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We present a theoretical interpretation of a recent experiment presented by Zwierlein et al. �Nature �London�
442, 54 �2006�� on the density profile of Fermi gases with unbalanced spin populations. We show that in the
regime of strong interaction, the boundaries of the three phases observed by Zwierlein et al. can be character-
ized by two dimensionless numbers �� and ��. Using a combination of a variational treatment and a study of
the experimental results, we infer rather precise bounds for these two parameters.
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I. INTRODUCTION

In fermionic systems, superfluidity arises from the pairing
of two particles with opposite spin states, a scenario first
pointed out by Bardeen, Cooper, and Schrieffer �BCS� to
explain the onset of superconductivity in metals. For this
mechanism to be efficient, the Fermi surfaces associated with
each spin component need be matched, and soon after the
seminal BCS work the question of the effect of a population
imbalance between the two states was raised. At the time, it
was understood that pairing and superfluidity could sustain a
certain amount of mismatch, above which the system would
undergo a quantum phase transition toward a normal state
�1�. The original work of Fulde, Ferrel, Larkin, and Ovchin-
nikov, who proposed the existence of Cooper pairing at finite
momentum, was later generalized to trapped systems �2�. Al-
ternative scenarios were also proposed, including deformed
Fermi surfaces �3�, interior gap superfluidity �4�, phase sepa-
ration between a normal and a superfluid state through a
first-order phase transition �5�, BCS quasiparticle interac-
tions �7� or onset of p-wave pairing �8�. When the strength of
the interactions is varied, a complicated phase diagram mix-
ing several of these scenarios is expected �9�.

However, due to the absence of experimental evidence,
these scenarios could never be tested experimentally until the
subject was revived by the possibility of reaching superflu-
idity in ultracold fermionic gaseous systems �10,11�. Con-
trary to usual condensed matter systems, spin relaxation is
very weak in cold atoms, and this allows one to keep spin-
polarized samples for long times. This unique possibility led
to the first experimental studies of imbalanced Fermi gases at
MIT and Rice University �12–14�. These results triggered a
host of theoretical work aimed at explaining the various re-
sults observed by the two groups �15,16�.

One remarkable feature of Ref. �14� is the observation of
three different phases in the cloud. At the center, the authors
observe a superfluid core, where the densities of the two spin
states are equal, then an intermediate normal shell where the
two states coexist, and finally an outer rim of the majority
component. In the present paper, we show that, though per-
formed in a trap, the observations of MIT can offer valuable
information on the phase diagram of a strongly interacting
Fermi gas with unbalanced populations. In the first part, we
will present a brief overview of the simplest free-space sce-
nario for transition from a paired superfluid to a pure normal

state, through a mixed phase. Focusing on the disappearance
of the minority component, we will present a variational
study of the problem of a single minority particle embedded
in the Fermi sea of majority atoms. Finally, we will show
that the comparison with experiments allows for a rather pre-
cise determination of the transition thresholds. One of the
key point is that, contrary to previous works, we rely on
universal thermodynamics �17� as well as “exact” experi-
mental or Monte Carlo results, without the need of the mean-
field BCS ansatz often used in other publications, an ap-
proach similar to that of �18�.

II. HOMOGENEOUS SYSTEM

Before addressing the case of trapped fermions, let us first
discuss their free-space phase diagram. We consider zero-
temperature fermions of mass m with two internal states la-
beled 1 and 2. Within a quantization volume V and in the
limit of short-range interactions, we can write the Hamil-
tonian of the system as

Ĥ = �
k,�

�kâk,�
† âk,� +

gb

V
�

k,k�,q

âk+q,1
† âk�−q,2

† âk�,2âk,1. �1�

Here, �k=�2k2 /2m, âk,� is the annihilation operator of a spe-
cies � particle with momentum k, and gb is the bare coupling
constant characterizing interparticle interactions. It is related
to the s-wave scattering length of the system a by the
Lippmann-Schwinger equation,

1

gb
=

m

4��2a
−

1

V
�

k

1

2�k
. �2�

We note that only interactions between particles of oppo-
site spins are taken into account due to the Pauli principle,
which forbids s-wave scattering of atoms with identical spin.
In this paper, we assume we are working at the unitary limit
where �a�=�, and, using the grand canonical ensemble, we

wish to find the ground state of the grand potential 	̂= Ĥ

−
1N̂1−
2N̂2. Here, N̂i is the particle number operator for
species i and 
i is the associated chemical potential �we take
species 1 as majority, hence 
1�
2�. The grand potential
can be expressed as the function of the volume V and pres-

sure P of the ensemble according to �	̂�=−PV. In other
words, searching the ground state of the system is equivalent
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to searching the phase with the highest pressure P.
To start our analysis, we note first that two exact eigen-

states of 	̂ can be found quite easily. First, when the gas is
fully polarized, we recover the case of an ideal Fermi gas for
which we know that

PN =
1

15�2	2m

�2 
3/2


1
5/2.

Second, let us now consider the exact ground state �SF�


of the balanced grand potential 	̂�= Ĥ−
�N̂1+ N̂2�, describ-
ing a superfluid with chemical potential 
. This potential
commutes with the number operators, hence the ground state

can be searched as an eigenstate for both N̂1 and N̂2, with

N̂1�SF�
= N̂2�SF�
. We check readily that �SF�
̂, with 
̄

= �
1+
2� /2, is still an eigenstate of the unbalanced 	̂, by

noting that 	̂=	̂�+ �
1−
2��N̂1− N̂2� /2. At unitarity, the
pressure of a balanced Fermi gas reads PS
=2�2m /��2�3/2
5/2 /15�2, where ��0.42 is a universal pa-
rameter whose determination has attracted the interest of
both theoreticians �6,19–21� and experimentalists �11,22�. In
the case of mismatched chemical potentials, the pressure of
this fully paired superfluid state is therefore

PS =
1

15�2	 m

��2
3/2

�
1 + 
2�5/2.

The evolution of PN and PS is presented in Fig. 1 as a
function of �=
2 /
1. We see that they cross for �c
= �2��3/5−1�−0.10, marking the instability of the superfluid
against large population imbalances �16�. However, since we
only compare the energy of the fully paired state to the one
of the fully polarized ideal gas, the real breakdown of super-
fluidity could very well happen for some � larger than �c.
We know this is actually the case, since in Ref. �14� the
authors observed an intermediate normal phase, containing
atoms of both species. From universality at unitarity, the
phase transition from the fully paired to the intermediate

phase, and then from the intermediate to the fully polarized
normal phase, are given by the conditions 
2 /
1=�� and

2 /
1=��, where �� and �� are two universal parameters
we would like to determine as precisely as possible.

Noting that the transition from the fully paired state to the
intermediate one must happen before the transition to the
fully polarized phase, we see graphically that we have nec-
essarily ����c, and, similarly, ���c. The upper bound on
�� can be further improved by noting that at the threshold
between the normal mixture and the fully polarized ideal gas,
there are only a few atoms of the minority species. In prin-
ciple, the value of �� should then be found by studying the
�N+1�-body problem of a Fermi sea of N particles 1, in the
presence of a single minority atom. To address this problem,
we use here a variational method inspired from first-order
perturbation theory, where we expect the ground state of the
system to take the form

��� = �0�FS� + �
k,q

�k,q�k,q� ,

where �FS� is a noninteracting majority Fermi sea plus a
minority atom with momentum, and �k ,q� is the perturbed
Fermi sea with a majority atom with momentum q �with q
lower than kF� excited to momentum k �with k�kF�. To sat-
isfy momentum conservation, the minority atom acquires a
momentum q−k. The energy of this state with respect to the

noninteracting ground state is ��̂H�= �Ĥ0�+ �V̂�, with

�Ĥ0� = �
k,q

��k,q�2��k + �q−k − �q�

and

�V̂� =
gb

V 	�
q

��0�2 + �
k,k�,q

�k�,q�k,q
* + �

k,q,q�

�k,q�k,q�
*

+ �
q,k

��0
*�k,q + �0�k,q

* �
 ,

where the sums on q and k are implicitly limited to qkF
and k�kF. As we will check later �see below, Eq. �3��,
�k,q�1/k2 for large momenta, in order to satisfy the short-
range behavior 1 /r of the pair wave function in real space.
This means that most of the sums on k diverge for k→�.
This singular behavior is regularized by the renormalization
of the coupling constant using the Lippman-Schwinger for-
mula, thus yielding a vanishing gB. As a consequence, since

the third sum in �V̂� is convergent, it gives a zero contribu-
tion to the final energy when multiplied by gB, and can there-
fore be omitted in the rest of the calculation.

The minimization of �Ĥ� with respect to �0 and �k,q is
straightforward and yields the following set of equations:

��k + �q−k − �q��k,q +
gb

V
�
k�

�k�,q +
gb

V
�0 = E�k,q,

FIG. 1. Comparison of the pressure of the various phases, nor-
malized by the pressure PN of the fully polarized ideal Fermi gas, as
a function of the chemical potential mismatch �=
2 /
1. Dotted
line: fully polarized phase. Full line: fully paired superfluid phase.
The fully paired and fully polarized states meet for �c�−0.099.
Dashed line: sketch of the intermediate normal phase. �� and ��

designate the universal chemical potential thresholds for this phase.
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gb

V
�

q
�0 +

gb

V
�
q,k

�k,q = E�0,

where E is the Lagrange multiplier associated with the nor-
malization of ���, and can also be identified with the trial
energy. These equations can be solved self-consistently by
introducing an auxiliary function ��q�=�0+�k�k,q, and we
obtain

�k,q =
gB��q�/V

E − ��k + �q−k − �q�
. �3�

After a straightforward calculation, this yields

E = �
qkF

1

�
k�kF

	 1

�k + �q−k − �q − E
−

1

2�k

 − �

kkF

1

2�k

,

where we got rid of the bare coupling constant gB by using
the Lippman-Schwinger equation �2�. This equation can be
solved numerically and yields E=−0.3�2kF

2 /m, i.e., ��
−0.6 �26�. Note that the same analytical result was obtained
independently in �27�.

III. TRAPPED SYSTEM AND COMPARISON
WITH EXPERIMENTS

In the rest of the paper, we would like to show how ex-
perimental data from Ref. �14� permits us to improve the
determination of the parameters ��,�. In this pursuit, we use
the local-density approximation �LDA� to calculate the den-
sity profile of the cloud in a harmonic trap, which for sim-
plicity we assume is isotropic. In this case, the chemical
potentials 
1,2 of each species depend on position according
to the law 
1,2�r�=
1,2

0 −m�2r2 /2, where � is the trap fre-
quency.

Using this assumption, the transition between the various
phases will happen at radii R� and R� given by

2�R�,�� /
1�R�,��=��,�. When these two equations are as-
sociated with the condition giving the radius R1 of the ma-
jority component, 
1�R1�=0, we can eliminate both 
1

0 and

2

0 from the equations, yielding the following close formula
relating the radii R�, R�, and R1:

R�

R1
=��R�/R1�2 − q

1 − q
. �4�

Here, q= ���−��� / �1−��� corresponds to the value of the
R�

2 /R1
2 at which R� vanishes, i.e., at which the superfluid

fraction disappears. In Fig. 2, we compare the prediction of
Eq. �4� with the experimental finding of Ref. �14�, taking q
=0.32 to match the superfluidity thresholds. We see that
close to the threshold, the agreement between the two graphs
is quite good. However, they depart from each other for
R� /R1�0.7, corresponding to low population imbalance.
One explanation for this discrepancy might involve finite-
temperature effects. Indeed, it was already noted in Fig. 4 of
Ref. �12� that, although the superfluid fraction was very sen-
sitive to temperature at small imbalances, the value of the
critical population imbalance was more robust.

The superfluid phase disappears when R� vanishes. From
Eq. �4�, we see this happens for a ratio R�

2 /R1
2=q. As seen in

Fig. 2, q can be extracted from the experimental data of Ref.
�14�, which yield q�0.32 and therefore constrain the pos-
sible values of �� and ��. Indeed, using this determination of
q, as well as the rough upper and lower values for ��,�, one
obtains

− 0.10  ��  − 0.088, �5�

− 0.62  ��  − 0.60. �6�

.
These bounds can be compared to the values deduced by

BCS theory, predicting ���0.1 and ��=0. Our calculation
excludes these values and explains why the width of the
mixed normal state predicted by BCS theory is much nar-
rower than observed in experiments.

IV. CONCLUSION

In conclusion, we have presented an analysis of the ex-
perimental data of Ref. �14� providing stringent bounds on
the values of the thresholds for quantum phase transitions in
uniform unbalanced fermi gases. Since they were obtained
using minimal assumptions �mainly zero temperature and
LDA�, these bounds are fairly robust. In particular, they do
not depend precisely on the superfluid nature of the interme-
diate phase. Our results suggest interesting follow-ups. First,
the full understanding of the system, and in particular of the
density profile of the cloud, requires knowledge of the state
equation of the intermediate phase, whose exact nature then
needs to be clarified. Second, the comparison with the data
of Ref. �13� suggests an intriguing issue. Indeed, although
the superfluidity threshold was not directly measured in this
paper, the parameter q can be inferred from the critical im-
balance 0.7 measured by MIT. Rice’s experimental data yield
at this value q�0.16. Not only is this value very far from the
one obtained here from the analysis of MIT’s experiments,
but it also contradicts the theoretical bounds ���−0.10 and
��−0.60, which imply q�0.31. As suggested in Ref. �23�,
this discrepancy may arise from surface tension effects pro-

  

  

FIG. 2. Comparison between experimental data of Ref. �14�
�squares� and Eq. �4� �full line�. R�, R�, and R1 are, respectively, the
radii of the superfluid, minority, and majority components. The con-
densate vanishes for R�=0 at q=R�

2 /R1
2�0.32.
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voked by the strong anisotropy of Rice’s trap. Another inter-
pretation might be the onset of the intermediate phase due to
finite-temperature effects, as suggested by some mean-field
scenarios. Finally, the ��,� parameters can be evaluated ex-
perimentally using the value of q associated with the mea-
surement of the density discontinuity �n1,2 at r=R�, given
by �n1 /�n2=−�� �24�. The preliminary data presented in
Fig. 2.b of Ref. �25� suggest that the discontinuity �n1 is
very weak, hence indicating a small value of ��, in agree-
ment with the bounds obtained here.
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