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Representing an ensemble of random lasers with an ensemble of random matrices, we compute the average
number of lasing modes and its fluctuations. The regimes of weak and strong coupling of the passive resonator
to the environment are considered. In the latter case, contrary to an earlier claim in the literature, we do not find
a power-law dependence of the average mode number on the pump strength. For the relative fluctuations,
however, a power law can be established. It is shown that, due to the mode competition, the distribution of the
number of excited modes over an ensemble of lasers is not binomial.
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I. INTRODUCTION

Random lasers with coherent feedback �see Ref. �1� for a
review� are systems based on active disordered materials
where self-sustained radiation modes can be formed. Another
possibility involves sufficiently open wave-chaotic resona-
tors filled with active media. In the absence of pumping, both
realizations are characterized by short-lived strongly interact-
ing passive modes. In order to treat such systems, the stan-
dard laser theory �2,3�, which assumes an almost closed reso-
nator, needs to be modified. The first step in this direction
was made in Ref. �4�, where the Langevin formalism was
adapted to the present situation. The authors described
lasing-mode oscillations by non-Hermitian matrices and de-
rived an expression for the linewidth. In Ref. �5� a connec-
tion was made between the Langevin and master equations.
An improved treatment of nonlinearities in the multimode
laser theory was proposed in Ref. �6�.

An interesting problem �also from experimentalist’s
standpoint� is the effect of mode competition on the number
of lasing modes. Equations yielding this number were de-
rived in Refs. �7,8� for a weakly open resonator. The authors
of Ref. �8� discovered that the average number of modes
varies �within certain limits� as a power of the pump
strength. The theory is based on the fact that the passive-
mode widths for a weakly open resonator follow a �2 distri-
bution. The results were tested numerically by generating
ensembles of possible widths according to this distribution.
In Ref. �9� the mode-number equation of Ref. �8� was red-
erived for a resonator with overlapping passive modes. In
particular, Ref. �9� exploits a possibility to reproduce statis-
tical properties of modes in open chaotic resonators with the
specially chosen ensembles of non-Hermitian random matri-
ces. The average mode number was computed from sets of
passive-mode widths obtained directly from these ensembles.
It was claimed �9� that this number has a power-law depen-
dence on pumping in a resonator strongly coupled to the
environment. The theory of Ref. �9� relies on the eigenvector
and eigenvalue statistics of non-Hermitian random matrices,
which were extensively studied in the literature �10–13�.
However, general analytical expressions for the relevant cor-

relations of the left and right eigenvectors are still unknown.
The correlations were carefully studied numerically in
Ref. �9�.

In the present paper we employ the approach of Ref. �9�
to study the average number of excited modes and especially
its fluctuations. In the weak-coupling case, our results for the
average agree with the predictions of Ref. �8�. For strong
coupling, contrary to the results of Ref. �9�, we do not find a
power law for the average, but do find it for the relative
fluctuations. Relating the average number of lasing modes to
its fluctuations, it is possible to extract some information
about the distribution of this number over an ensemble of
lasers. We argue that a binomial distribution gets distorted by
the passive-mode overlap and the active-mode competition.

II. THEORETICAL BACKGROUND

We begin by recalling the derivation of Eq. �32� �8,9�,
which yields the number of lasing modes for a given pump
strength. This equation is analyzed numerically in the subse-
quent sections.

A. Langevin equations

The system under consideration comprises an open reso-
nator filled with N identical atoms. A random laser can be
modeled by a resonator with an irregular shape, such that its
eigenfunctions are chaotic. The system Hamiltonian

Hsys = Hf + Ha + Hf-a �1�

is a sum of the radiation-field Hamiltonian Hf, atomic Hamil-
tonian Ha, and their interaction Hf-a.

It is convenient to represent the system as field and atoms
in an ideal �isolated� resonator interacting with environment
�heat and pump reservoirs, or baths�. The reservoir degrees
of freedom are then eliminated. The reservoirs acting on the
field and on the atoms are assumed to be independent of each
other �14�. Accordingly, the field Hamiltonian can be written
in the form

Hf = ��
�

��a�
†a� + �Hf , �2�

where a� are the annihilation operators for the modes of the
closed resonator with frequencies �� and �Hf includes the*Electronic address: oleg.zaitsev@uni-duisburg-essen.de
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bath Hamiltonian and the resonator-bath interaction. In the
case of an empty resonator with an opening, the role of the
reservoir is played by an external field having a continuous
spectrum. This model, adopted also for the present paper,
was carefully studied in Refs. �15,16�, where, in particular,
the ways to split the field into the internal �resonator� and
external �bath� parts were discussed.

The atoms will be approximated by their two active levels
separated by energy ��. Given the fermionic operators c1,2
for the levels, one can define the pseudospin-1 /2 operators
��sx− isy =c1

†c2 and s�sz= 1
2 �c2

†c2−c1
†c1�; i.e., si generate a

spin su�2� algebra. The spin operators �p and sp �p
=1, . . . ,N� of different atoms commute. The atomic Hamil-
tonian becomes

Ha = ���
p=1

N

sp + �Ha, �3�

where the reservoir operators are contained in �Ha.
The interaction Hamiltonian

Hf-a = i��
�p

�g�pa�
†�p − H.c.� �4�

is written in the rotating-wave and dipole approximations.
The former neglects the terms proportional to a��p and a�

†�p
†.

Since ����, such antiresonant products would oscillate
with a double optical frequency in the interaction picture.
The latter approximation can be applied since the optical
wavelength is much larger than the atom size. Then the cou-
pling constant �in the Gaussian units�

g�p = �� 2�

���

d21 · ��
*�rp� �5�

is expressed in terms of the dipole moment d21 for the 1
→2 transition between the atomic levels, as well as the nor-
malized vector-valued eigenfunction ���rp� of the mode � at
the atom position rp �17�. In chaotic resonators the values of
an eigenfunction at any two positions are uncorrelated �apart
from normalization and boundary effects� if they are more
than a wavelength apart �18�. Hence, the couplings g�p can
be treated as independent Gaussian random variables.

In the Heisenberg picture, an equation of motion for an

operator O is Ȯ= i
� �H ,O�. For the laser operators a�, �p, and

sp, the equations of motion can be cast in the form of Lange-
vin equations:

ȧ� = − i��a� − �
��

	���a�� + �
p�

g�p��p� + F�, �6�

�̇p = − �i� + 	���p + 2�
��

g��p
* a��sp + Fp

�, �7�

ṡp = 		�S − sp� − �
��

�g��pa��
†

�p + H.c.� + Fp
s . �8�

The reservoirs enter the equations via the damping �	���, 	�,
		� and pumping �S� parameters and the operators of stochas-
tic forces �F�, Fp

�, Fp
s �. The latter have zero reservoir average

and are 
 correlated in time. This property is a consequence
of the Markov approximation, which requires the reservoir
relaxation time to be much smaller than all the other time
scales. Equations �6�–�8� are appropriate for chaotic resona-
tors. They differ from the standard equations of the laser
theory �3� in two aspects: the nondiagonality of 	��� and the
randomness of g�p. Equation �6� was derived in Refs. �5,15�.
The damping matrix 	��� is Hermitian. It is strongly nondi-
agonal if the resonator modes are overlapping. The off-
diagonal elements point to the interaction between the re-
spective modes via a coupling to the continuum. Equations
�7� and �8� follow, e.g., from the Langevin theory for three-
level atoms �2� if the total population of the two active levels
is kept constant. 	� and 		 are the polarization and inversion
decay constants, respectively.

In the following, we work in the classical approximation,
whereby the noise forces are neglected and the operators are
treated as c numbers �the prior notation will be retained�.
This approximation fails near the lasing threshold, where the
average intensity is smaller than its quantum fluctuations.
The classical version of Eqs. �6�–�8� becomes

d

dt

a� = − i�̂
a� + �

p�


gp���p�, �9�

�̇p = − �i� + 	���p + 2�gp
a�sp, �10�

ṡp = 		�S − sp� − ��a
gp��p + c.c.� . �11�

Here, for compactness of notation, we introduced the classi-
cal vectors 
a�= �. . . ,a� ,a�+1 , . . . �T and 
gp�
= �. . . ,g�p ,g�+1,p , . . . �T and the matrix

��̂���� = ��
��� − i	���. �12�

Since �̂ is not Hermitian, it has different left and right eigen-
bases �Lk
 and 
Rk�, respectively. Thus, its spectral decompo-
sition is of the form

�̂ = �
k


Rk���k − i�k��Lk
 , �13�

where the eigenvectors are normalized in such a way that
�Lk 
Rk��=
kk� and �Rk 
Rk�=1, but, in general, �Rk 
Rk��
�
kk�. �k− i�k ��k
0� are the complex eigenfrequencies of
the passive open resonator. We expand 
a�=�k�k
Rk�, where
the amplitudes

�k = �Lk
a� �14�

satisfy the equations

�̇k = − �i�k + �k��k + �
p�

�Lk
gp���p�, �15�

�̇p = − �i� + 	���p + 2�
k�

�gp
Rk���k�sp, �16�
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ṡp = 		�S − sp� − �
k�

��Rk�
gp��k�
*

�p + c.c.� , �17�

following from Eqs. �9�–�11�. It is worth emphasizing again
that the open-resonator modes k are coupled through the in-
teraction with the atoms, while the closed-resonator modes
�, in addition, interact via the reservoir.

B. Number of lasing modes

We solve Eqs. �15�–�17� by treating the interaction with
the atoms perturbatively. Namely, it will be assumed that the
sustained field oscillations are proportional to the unper-
turbed eigenvectors 
Rk�. However, the oscillation frequen-

cies �̄k
�k are to be determined self-consistently. It was
argued in Ref. �19� that a multimode solution is possible if

�k,		 � ��̄,	�, �18�

where ��̄ is a typical spacing between the lasing-mode fre-
quencies. This condition ensures that the population inver-
sion sp is approximately constant in time.1 An expression for
sp can be derived as follows. First, one represents the polar-
ization �p=�k�pk as a sum of single-frequency components

�pk�exp�−i�̄kt�. Using Eq. �16� with sp=const,

�pk =
2sp�gp
Rk�

− i��̄k − �� + 	�

�k �19�

is expressed in terms of �k, which oscillates with the same
frequency. Finally, these �pk are substituted into Eq. �17�,
yielding

sp 

S

Yp
, �20�

Yp � 1 +
4

	�		
�

k


�gp
Rk�
2Lk
�k
2, �21�

Lk � �1 + ��̄k − ��2/	�
2 �−1, �22�

where the oscillating products �k
*�k�, k�k�, were averaged

out, in line with the constant-sp approximation. Taking into
account Eqs. �19� and �20� and keeping only the terms oscil-

lating with frequency �̄k in Eq. �15�, we arrive at an equation
for �k,

�̇k 
 − �i�k + �k − Bk��k, �23�

Bk �
2S

− i��̄k − �� + 	�

�Lk
�
p


gp��gp

Yp


Rk� . �24�

Equation �23� for N lasing modes is equivalent to a system of
2N real equations �9�,

�̄k = �k − Im Bk, �25�

Re Bk = �k, �26�

from which the frequencies �̄k and the intensities Ik= 
�k
2 of
the lasing modes can be determined. Equations �25� and �26�
are valid only for such k that Ik
0.

Further progress can be made if Yp
−1 in Eq. �24� is ex-

panded up to the linear terms in Ik. This procedure presumes
that the laser is operating not far from the threshold. When
the atoms are distributed uniformly over the resonator and
their density is sufficiently large, the p sum becomes a vol-
ume integral. Then the summations entering Eq. �24� are
computed as follows:

�
p


gp��gp
 → Ng2� d3r
�*�r����*�r�
 = Ng2, �27�

�
p

�Lk
gp��gp
Rk�
�gp
Rk��

2

→ Ng4V� d3r�Lk
�*�r����*�r�
Rk�
��*�r�
Rk��

2


 Ng4�1 + 2
kk�� , �28�

where 
��r��= (. . . ,���r� ,��+1�r� , . . . )T,

g =�2��

�V

d21
 , �29�

and V is the resonator volume. Above we assumed that all
the modes � are polarized along d21 and ��
�. The ap-
proximate equality in Eq. �28� results from treating the wave
functions �Lk 
�*�r�� and ��*�r� 
Rk� in a wave-chaotic reso-
nator as Gaussian random variables, restricted only by nor-
malization. Performing random-matrix simulations, this
property was shown to hold in the relevant range of the mode
widths �9�. Using Eqs. �27� and �28�, we arrive at

Bk =
2SNg2

	�

Lk�1 + i
�̄k − �

	�

�
��1 −

4g2

	�		
�
k�

Ik�Lk��1 + 2
kk��� + O�I2� . �30�

The linear gain G0Lk, where

G0 �
2Ng2

	�

S , �31�

is obtained from Re Bk by setting Ik�=0.
To determine the number of lasing modes, we approxi-

mate �̄k with �k, substitute Bk, Eq. �30�, into Eq. �26�, di-
vide it by Lk, sum over k, and find �k�Ik�Lk�. Then �k�Ik�Lk�
can be used in Eq. �26� to express Ik, which is required to be
positive for all lasing modes. This condition yields �8�

�N

LN
+

1

2
�N

�N

LN
− �

k=1

N
�k

Lk
� � G0, �32�

where the modes are ordered in such a way that �1 /L1
��2 /L2�¯. The largest N satisfying this inequality is the1The same is tacitly assumed in Ref. �9�.
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number of lasing modes. On the other hand, the largest N0,
such that,

�N0

LN0

� G0 �33�

holds, is the number of modes that would lase in the absence
of mode competition. These are the modes for which the
linear gain exceeds the losses. Clearly, N0�N.

III. AVERAGE NUMBER OF LASING MODES AND ITS
FLUCTUATIONS

A. Random-matrix model

We investigated the mode statistics resulting from Eqs.
�32� and �33�. Ensembles of open chaotic resonators were

modeled by randomly generated non-Hermitian matrices �̂

� �̂− i	̂, Eq. �12�. In the basis of the modes �, �̂ has a
diagonal real part. Its imaginary part is of the form �5�

− 	̂ = − �ŴŴ†, �34�

where �Ŵ��m ��=1, . . . ,L, m=1, . . . ,M �L� describes the in-
teraction of the resonator mode � with the mth channel of the
reservoir. Each channel includes a continuum of frequencies.

However, Ŵ is frequency independent in the Markov ap-
proximation. Clearly, the matrix 	̂ has at most M nonzero
eigenvalues 	i, i=1, . . . ,M �it is possible to find N-M lin-

early independent vectors orthogonal to the rows of Ŵ†�. We
will consider the case of equivalent channels, when all 	i
=	.

A matrix �̂ is most easily constructed in the basis where 	̂
is diagonal: we fix 	̂ and choose �̂ from a Gaussian orthogo-
nal ensemble �12�. Without loss of generality, the diagonal
and off-diagonal elements of �̂ are taken from a normal dis-
tribution with zero mean and the variance of 2 /L and 1/L,
respectively. In the limit L�1, �k, Eq. �13� �the real parts of

the eigenvalues of �̂�, are distributed according to the
Wigner semicircle law

���� =
1

�
�1 −

�2

4
, − 2 � � � 2, �35�

where ���� is normalized to unity. Numerical simulations
�Fig. 1� show a reasonable agreement with this equation. The
strength of coupling to continuum is characterized by a pa-
rameter 2����� / �	+	−1� �12�. Thus, it is sufficient to con-
sider 	� �0,1�, whereby 	=0 �	=1� corresponds to the van-
ishing �strongest� coupling. Importantly, even within one

matrix �̂, the effective coupling depends on the spectral re-
gion according to ����.

B. Results and discussion

In the following figures, we present results of numerical
simulations for the average number of lasing modes, �N�, and
its standard deviation �N. The respective quantities in the
absence of mode competition, �N0� and �N0

, were calculated

as well. The averages were performed over ensembles of
random matrices. As was explained earlier, the effective cou-
pling to continuum depends on ����. Therefore, for each
matrix, of all eigenvalues, only L0
0.36L eigenvalues clos-
est to the top of the Wigner semicircle were used in Eqs. �32�
and �33�. Within this spectral region, ���� varies by about
4%. In order to reduce the number of parameters, we as-
sumed that 	� is sufficiently large and set Lk=1. The pump-
ing was measured in units of its threshold value Sthr, which
was determined numerically from the threshold condition
�N�=1. An estimate yields S /Sthr�G0 /�0, where �0

�	M /L is a typical loss.
First, we discuss a weakly open resonator �0���


� /L, where �� is the mean nearest-neighbor spacing be-
tween �k. A theory for the averages �N� and �N0� in this
regime was proposed in Ref. �8�. Central to the argument is
the analytical expression for the distribution of �k, Eq. �13�,

P�y� =
�M/2�M/2

��M/2�
yM/2−1 exp�−

M

2
y�, y � �/�̄ , �36�

where �̄ is the average of � and ��z� is the gamma function
�20�. P�y� is a �2 distribution with M degrees of freedom and
the average ȳ=1. The average number of modes in the ab-
sence of competition can be estimated from

�N0� = L0�
0

G0/�̄

dyP�y� = L0

	�M

2
,
M

2

G0

�̄
�

��M/2�
, �37�

where 	�z ,x�=�0
xdttz−1e−t is the incomplete gamma function

�20�. The numerical results in Fig. 2 show good agreement
with this prediction. In the weak-pump regime G0 / �̄�1,
there is a power law �N0��SM/2 �8�. With increased pumping,
the saturation �N0�→L0 sets in. Clearly, this form of satura-
tion is an artifact of our model. Normally, the number of
potential lasing modes would be limited by the Lorentzians

-2 -1 0 2
Ω

0

0.1

0.2

0.3

0.4

ρ(
Ω

)

0 channels
1 channel
5 channels
10 channels
Wigner law

1

FIG. 1. �Color online� Distribution ���� of the real parts of the
eigenvalues of random matrices. Numerical simulations were per-
formed for an ensemble of 500 matrices of size L=200 coupled to
M =0, 1, 5, and 10 open channels with the coupling 	=1. Analytical
expression �35� is plotted for comparison.
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Lk. Nevertheless, for large L0, the present model is appropri-
ate below the saturation.

In order to determine �N0
, it is the simplest to assume that

N0=1 , . . . ,L0 is distributed according to a binomial distribu-
tion Pp�N0 
L0�, where p= �N0� /L0 is the probability for a
given mode to lase. The standard deviation for this distribu-
tion is known to be

�N0
=��N0��1 −

�N0�
L0

� , �38�

where �N0� can be substituted from Eq. �37�. A comparison
with the numerical curve in Fig. 2 supports our assumption.
When �N0��L0, we find a power law �N0

���N0��SM/4.
In the presence of mode competition, it is interesting to

look at the case when �N� is far below the saturation, but,
still, sufficiently large. The former condition yields �N�
��M/2, while the latter ensures that the terms of order N�N

�N�� dominate the left-hand side of Eq. �32�. Combination
of the two estimates gives �N��SM/�M+2� �8�. We checked
numerically �via �N� that the N distribution is not binomial.
Nevertheless, the power law �N���N��SM/2�M+2� remains
valid �Fig. 2�.

Next, we consider the problem of a strong coupling to the
bath ��0���� modeled here by a random-matrix ensemble
with 	=1. The distribution P�y� in this case is no longer
given by Eq. �36�, but rather has a power-law tail P�y�
�y−2, y�1 �12�; its full analytical expression is very com-
plicated. Numerical results for the average number of lasing
modes and its fluctuations were obtained for M =1, 3, 5, 7,
and 10. The data for M =5 are presented in Fig. 3. The S
dependences of �N� and �N0� here are similar to those found
in Ref. �9�. However, except for M =1, we can confirm for
these quantities neither a power-law behavior, in general, nor

the powers 1/3 and 1/2, respectively, in particular.
An analysis of fluctuations shows that the distributions of

N and N0 are nonbinomial. While the standard deviation �N
saturates at large S, the relative deviation �N / �N� exhibits a
power law with the exponent 0.2–0.4, depending on M. Ex-
amining the numerical data, we discovered an interesting re-
lation between the relative fluctuations of N0 and the average
of N:

�N0

�N0�



1

�N�
−

1

L0
,

S

Sthr
� 1. �39�

As demonstrated in Fig. 4, this property is well satisfied for
M �1. Unfortunately, an explanation of this result is still
lacking.

IV. CONCLUSIONS

By modeling ensembles of open chaotic resonators with
ensembles of random matrices, we studied average number
of lasing modes and its fluctuations. To highlight the effect of
mode competition and allow for a better comparison with
earlier work, the linear approximation to the lasing equations
was considered as well.

0.1 1 10
S/Sthr

0.01

1

100

<
N

>
, 

 σ
N

 , 
σ

N
 /

 <
N

> <N>

<N0>

σ
N

σN0

σN0
 / <N

0
>

σ
N

 / <N>

FIG. 2. �Color online� Average number of lasing modes, �N�, its
standard deviation �N, and relative standard deviation �N / �N�, as a
function of pumping. The same in the absence of mode competition
��N0�, �N0

, �N0
/ �N0��. The thin solid lines display analytical results

of Eqs. �37� and �38� and power-law asymptotics. Numerical simu-
lations were performed for an ensemble of 75 random matrices of
size L=1000 coupled to M =5 open channels with the coupling 	
=0.1. L0=360 eigenvalues per matrix were taken into account. The
analytical functions were computed with the parameters �̄=5.0
�10−4 and 
G0
S=Sthr

=3.3�10−5, which were extracted from the
ensemble.
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>
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FIG. 3. �Color online� Same as in Fig. 2, but with the coupling
	=1.0. The thin solid line displays a power law with the exponent
−0.32. The ensemble is characterized by �̄=7.4�10−3 and

G0
S=Sthr

=1.1�10−4.
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<N >-1  - L0
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σ
N0
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M = 1
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M = 10
M = 5

FIG. 4. �Color online� Comparison of �N�−1−L0
−1 �thick lines�

and �N0
/ �N0� �thin lines� plotted as functions of pumping. The en-

sembles of random matrices as in Fig. 2, but with the coupling 	
=1.0 and with the number of open channels M labeled in the figure.
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In the case of a weakly open resonator, the average num-
ber of modes is proportional to a power of pump strength
�within a certain pumping range�. This result agrees with the
analytical prediction in Ref. �8�. The standard deviation
changes as a square root of the average. In the absence of
mode competition, the number of modes follows a binomial
distribution, if the total number of eigenstates available for
lasing is finite. The distribution becomes nonbinomial in the
presence of mode competition.

For a resonator strongly coupled to the environment, we
could not establish any power-law dependence of the average
mode number on pumping. �The case of one open channel
makes an exception.� This evidence stays in contradiction to
the conclusions of Ref. �9�. On the other hand, we find a
power-law behavior for the relative fluctuations. A curious
relation �39� between the average with and the relative fluc-

tuation without mode competition requires further investiga-
tion.

As a possible extension of this work, it would be interest-
ing to relax some of the assumptions made. For example, one
can consider an effect of the Lorentzian line shape �here
approximated as rectangular�. A more challenging task is to
avoid the near-threshold expansion of the intensity-
dependent denominators in Eq. �24�.
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