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We calculate the weak-driving transmission of a linearly polarized cavity mode strongly coupled to the D2
transition of a single cesium atom. Results are relevant to future experiments with microtoroid cavities, where
the single-photon Rabi frequency g exceeds the excited-state hyperfine splittings, and photonic band-gap
resonators, where g is greater than both the excited- and ground-state splitting.
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I. INTRODUCTION

The Jaynes-Cummings model of cavity QED treats an
atom as a two-level system. This is appropriate for a realistic
atom when that atom has a cycling transition, typically
reached by optical pumping with circularly polarized light
�1,2�. However, new types of optical resonators such as mi-
crotoroids �3� and photonic band-gap cavities �4� do not sup-
port circularly polarized modes. Though these structures with
extremely low critical atom and photon numbers show great
promise for strong coupling �5�, a more detailed model of the
atom must be employed when calculating the properties of
these atom-cavity systems �6,7�. A linearly polarized mode
may couple multiple Zeeman states of the atom. Addition-
ally, for these very small resonators, the single photon Rabi
frequency �2g� can be comparable to or larger than the hy-
perfine splitting of the atom, so that multiple hyperfine levels
must be considered when calculating the excitations of the
system. We will consider a linearly polarized single-mode
resonator coupled to the D2 �6S1/2→6P3/2� transition of a
single cesium atom. However, this may also give some intu-
ition for other multilevel scatterers, such as molecules and
excitons �8,9�.

II. COUPLING TO MULTIPLE EXCITED LEVELS

In order to describe the interaction of the atom with vari-
ous light fields, it is useful to define the atomic dipole tran-
sition operators

Dq�F,F�� = �
mF=−F

F

�F,mF��F,mF��q�F�,mF + q��F�,mF + q� ,

�1�

where q= 	−1,0 ,1
 and �q is the dipole operator for
	�− ,� ,�+
-polarization, normalized such that for a cycling
transition ���=1. We will approximate all atom-field inter-
actions to be dipole interactions.

First, let us consider the case when g is comparable to the
hyperfine splitting of the excited states, but still small com-
pared to the ground-state splitting. This limit is appropriate
for the proposed parameters of microtoroid resonators �3�
and small Fabry-Perot cavities �10�. If the cavity is tuned
near the F=4→F� transitions, then the Hamiltonian for the
atom cavity system can be written using the rotating wave
approximation as

H0 = �ca
†a + �

F�=2

5

�F��F���F��

+ g� �
F�=3

5

a†D0�4,F�� + D0
†�4,F��a� , �2�

where �F� is the frequency of the F=4→F� transition, �c
is the frequency of the cavity, and a is the annihilation op-
erator for the cavity mode. The operator �F���F�� projects
onto the manifold of excited states with hyperfine number
F�, and may be written more explicitly as �F���F��
=�mF�

�F� ,mF���F� ,mF� �. We use units such that �=1 and en-
ergy has the same dimensions as frequency. Note that we are
treating the cavity as a single-mode resonator with linear
polarization. Fabry-Perot cavities have two modes with or-
thogonal polarizations, so this model is only appropriate if
there is a birefringent splitting which makes one of the
modes greatly detuned �compared to g� from the atomic reso-
nance.

In the weak-driving limit of an atom-cavity system in the
regime of strong coupling, we expect that high transmission
will occur when the probe light is resonant with a transition
from a ground state of the system to a state in the N=1
lowest excitation manifold. Furthermore, we expect a higher
transmission when resonantly exciting an eigenstate which is
“cavity-like,” i.e., an eigenstate which has larger weight in
the field excitation rather than the atomic dipole.

In Fig. 1, we plot the eigenfrequencies 	�k
�1�
 of H0

determined by the equation H0��k
�N��=�k

�N���k
�N��. Here N

is the excitation manifold, where �k
�N+1�−�k

�N�
�c and
�k

�0�=0. Also displayed is ��k
�1��a†a��k

�1�� for each eigenstate
��k

�1�� corresponding to each eigenfrequency �k
�1�, which is a

measure of how “cavity-like” that state is. This should give
some indication of what cavity and probe detunings yield
high transmission.
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In order to study the system properties more precisely, we
can find the Hamiltonian of the driven system, write the Li-
ouvillian that describes the time-evolution including damp-
ing, and calculate the steady state of the system. We will
assume that the cavity resonance is tuned near the
F=4→F� atomic transitions. We expect that, absent any re-
pumping fields, atomic decays to the F=3 ground state will
leave the atom uncoupled to the resonator. To avoid this, we

will assume that a classical �coherent-state� driving field
tuned near the F=3→F� transitions is applied to the atom in
addition to the probe field which drives the cavity. In the
rotating wave approximation, the Hamiltonian of this driven
atom-cavity system in the frame rotating with the cavity
probe is

H1 = �
F�=2

5

�F��F���F�� + �r�F = 3��F = 3� + �ca
†a

+ g �
F�=2

5

�a†D0�4,F�� + D0
†�4,F��a�

+ 	r �
F�=2

5

�D0�3,F�� + D0
†�3,F��� + 
a† + 
*a , �3�

where �F�=�4→F�−�p, �r=�r−�GSS−�p, and �c=�c−�p.
Here �p is the probe frequency, �r is the repump frequency,
and �GSS�9.2 GHz is the ground-state splitting of Cs. The
cavity is driven at a rate 
 so that in the absence of an
atom the intracavity photon number would be Nno atom

= �
�2 / ��2+�c
2�, and the atom is driven by the repump field

with Rabi frequency 2	r. Here, we have assumed that there
is no off-resonant coupling of the cavity mode to the F=3
ground states, nor is there off-resonant coupling of the re-
pump light to the F=4 states. We expect that corrections due
to those terms will be small when g, 	r��GSS.

The time evolution of the density matrix 
 of the atom-
cavity system is given by the master equation,


̇ = − i�H1,
� + �D�a�
 + ��
q,F

D��
F�

Dq�F,F���
 , �4�

where � and � are the cavity field and atomic dipole decay
rates, respectively, and the zero-temperature decay superop-
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FIG. 1. �Color� Eigenfrequencies of excitations in the first mani-
fold 	�k

�1�
 vs cavity detuning. Color represents �a†a� for each
corresponding eigenvector. Here �4→4�−�4→5�=−251 MHz,
�4→3�−�4→5�=−452 MHz �11�, and g=450 MHz �3�. Although
there are 36 eigenvectors in the manifold, there are only 20 unique
eigenvalues due to symmetry.
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FIG. 2. �Color� Transmission �intracavity photon number, nor-
malized to the empty cavity on resonance� vs probe and cavity
detunings in the weak-driving limit �calculated in a Fock basis of
	0,1
 photons� from Eq. �4�. Red dotted lines indicate resonances
for uncoupled atomic and cavity transitions. The blue dashed
lines indicate the cavity detunings in Figs. 3 and 4. Rates are
�g ,� ,��= �450,1.75,2.6� MHz �3�, 
=�� /g, and 	r=�. The re-
pump beam is resonant with the F=3→F�=4� transition, i.e., �r

=�4�. Values were computed on a grid with a 50 MHz �0.5 MHz�
spacing in �c ��p�.

FIG. 3. �Color� �a� Normalized transmission T and �b� popula-
tions in various Zeeman ground states of the F=4 manifold as a
function of probe detuning, with the cavity frequency fixed at
�c=�4→5�−100 MHz. Parameters are the same as in Fig. 2. By
symmetry, populations are the same in Zeeman level mF as in level
−mF. The sharp feature at �p=�4→5�−251 is caused by a coherent
Raman effect between the probe and the repump light. Note that
because of the weak cavity drive and the strong repump light,
nearly all of the population is in the F=4 manifold.
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erator D acts on the density matrix such that D�c�

�2c
c†−c†c
−
c†c for any operator c. The term propor-
tional to � represents spontaneous emission. The numerous
possible atomic transitions and their associated relative rates
are encompassed by the matrix elements of the dipole opera-
tors. Note that we have assumed that all F�→F=4 transi-
tions of the same polarization couple to a common reservoir
of vacuum electromagnetic field modes and similarly for all
F�→F=3 transitions �but the reservoirs for F�→F=4 and
F�→F=3 transitions are independent�. This assumption
arises from the fact that level shifts due to the atom-cavity
coupling will be comparable to the atomic excited state hy-
perfine splittings �but small compared to the ground state
splitting� and, therefore, there exists the possibility for coher-
ence, or quantum interference effects between transitions of
the same polarization from different F� states to a single,
common ground-state level �6,12,13�. Such a possibility is
described in the common-reservoir master equation �4� by
generalized atomic damping terms which couple such transi-
tions. Note that the choice of independent reservoirs for tran-
sitions to the different hyperfine ground states is consistent
with our assumption that there is no off-resonant coupling
between transitions from different hyperfine ground-state
manifolds.

From the steady-state solution to Eq. �4�, 
̇ss=0, we can
compute steady-state expectation values of an operator c by
evaluating Tr�
ssc�. We define the normalized cavity trans-
mission T=Tr�
ssa

†a��2 / �
�2, where T=1 for an empty cav-
ity on resonance. T is plotted in Fig. 2 versus cavity and
probe detunings. Notice the similarity to Fig. 1, which dem-
onstrates that the qualitative features of the transmission are
indeed determined by the eigenvalues and eigenstates of the
Hamiltonian.

Figure 3 shows T as a function of probe detuning for fixed
cavity frequency along with atomic ground-state populations
�F=4,mF�
ss�F=4,mF�. The large swings in the relative
populations of various Zeeman states demonstrate the impor-
tance of optical pumping in understanding the steady-state
behavior of the transmission. The rapid variation of the
populations that occurs near the transmission peaks can be
understood by noting in Fig. 1 that each transmission peak is
associated with multiple eigenstates with similar eigenval-
ues. These eigenstates have different amplitudes of the Zee-
man states and therefore lead to different optical pumping
effects. It should be noted that the width of the transmission
peaks are therefore not simply determined by � and � but
also by the separation of the various eigenvalues contributing
to each peak, making the peaks wider than would be naively
expected.

Figure 4 demonstrates the importance of incorporating
multiple hyperfine levels into the model of the atom when
calculating the cavity transmission for the large values of g
expected in upcoming experiments �3�. The solid red curve
denotes the transmission T from Fig. 2 for a cavity fixed to
be resonant with the F=4→F�=5� transition. The dashed
black curve indicates the transmission calculated using a
model of the atom which includes all Zeeman states of the
F=4 and F�=5� manifolds, but no other hyperfine levels.
The substantial differences between the curves indicates that

although the other hyperfine transitions are not resonant, the
large coupling g causes these transitions to have a significant
effect on the atom-cavity system.

III. COUPLING TO THE ENTIRE D2 TRANSITION

Now we will turn to the regime where g is larger than
both the ground- and excited-state hyperfine splittings. This
case is applicable for the expected parameters of cavity QED
with photonic band-gap cavities �4�. In this regime, the cav-
ity mode couples to both ground-state hyperfine manifolds,
and the Hamiltonian of the atom-cavity system in the ab-
sence of a driving field can be written

H2 = �
F�

�F��F���F�� − �GSS�F = 3��F = 3� + �ca
†a

+ g �
F,F�

�a†D0�F,F�� + D0
†�F,F��a� . �5�

As we did earlier for H0, we find the eigenvalues and eigen-
vectors of this Hamiltonian determined by the condition
H2��k

�N��=�k
�N���k

�N��. In Fig. 5, we plot the frequencies �k
�1� of

the lowest lying excitations, as well as how “cavity-like” the
corresponding eigenmodes are, ��k

�1��a†a��k
�1��. The eigenval-

ues in the first excitation manifold separate into five bands.
The lowest and second-highest of these bands have eigen-
states which are superpositions of F=3 atomic ground states
with one photon in the cavity and F�= 	2� ,3� ,4�
 atomic
excited states with zero photons; the highest and second-
lowest bands have eigenstates which are superpositions of
F=4 states with one photon and F�= 	3� ,4� ,5�
 states with
zero photons.

The central band is occupied by eigenstates the composi-
tion of which is dominated by atomic excited states. In par-
ticular, these eigenstates have a greatly suppressed coupling
to the cavity mode as a result of quantum interference be-
tween transition amplitudes from atomic excited states with
the same mF number but different values of F�. Similarly,
with the assumption of a common reservoir for atomic spon-

ωp − ω4→5 (MHz)

FIG. 4. �Color online� Normalized transmission T of a cavity
coupled to the F=4→F�=5� transitions �dashed� and to the
F=4→F�= 	3� ,4� ,5�
 transitions �red�. Parameters are the same as
in Fig. 2, with the cavity frequency fixed at �c=�4→5�.
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taneous emission from the various hyperfine states �see be-
low�, these eigenstates also exhibit strongly suppressed spon-
taneous emission via �-polarized dipole transitions. It should
be noted that coupling to the D1 transition �6S1/2→6P1/2�
does not result in a similar set of eigenstates with suppressed
coupling; the absence of F�=2� ,5� states precludes the pos-
sibility of the required destructive quantum interference be-
tween �-polarized transitions.

We expect high transmission when a probe is tuned to be
resonant with a transition from a ground state of the atom-
cavity system to one of the states in the first excitation mani-
fold. The eigenvalues of the ground states are ��0�=0 for
states with the atom in the F=4 manifold and ��0�=−�GSS
for states with the atom in F=3. In Fig. 6, we plot the dif-
ference frequencies for transitions between ground and first
excited states, �k

�1�−� j
�0�, where k , j are restricted to single-

quantum transitions that can be excited by the cavity probe.
Notice that although the eigenvalues of the Hamiltonian do
not cross, the differences of eigenvalues between the ground
and first excitation manifolds do have crossings. These cross-
ings correspond to a dual resonance condition, in which a
transition from one hyperfine ground state to an excited state
is resonant with a transition from the other hyperfine ground
state to a different excited state. As we will show, this can
lead to some distinctive features in the probe transmission
spectrum.

We will now calculate the steady state of the driven,
damped system. We will consider the cavity to be driven by
a single coherent-state field at the frequency �p. Since the
cavity mode can couple to all of the atomic ground states, a
repump field is not needed. The Hamiltonian of the driven
atom-cavity system under the rotating wave approximation,
in the frame rotating with the probe, is

H3 = �
F�

�F��F���F�� − �GSS�F = 3��F = 3� + �ca
†a

+ g �
F,F�

�a†D0�F,F�� + D0
†�F,F��a� + 
a† + 
*a , �6�

and the master equation for the evolution of the density ma-
trix is

FIG. 5. �Color� Eigenfrequencies of excitations in the first mani-
fold 	�k

�1�
 vs cavity detuning. Color represents �a†a� for each cor-
responding eigenvector. The coupling g=17 GHz �4�. Although
there are 48 eigenvectors in the manifold, there are only 27 unique
eigenvalues due to symmetry. These eigenvalues are clustered in
five bands.

FIG. 6. �Color� Difference frequencies for allowed single-quanta
transitions between ground and first excited states, �k

�1�−� j
�0�, vs

cavity detuning. Eigenfrequencies are the same as in Fig. 5. Black
�red� lines indicate transitions from ground states with the atom in
the F=3 �F=4� manifold.
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FIG. 7. �Color� Transmission �intracavity photon number, nor-
malized to the empty cavity on resonance� vs probe and cavity
detunings in the weak-driving limit �calculated in a Fock basis of
	0,1
 photons� from Eq. �7�. The red dotted line indicates resonance
for the uncoupled cavity. The blue dashed lines indicate the cavity
detunings in Figs. 8–10. Rates are �g ,� ,��= �17,4.4,0.0026� GHz
�4�, 
=100�� /g. Values were computed on a grid with a 1 GHz
�0.05 GHz� spacing in �c ��p�.
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̇ = − i�H3,
� + �D�a�
 + ��
q

D��
F,F�

Dq�F,F���
 . �7�

Note that in this limit, in which level shifts produced by
the atom-field coupling may yield transitions of similar
frequencies to and from different hyperfine ground states
�i.e., F=3 and F=4�, we assume that all atomic decays of a
given polarization are into a common reservoir �without re-
gard for the initial F� and final F� �13�. From the master
equation �7�, we find the steady-state density matrix 
ss and
the steady-state normalized transmission T, plotted vs probe
and cavity detunings in Fig. 7.

These transmission spectra reflect the structure of the ei-
genvalues plotted in Fig. 6, although since � is not substan-
tially smaller than g for the parameter set considered, the
correspondence is perhaps not as pronounced as for the
previous section. While the transmission spectra are
dominated by a pair of broad peaks with widths of the
order of �, of particular interest are sharp features at
�p��4→5�−0.3 GHz and �p��4→5�+8.9 GHz. These
transmission features are particularly strong at the cavity de-
tunings where transition frequencies of H2 cross, i.e., where
the dual resonance condition is satisfied, which for the
parameters �g ,� ,��= �17,4.4,0.0026� GHz occurs at
�c��4→5�+20 GHz and �c��4→5�−13 GHz. The steady-
state transmission at these cavity detunings is plotted in Figs.
8�a� and 9�a� versus probe detuning.

Also plotted in Figs. 8�b� and 9�b�, are the total popula-
tions in the F=3 and F=4 ground-state manifolds, which
illustrate that the sharp peaks in cavity transmission are as-
sociated with significant optical pumping effects. For the
case illustrated in Fig. 9, the transitions which satisfy the
dual resonance condition are between the F=3 ground-state
manifold and a manifold of excited eigenstates which have a
significant photon component, and between the F=4 ground-
state manifold and the central band of atomlike eigenstates.
Weak dissipative channels �primarily atomic spontaneous

emission� can transfer population between the two transitions
in a manner that depends sensitively on the probe field de-
tuning and the atomic state compositions of the excited
eigenstates. Pronounced optical pumping effects between the
different mF levels also occur as the probe field is tuned to
the various atomlike eigenstates as a result of the suppression
of �-polarized spontaneous emission from each of these
states.

In Fig. 10�a�, we plot the normalized steady-state trans-
mission versus probe detuning with the cavity frequency
fixed between the frequencies of the F=3→F� and
F=4→F� transitions. Two small narrow peaks associated
with the dual resonance effect are still apparent, and the
atomic populations, plotted in Fig. 10�b�, now show very
strong and abrupt pumping into the F=3 or F=4 manifolds
around these peaks.

ωp − ω4→5 (GHz)

FIG. 8. �Color online� Normalized transmission T �a� and
atomic populations in the hyperfine ground states �b� as a
function of probe detuning, with the cavity frequency fixed at
�c=�4→5�−13 GHz. Parameters are the same as in Fig. 7. Note that
because the cavity drive is weak, nearly all of the population is in
the ground states.

ωp − ω4→5 (GHz)

FIG. 9. �Color online� Normalized transmission T �a� and
atomic populations in the hyperfine ground states �b� as a
function of probe detuning, with the cavity frequency fixed at
�c=�4→5�+20 GHz. Parameters are the same as in Fig. 7. Note that
because the cavity drive is weak, nearly all of the population is in
the ground states.

ωp − ω4→5 (GHz)

FIG. 10. �Color online� Normalized transmission T �a� and
atomic populations in the hyperfine ground states �b� as a
function of probe detuning, with the cavity frequency fixed at �c

=�4→5�+4 GHz. Parameters are the same as in Fig. 7. Note that
because the cavity drive is weak, nearly all of the population is in
the ground states.
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Future experiments with single atoms coupled to photonic
band-gap cavities should be able to study these sharp fea-
tures. They should be relatively easy to measure because
although they are narrow in probe frequency �which is easily
controlled�, they are robust against changes in cavity fre-
quency �which is harder to control experimentally� of the
order of �.

IV. CONCLUSION

We have presented results of the calculation of the weak-
field steady-state transmission of a single-mode linearly po-
larized optical resonator coupled to the D2 transition of a
single cesium atom. Our results are for a regime of single-
photon dipole coupling strength not previously considered,
but of relevance to planned experiments with microtoroid

and photonic band-gap cavities, as well as with other re-
cently implemented atom-chip microcavity systems �14,15�.
They necessarily take into account the entire atomic hyper-
fine structure and comparison with simpler models highlights
the importance of doing so. In addition to features expected
from a strongly coupled atom-cavity system, they also reveal
interesting and significant quantum interference phenomena
associated with the coupling of different atomic transitions to
the same mode or modes of the electromagnetic field.
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