277jT, Aj0=—47]j+_- (12)

Here i7; and i7), are the discrete eigenvalues, and ¢ and c¢5
are the corresponding initial scattering data. Within the IST
framework, ¢y and c,, must be real and 7, and 7, must be
real positive. However, the solution [(11) and (12)] is an
exact explicit solution of Eq. (9), and this statement remains
true for any complex value of 7,72 Clos and Cyo- Since 6
must be real, we must have 7,=17, and cyy= ClO Let us now
set 7=(p+iw)/2 and c,o/27,=Ce'®. Then s,=s, and s,
=V+i(®+¢), where p, g, C, ¢, V¥, and O are real. This
yields the breather solution of Eq. (9), as already given in
Ref. [21]. We show below that this breather can be decom-
posed into a carrier and an envelope, not only in an approxi-
mate way at the SVEA limit, but also exactly, for a FCP,
hence generalizing these notions beyond the SVEA. Indeed,
the property of Q being a rational expression let us see that
0(e*1,e72)=P(e” Y, cos @), where P is another rational ex-
pression, that is,

10

FIG. 1. (Color online) (a) The analytical two-
cycle solution to Eq. (9) in the integrable case,
and its envelope. (b) The electric field and
its envelope. (c) The “resonant” population inver-
sion and its envelope. (d) The optical spectrum
(dashed) compared to the spectrum of the
field envelope shifted for the carrier frequency
w (solid). Parameters are C=1, p=2, v=8, ¢=0
(arbitrary units).

12 14 16

(13)

2
P(X.Y) = 2CXY / (1 + czp—zxz).
w

This way appears explicitly a carrier wave cos @, and an
envelope

0,=—4tan"! P(e7,1)

2
—4tan—1[2ce-‘1’ / (1+C2p—2e‘2“’>]. (14)
(O]

The coincidence of the envelope given this way with the
extrema of the pulse is seen from Fig. 1(a), whereas Figs.
1(b) and 1(c) present the corresponding electric field and
“resonant” population inversion. The wave spectrum can be
evaluated numerically from the above formulas. It differs
slightly from the spectrum of the envelope (shifted for the
carrier frequency ), as shown in Fig. 1(d). This stems from
the fact that the relation between the envelope, carrier, and
the complete expression of the wave are much more compli-
cated than within the SVEA.
The expression of ¥ and @ are

VA Z
_)7 qj:w(T__)_(P,
v, v,

‘lf=p<7— (15)

(16)

o and p are thus the wave pulsation and inverse of pulse
duration, respectively. The important point is that the expres-
sions (16) of the relative dimensionless velocities V, and V_,
already given in Ref. [21], allow us to define a phase velocity
v, and group velocity v, for the FCP, which so far have been
meaningful only within the SVEA. The velocities are related
to each other through the relation
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1 m_ & (17)
Voo € Veo

Having the wave vector defined as k=w/v,, we can compute
the derivative dw/dk and compare it to the group velocity v,
[or equivalently compare d(w/V,)/dw to 1/V,]. We find that
dw/dk is not equal to v, except in the limit p— 0, which
corresponds to the SVEA. This important result could be
expected, since the relation v,=dw/dk is always derived
within the framework of the SVEA, and there is no reason
for it to remain valid beyond this approximation.

Notice that the relations (16) are obtained elsewhere by
the method of analytically continuing the dispersion relation
to the complex plane [12,21,22]. Let us give further com-
ment on this method. The existence of an analytic soliton
solution allows us to derive a “dispersion relation” valid for
purely imaginary values k=ix of the wave vector k. The
integrability through the IST method implies the evolution of
the scattering data to be determined by the linearized variant
of the integrable system [31], and consequently, it implies
the relation satisfied by k=i« to be the analytic continuation
of the linear dispersion relation k=F(w). Replacing o — w
+ip, with p=1/7',,, and k—k+ik, we obtain a complex dis-
persion relation k+ik=F(w+ip). Its validity on the whole
complex half plane is ensured by the existence of the
breather. Notice that it is not always the case: e.g., the solu-
tion to the KdV equation obtained by the same procedure is
singular, and hence no breather exists. Then the total phase
becomes

(k+i)Z—(w+ip)t=k(Z-V 1) +ik(z=V,), (18)

with V,=w/k and V,=p/k. The latter expression is equiva-
lent to
1 F(w+ ip) — F(w - ip)

Ve

2ip ’ (19)
which, taking into account the analyticity of the dispersion
relation, allows us to recover the well-known relation for the
group and phase velocity of quasimonochromatic pulses V,
=dw/dk under the condition p— 0. Linearizing Eq. (9) and
substituting 8~ exp[i(wr—kZ)], arrives at the dispersion re-
lation and then relations (16) can be recovered using the
above procedure.

The expression of the electric field of the FCP is obtained
from the corresponding expression for the two-soliton solu-
tion derived in Ref. [25]. We deduce then the expression of
the envelope of the electric field, by setting ®=r/2. It yields

2h p
E,p= d—lp sech(\lf —In a) , (20)

[see Fig. 1(b)]. It has been shown in Ref. [21] that, within the
SVEA, Eq. (9) can be reduced to the nonlinear Schrodinger
(NLS) equation,
L @+ AlAP =0 (21)
Yoz Mg TR =T
with wu=-3w+a/w’, 7=3budi/h? and T=71+Z(3w’
+al/w?), and E=~Ae'® ™) cc. (c.c. stands for complex
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conjugate). The soliton solution of the NLS equation (21) is

[31]
A =2g sech 2q< \/ l(T— To) + 2)\772>
2p
Xexp(—i{2)\\/ﬁT+277()\2—q2)Z]>, (22)

with N and g being arbitrary real parameters. Since A repre-
sents a shift between the central frequency of the pulse and
that of the envelope, it must be set here to A=0. We identify
q=phl/d,, and Eq. (22) reduces to

A= Emveipz(a/w’%—&u)z. (23)

Hence we have exactly E,,,=|A|, i.e., the envelope of the
FCP pulse coincides with the envelope of the NLS soliton
not only in the SVEA limit p — 0, as was already noticed in
Ref. [21], but also in the two-cycle regime where the SVEA
is not valid and the envelope soliton is merely meaningless.
The exponential factor in Eq. (23) is the first correction to
the limit p— 0 of the expression of the carrier phase ®, as
can be easily checked by expanding ® in a power series of p.
Expression (20), and also the complete expression of the
field (omitted here), remain valid within the jurisdiction of
the mKdV equation. Only the velocities must be modified by
setting a=0 in Eq. (16). The group and phase velocities for
the pure sG model can also be derived in the same way as
above, and also can be retrieved from Eq. (16), having the
term without a neglected. An analogous computation proves
that the relation v,=dw/dk is neither satisfied for these two
models, except within the SVEA limit.

It is also possible to obtain a pulse with constant carrier-
envelope phase. The relative phase of the envelope and of
the carrier is of importance for a FCP. This relative phase is
constant if the group and phase velocities are equal. From
relations (16), we see that this happens when

(p*+ w)?=-a. (24)

This requires a negative value of a. Coming back to the
physical variables and making use of the expressions of co-
efficients given in Sec. II, this condition is transformed into
W (=2)W,(—%) <0. That is, an initial population inversion
must be reached for one of the two transitions only. The
pulse duration 7,=1/p is then given by

w W, — . (25)

This implies the carrier frequency o of the same order of
magnitude as the combination (w,®,”)"”* of the two reso-
nance frequencies, which is consistent with the assumption
w1<w~7';1<w2.

IV. TWO-CYCLE OPTICAL SOLITON OF THE
NONINTEGRABLE mKdV sG EQUATION

In the general, nonintegrable case, the existence of two-
cycle dispersion-free pulses in the two-cycle regime must be
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proven numerically [notice however that, as far as we know,
the nonintegrability of Eq. (9) for b+ 1/2 and a # 0 has not
yet been rigorously proven]. We do not intend here to give an
exhaustive analysis of the behavior of the solutions of Eq.
(8), but to show that a two-cycle pulse can still propagate
without being destroyed by the dispersion. We exploit the
exact breather of the mKdV equation as an input signal [32].
Using the reduced form (9) of the equation, this solution is
seen to be valid for a=0, but b# 1/2, and can be written as

20 _2d,
or h
77 Ui
:/i_|:e711+e772+<p p2>< : 622>em+7/z}
\2b pi+py) \dpi 4192
|: er]l
X 1+—+ + et
4p7  4p3  (pi+po)
4 27]1+2772 -1
+<p‘ ) ] (26)
pi+py) 16pip;
where
n=piT-Pii— Y. P2=p;. and y=—7y, (27)

which exactly coincides with the derivative of Eq. (14), apart
from a factor 1/42b in Eq. (26) and the absence of the term
that includes the parameter a in the expression (27) of the
phase. We consider a fixed value of b# 1/2, and negative
values of the parameter a, which accounts for the strength of
the resonant term, and increases progressively |a|. We exploit
the so-called “exponential time differencing method” [33]
along with absorbing boundary conditions introduced to
avoid numerical instability of the background.

Figure 2 refers to the moderate contribution from the
“resonant” interaction when the dynamics of the FCP pulse is
mainly contributed from the “nonresonant” component (7).
The cubic nonlinearity and third-order dispersion cause fast
propagation of the FCP. The relative inverse group velocity
of the breather solution of the mKdV equation is given by

Ve =[(Re p))* = 3(Im p)?]. (28)

The pulse velocity can be determined numerically. If a is not
zero but not too large (see Fig. 2), the velocity remains close
to the velocity (28) of the mKdV breather. This pulse evolu-
tion is in sharp contrast with the linear case, a=b=0, de-
picted in Fig. 3, where the third-order dispersion spreads the
pulse envelope out.

Figure 4 summarizes the propagation of the two-cycle
pulse (26) in the medium with the concentration of the “reso-
nant” atoms ten times higher than in Fig. 2. The velocity
departs considerably from that of the mKdV breather. For the
particular set of the parameters chosen in Fig. 4, it is numeri-
cally determined in arbitrary units as V =-32.25 instead of
VO——47 for the mKdV. Since
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FIG. 2. (Color online) Two-cycle solution to Eq. (9) for a weak
resonant term. It is very close to the breather solution of the mKdV
equation. Parameters are p;=1+4i, a=-50, b=2, the vertical scale
corresponds to 2d,/fi=1 (arbitrary units).

1 -1 2
Vz(@+—) ~< =, (29)
ng  nyV,

this variation corresponds to a decrease of V relative to the
mKdV case. Hence, increasing the contribution brought by
the term ~sin 6 results in appreciably slowing down the two-
cycle optical soliton. In order to show the stability of the
pulse, the computation in Fig. 4 has been performed in a
frame moving at the inverse speed V;l. It is clear that as the
pulse penetrates deeper into the medium, its velocity remains
constant and we see a stable two-cycle optical pulse travers-
ing the two-component medium.

The above computation shows that, at least for the par-
ticular value of parameters we have considered, a dispersion-
free two-cycle regime pulse can exist also in the noninte-
grable case. Furthermore, the computation proves that it is

40 60

20

0
-2
_e0 —40 720 %

FIG. 3. (Color online) Two-cycle pulse evolution in the linear
case: dispersion. Parameters are the same as in Fig. 2 except that
a=b=0 (arbitrary units).
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FIG. 4. (Color online) Two-cycle optical pulse in a case where
the resonant term is large: dispersion-free propagation is observed.
Parameters are the same as in Fig. 2 except that a=—500 (arbitrary
units).

stable. Notice that the stability of the two-cycle pulse in the
integrable case is not a straightforward consequence of the
IST. Indeed, the IST method implies the stability of the soli-
tons, which corresponds to purely imaginary eigenvalues,
i.e., ;;, m, are the real positive within the notations of [25].
The issue of the stability must be considered numerically. We
can expect that two-cycle pulses are more stable in the inte-
grable case, in which an infinite set of conservation laws
exists, than in the nonintegrable one. Thus the propagation is
very likely stable.

In the above computations we considered negative values
of the parameter a only. For positive a, that is, both of the
initial population differences W;(—) to be of the same sign,
the situation is somehow different. An example of computa-
tion with a=+500 is shown in Fig. 5. The initial pulse given
by Eq. (26) still propagates free from dispersion, but its ve-

-60 T

z=117.3 z=0
-65 |

-70

15T v

—
's0 -80 [

-90

95

A 0 20 40 60 80 100 120

FIG. 5. (Color online) Evolution of the two-cycle pulse speed
for a=+500. Inset: the two-cycle pulse profile at the beginning and
at the end of the simulation. The other parameters are the same as in
Fig. 2 (arbitrary units).
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FIG. 6. (Color online) Quasistabilization of the carrier-envelope
phase of the two-cycle optical pulse when the condition derived in
the integrable case is satisfied. Parameters are the same as in Fig. 2
except that a=-289 (arbitrary units).

locity is not constant: it tends very slowly towards some
constant value. This means that a stable FCP soliton still
exists in this case, but appreciably differs from the mKdV
breather, as given by Eq. (26). In the inset of Fig. 6, both an
input and output pulse, which is close to the soliton, are
plotted. There is little difference between the two pulse
shapes.

Further, condition (24) predicts the stabilization of the
carrier-envelope phase for a given value of a in the inte-
grable case. With the magnitudes of p and w used in Figs.
2-5, this can be expected at a=—289. Figure 6 shows the
phase is almost stabilized for this value of a, especially as
compared to the huge variations of the carrier-envelope
phase observed for the value a=—500 considered above (see
Fig. 7). A more accurate analysis allows us to get closer to
perfect stabilization, as shown in Fig. 8, which is computed
for a=-292.55. Indeed, the lines are parallel up to the pre-
cision of the computation. Obviously, the optimal value of a
could be refined with longer computation. In conclusion, the

0 0.5 1 1.5
V4

[\

FIG. 7. (Color online) Density plot of the FCP soliton of Fig. 4
showing the huge variations of the carrier-envelope phase for com-
parison with Fig. 6.
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z

FIG. 8. (Color online) Stabilization of the carrier-envelope
phase of the two-cycle optical pulse. Parameters are the same as in
Fig. 2 except that a=-292.55 (arbitrary units).

carrier-envelope phase stabilization also takes place in the
nonintegrable case, and for a value of the parameters very
close to the one predicted in the integrable case.

V. CONCLUSIONS

We have shown the existence of two-cycle optical solitons
in a one-dimensional two-composite dielectric material. A
rich variety of solitons is proven to exist under the circum-
stance where the incident light-cycle duration is set properly
to the resonant frequency of the components and correspond-
ing relaxation time. Specifically, in the integrable case, a
two-cycle analytical solution is available and enables us to
generalize the notion of envelope and carrier to a FCP, with-
out resorting to the SVEA, which is by no means valid in this
case. Group and phase velocities have been determined,
showing that the usual relation v,=dw/dk is not valid for a
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FCP. On the other hand, the envelope of the FCP soliton has
exactly the sech shape of the envelope soliton of the NLS
equation. We demonstrate that in the integrable case there is
a family of the two-cycle solitons with a stable carrier-
envelope phase. The soliton depends strongly on the dopant’s
matrix elements as well as on the relative population inver-
sion of the components. In the general case, the existence of
two-cycle solitons and the stabilization of the carrier-
envelope phase have been demonstrated numerically. The
two-component approximation therefore provides a valuable
starting point for the assessment of few-cycle optical pulses
and the estimation of the carrier-envelope phase, which has
become an emerging issue in photonics research.

We have restricted our analysis to a special and illustra-
tive case, which can be recognized as a few-cycle pulse
propagating through a wide-gap dielectric with a system of
impurities or defects generated there. An obvious generaliza-
tion of our model is therefore to include a nonsteady-state
density of the resonant centers and near-field effects that
drastically change the frequency-pulse bandwidth hierarchy.
In reality, the transverse propagation effects must also be
taken into consideration in order to understand the pulse sta-
bility. It is also useful to analyze how to excite these pulses
with a stable carrier-envelope phase in a finite medium. It is
our hope that our simple model analysis will motivate much
more comprehensive treatment, which should explore the
full parameter space of the two-cycle soliton solution. This
may in turn lead to the application of few-cycle pulses for
ultrafast-laser modification of materials for nanophotonics.
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