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and gapless.

DOI: 10.1103/PhysRevA.74.063623 PACS number�s�: 03.75.Hh, 03.75.Kk, 03.75.Nt, 05.30.Ch

I. INTRODUCTION

The properties of systems with Bose-Einstein condensate
are currently a topic of great interest, both experimentally
and theoretically �see review articles �1–7��. One usually
considers weakly interacting Bose gases, whose theory was
pioneered by Bogoliubov �8,9�. Binary atomic interactions in
such gases can be modeled by contact potentials expressed
through effective scattering lengths. But the latter can also be
made rather large by means of the Feshbach resonance tech-
nique, so that effective atomic interactions could become
quite strong �7,10,11�. Extension of the Bogoliubov theory to
Bose systems with strong interactions confronts the well
known problem of conserving versus gapless approxima-
tions, as was formulated by Hohenberg and Martin �12�. This
dilemma has recently been discussed in detail in the review
paper by Andersen �5�.

The Hohenberg-Martin dilemma of conserving versus
gapless theories can be resolved by employing representative
statistical ensembles �13�. Using such an ensemble for Bose
systems with broken global gauge symmetry makes it
straightforward to get a self-consistent theory, both conserv-
ing as well as gapless in any given approximation. In par-
ticular, the Hartree-Fock-Bogoliubov �HFB� approximation,
which is by construction conserving, can also be made gap-
less �14�.

In the present paper, we consider an equilibrium Bose
system with Bose-Einstein condensate. The main results are
twofold. First, we give a general mathematical foundation
for the construction of the grand Hamiltonian for an arbitrary
equilibrium system with broken gauge symmetry. The deri-
vation of the grand Hamiltonian and the corresponding equa-
tions of motion are valid for any Bose system, whether uni-
form or nonuniform. Second, in the frame of a self-consistent
mean-field theory for a uniform Bose gas, we study, both
analytically and numerically, the zero-temperature character-
istics as functions of the gas parameter, varying the latter
from zero to infinity. Specifically, the condensate fraction,
sound velocity, normal and anomalous averages, and the
ground-state energy as functions of the gas parameter are
investigated. The results are in good agreement with avail-
able computer Monte Carlo simulations.

We use the system of units where ��1 and kB�1.

II. REPRESENTATIVE ENSEMBLE FOR
BOSE-EINSTEIN-CONDENSED SYSTEMS

The description of a spinless Bose system at temperature
T�Tc above the condensation temperature Tc can be done in
terms of the field operators ��r , t� and �†�r , t� depending on
the spatial vector r and time t. The operators from the alge-
bra of observables and other physical operators are defined in
the Fock space F��� generated by the field operator �†. The
related mathematical details of constructing the Fock space
F��� can be found in books �15,16�. Under the total number

of particles N= �N̂�, being the average of the number-of-

particle operator N̂, the grand Hamiltonian has the standard
form

H��� = Ĥ��� − �N̂ �T � Tc� ,

where Ĥ��� is the Hamiltonian energy, which is invariant
under the global gauge transformations from the U�1� sym-
metry group.

At temperatures T�Tc, the global gauge symmetry be-
comes broken. This is achieved by means of the Bogoliubov
shift �17,18� for the field operators,

��r,t� → �̂�r,t� � ��r,t� + �1�r,t� , �1�

in which ��r , t� is the condensate wave function and �1�r , t�
is the field operator of uncondensed atoms, enjoying the
same Bose commutation relations as �. The condensate wave
function ��r , t� is the system order parameter. Now all op-
erators of physical quantities are defined on the Fock space
F��1� generated by the field operator �1

†. It is important to
emphasize that the Fock spaces F��� and F��1� are mutually
orthogonal �13,19�.

Thus, below Tc, instead of one operator variable �, there
appear two variables, � and �1. These are linearly indepen-
dent, being orthogonal to each other,

� �*�r,t��1�r,t�dr = 0. �2�

For two linearly independent variables, there are two normal-
ization conditions. One is the normalization of the conden-
sate function to the number of condensed atoms,
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N0 =� 	��r,t�	2dr . �3�

And another normalization condition is for the operator,

N̂1 �� �1
†�r,t��1�r,t�dr , �4�

whose average yields the number of uncondensed atoms,

N1 = �N̂1� . �5�

The normalization condition �3� can be represented in the
same form of the statistical average �5� by using the operator

N̂0 � N01̂F,

where 1̂F is the unity operator in F��1�. Then Eq. �3� is
equivalent to the normalization

N0 = �N̂0� . �6�

The statistical average of an operator Â is defined in the
standard way as

�Â� � Tr �̂Â ,

where �̂ is a statistical operator and the trace is over F��1�.
One more restriction is

��1�r,t�� = 0, �7�

which guarantees the conservation of quantum numbers. This
can also be rewritten as the quantum conservation condition

��̂� = 0 �8�

for the self-adjoint operator

�̂ �� �	�r,t��1
†�r,t� + 	*�r,t��1�r,t��dr , �9�

in which 	�r , t� is a complex function.
Two other common conditions are the normalization of

the statistical operator �̂,

�1̂F� = 1, �10�

and the definition of the internal energy,

E = �Ĥ� , �11�

as the average of the Hamiltonian energy operator Ĥ

� Ĥ��̂�, which is a functional of the shifted field operator
�1�.

An equilibrium statistical ensemble for a Bose-Einstein-
condensed system is the pair 
F��1� , �̂� of the space of mi-
crostates F��1� and a statistical operator �̂. The notion of a
representative ensemble stems from the works of Gibbs �20�,
who emphasized that for the correct description of the given
statistical system, in addition to the standard conditions �10�
and �11�, it is necessary to take into account all other con-
straints that uniquely define the considered system. The cor-
responding statistical operator can be found from the maxi-

mization of the Gibbs entropy S�−Tr �̂ ln �̂ under the given
statistical conditions. The conditional maximization of the
entropy is equivalent to the unconditional minimization of
the information functional �16,21�. In the present case, in
addition to conditions �10� and �11�, we must also take into
account the normalization conditions �5� and �6� and the con-
servation constraint �8�. Hence the information functional is

I��̂� = Tr�̂ ln �̂ + 	0�Tr�̂ − 1� + 
�Tr�̂Ĥ − E�

− 
�0�Tr�̂N̂0 − N0� − 
�1�Tr�̂N̂1 − N1� − 
Tr�̂�̂ ,

�12�

in which 	0, 
, 
�0, 
�1, and 
	 are the appropriate
Lagrange multipliers guaranteeing the validity of conditions
�5�, �6�, �8�, �10�, and �11�. Minimizing functional �12�, we
get the statistical operator

�̂ =
1

Z
e−
H, �13�

with the inverse temperature 
�1/T, the partition function

Z = exp�1 + 	0� = Tre−
H,

and the grand Hamiltonian

H � Ĥ − �0N̂0 − �1N̂1 − �̂ . �14�

Let us explain in more detail the role played by the
Lagrange multipliers �0 and �1. Above the Bose-Einstein

condensation point, when N0=0 and N̂1= N̂, one needs just
one Lagrange multiplier �1=�, coinciding with the system
chemical potential, whose role is to preserve the total aver-

age number of particles N= �N̂�. However, below the conden-
sation point, when the global gauge symmetry is broken,
there are two types of particles: condensed and uncondensed.
The number of condensed particles N0, according to the Bo-
goliubov theory �8,9,17,18�, has to be such that it makes the
system stable by minimizing the thermodynamic potential.
For an equilibrium statistical system with the statistical op-
erator �13�, the grand thermodynamic potential is

� = − T ln Tre−
H, �15�

with the grand Hamiltonian �14�. Extremizing the grand po-
tential �15� with respect to the number of condensed par-
ticles, from the equation

��

�N0
= 0

one obtains

�0 =� �Ĥ

�N0
 .

This means that the Lagrange multiplier �0 is responsible for
the thermodynamic stability of the system. Another Lagrange
multiplier, �1, guarantees the normalization condition �5� for
the number of uncondensed particles N1. But the latter, since
N1=N−N0, implies that �1 preserves the total average num-
ber of particles N. In this way, for a Bose-Einstein-condensed
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system, contrary to the system without the Bose-Einstein
condensate, there are two conditions on the number of par-
ticles. One condition, as earlier, is that the total number of
particles be N. And another condition is that the number of
condensed particles, N0, would be such that it provides the
stability of the system by minimizing the thermodynamic
potential. This is why one needs two Lagrange multipliers in
order to guarantee the validity of these two conditions at
each step of any calculational procedure. As is shown below
by practical calculations, the use of two Lagrange multipliers
makes the theory self-consistent, avoiding the Hohenberg-
Martin dilemma and yielding the results that are in agree-
ment with those derived analytically for the weak-coupling
limit as well as obtained by Monte Carlo computer simula-
tions for strong interactions.

It is also important to keep in mind that the introduction
of Lagrange multipliers is a technical method allowing us to
simplify calculations. The number of the introduced multi-
pliers is connected with the concrete properties of the em-
ployed approach. Thus, in the Bogoliubov theory �8,9,17,18�
one deals with two independent field variables, namely the
condensate wave function ��r , t� and the operator of uncon-
densed particles �1�r , t�. This is why, as is explained above,
it is convenient to introduce two Lagrange multipliers.

One could ask whether we could limit ourselves by intro-
ducing a sole Lagrange multiplier. The answer is straightfor-
ward: Yes, we could, but the calculational procedure should
then be changed. For instance, we could follow the method
of Hugenholtz and Pines �22�, which was also used by Ga-
voret and Nozieres �23�. They consider a uniform equilib-
rium system at zero temperature, defining the number of con-
densed particles N0=N0�� ,T� as a function of density � and
temperature T from the extremization of the internal energy

E��Ĥ�. The found N0�� ,T� is substituted explicitly into the

Hamiltonian Ĥ, after which one works with the grand Hamil-

tonian H= Ĥ−�N̂1, where N̂1 is the operator for the number
of uncondensed particles. Since the number of condensed
atoms has already been defined earlier from the stability con-
dition, one is required now to use the sole Lagrange multi-
plier aiming at guaranteeing the normalization condition N1

= �N̂1� for uncondensed particles, hence, because of the fixed
relation N1=N−N0, preserving the total number of particles
N. This method of calculation, with details expounded in
Refs. �22,23�, is mathematically equivalent to the procedure
in which N0 has not been fixed in advance but, instead, a
Lagrange multiplier �0 is introduced to guarantee the stabil-
ity condition in the process of calculations, after which the
number of condensed particles is defined as N0=N−N1,
which specifies the condensate depletion. It is this method of
using an additional Lagrange multiplier that is employed in
the present paper.

In addition, it may be possible to work introducing no
Lagrange multipliers at all, but this again would necessitate a
different calculational procedure. Thus, one could use the
Girardeau-Arnowitt approach �24,25� in the frame of the ca-
nonical ensemble, which requires us to invoke the so-called
number-conserving field operators. The weak point of this
approach is that, as is well known �24,25�, it yields the un-

physical gap in the spectrum when approximate calculations
are involved. Girardeau mentioned �26� that an exact theory
should not have the gap. Later, Takano �27� demonstrated
that, really, the gap should not arise when all terms of the
Hamiltonian are taken into account. Unfortunately, there are
no exact solutions for a realistic interacting Bose system, so
that one always has to resort to some approximations, in the
course of which the gap again reappears. This is why it is
more convenient to work with the grand canonical ensemble,
introducing the Lagrange multipliers that would assure the
self-consistency of any calculational scheme.

Thus, the method of Lagrange multipliers has to be
treated as a technical procedure allowing us to simplify cal-
culations. The number of the required multipliers is inti-
mately related to the concrete calculational details. In the
case of the Bogoliubov approach �8,9,17,18�, introducing
two different field variables �the condensate function � and
the field operator of uncondensed particles �1�, it is conve-
nient to define two Lagrange multipliers that guarantee the
validity of two conditions, namely the thermodynamic stabil-
ity condition and the conservation of the total average num-
ber of particles.

When two Lagrange multipliers are involved, none of
them plays the role of the system chemical potential. To de-
fine the latter, we may proceed as follows. Keeping in mind
that in experiments the total number of particles is usually
fixed, we may write for the internal energy �11� the standard
relation

E = �H� + �N , �16�

connecting E with the average of the grand Hamiltonian �H�
and with the system chemical potential �. At the same time,
substituting into Eq. �11� the grand Hamiltonian �14�, and
taking into account condition �8�, we arrive at the expression

E = �H� + �0N0 + �1N1. �17�

Comparing Eqs. �16� and �17� gives the definition of the
system chemical potential,

� � �0n0 + �1n1, �18�

expressed through the Lagrange multipliers �0 and �1 and
the related atomic fractions,

n0 �
N0

N
, n1 �

N1

N
.

The equations of motion for the variables � and �1 are
given in the usual manner as

i
�

�t
��r,t� =

�H

��*�r,t�
�19�

for the condensate function and, respectively, as

i
�

�t
�1�r,t� =

�H

��1
†�r,t�

�20�

for the field operator of uncondensed atoms.
In this way, the representative statistical ensemble for an

arbitrary equilibrium Bose system with broken gauge sym-
metry is the pair 
F��1� , �̂� of the Fock space of microstates
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F��1� and the statistical operator �13� with the grand Hamil-
tonian �14�. The notion of representative statistical en-
sembles can be extended to nonequilibrium systems by con-
sidering the extremization of an effective action functional
�28�.

III. BOSE GAS WITH CONTACT INTERACTIONS

To specify the consideration, let us take the Hamiltonian
energy operator in the usual form

Ĥ =� �̂†�r��−
�2

2m
��̂�r�dr +

1

2
0� �̂†�r��̂†�r��̂�r��̂�r�dr ,

�21�

corresponding to the contact interaction potential with the
strength

0 � 4�
as

m
, �22�

where as is the scattering length and m is the mass. Here

�̂�r�= �̂�r , t� is the shifted field operator �1�.
The evolution equation for the condensate function is ob-

tained by averaging Eq. �19�. To this end, we need the nota-
tion for the local condensate density

�0�r,t� � 	��r,t�	2, �23�

normal density of uncondensed atoms

�1�r,t� � ��1
†�r,t��1�r,t�� , �24�

anomalous density

�1�r,t� � ��1�r,t��1�r,t�� , �25�

and the triple correlator

��r,t� � ��1
†�r,t��1�r,t��1�r,t�� . �26�

The total local density is

��r,t� = �0�r,t� + �1�r,t� . �27�

Then, averaging Eq. �19� yields the evolution equation for
the condensate function

i
�

�t
��r,t� = �−

�2

2m
− �0���r,t� + 0���r,t���r,t�

+ �1�r,t���r,t� + �1�r,t��*�r,t� + ��r,t�� .

�28�

The equation of motion for the field operator of uncon-
densed atoms follows from Eq. �20�, giving

i
�

�t
�1�r,t� = �−

�2

2m
− �1��1�r,t� + 0�2�0�r,t��1�r,t�

+ �2�r,t��1
†�r,t� + X̂�r,t�� , �29�

where the last term is the correlation operator

X̂�r,t� � �2�1
†�r,t���r,t� + �*�r,t��1�r,t�

+ �1
†�r,t��1�r,t���1�r,t� .

In equilibrium state, one has

�

�t
��r,t� = 0. �30�

Also, if the system is uniform, then

	��r,t�	2 =
N0

V
� �0, �1�r,t� =

N1

V
= �1,

�1�r,t� � �1, ��r,t� � �, � �
N

V
= �0 + �1. �31�

In that case, Eq. �28� for the condensate function gives the
Lagrange multiplier

�0 = �� + �1 + �1 +
�

��0
�0. �32�

The field operator of uncondensed atoms can be expanded
over a complete basis. In general, if the system were nonuni-
form, in the presence of an external potential, it would be
convenient to take a basis formed by natural orbitals �29,30�.
For the uniform system under consideration, the natural or-
bitals are just plane waves �k�r�=eik·r /�V. The correspond-
ing expansion of �1 reads as

�1�r,t� = �
k�0

ak�t��k�r� .

With this expansion, the grand Hamiltonian �14� takes the
form of a sum,

H = �
n=0

4

H�n�, �33�

of five terms, classified according to the number of the op-
erators ak or ak

† in the products. The zero-order term does not
contain ak,

H�0� = �1

2
�00 − �0�N0. �34�

Generally, in order to satisfy condition �8�, it is necessary
and sufficient �31� that the Hamiltonian �14� would not con-
tain the terms linear in �1 or ak. This can be achieved by
choosing the corresponding Lagrange multipliers 	�r , t� in
Eq. �9�. For a uniform system, because of the orthogonality

condition �2�, one has �̂=0 and H�1�=0 automatically.
The second-order term is

H�2� = �
k�0

�� k2

2m
+ 2�00 − �1�ak

†ak

+
1

2
�00�ak

†a−k
† + a−kak�� . �35�

In the third-order term
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H�3� =��0

V
0�

p,q
��aq

†aq−pap + ap
†aq−p

† aq� , �36�

the prime on the summation symbol implies that p�0, q
�0, and p−q�0. The fourth-order term is

H�4� =
0

2V
�

k
�
p,q

�ap
†aq

†ak+paq−k, �37�

where the prime means that p�0, q�0, k+p�0, and k
−q�0.

To proceed further, we need to invoke some approxima-
tion. A natural mean-field approximation, in the presence of
broken gauge symmetry, is the HFB approximation. This is
used to simplify the higher-order terms �36� and �37�. Em-
ploying the designations

�k �
k2

2m
+ 2�0 − �1 �38�

and

� � ��0 + �1�0, �39�

we obtain

H = EHFB + �
k�0

��kak
†ak +

�

2
�ak

†a−k
† + a−kak�� , �40�

where the nonoperator term is

EHFB = H�0� −
0

2�
�2�1

2 + �1
2�N . �41�

Hamiltonian �40� can be diagonalized by means of the
Bogoliubov canonical transformation ak=ukbk+v−k

* b−k
† , in

which

uk
2 =

�k + �k

2�k
, vk

2 =
�k − �k

2�k
,

with the Bogoliubov spectrum

�k = ��k
2 − �2. �42�

Then one gets

H = EB + �
k�0

�kbk
†bk, �43�

where

EB � EHFB +
1

2 �
k�0

��k − �k� . �44�

By the Bogoliubov �18� and Hugenholtz-Pines �22� theo-
rems, the spectrum is to be gapless, which implies that

lim
k→0

�k = 0, �k � 0. �45�

From here it follows that

�1 = �� + �1 − �1�0. �46�

The condensate multiplier �32� in the HFB approximation,
when �=0, becomes

�0 = �� + �1 + �1�0. �47�

It is important to emphasize that the form of �1 in Eq. �46� is
necessary and sufficient to make the spectrum gapless. That
it is sufficient follows at once after substituting Eq. �46� into
the Bogoliubov spectrum �42�. And the necessity stems from
the Bogoliubov theorem �18�, which can be formulated as
the inequality

��1 −
k2

2m
+ �12�k,0� − �11�k,0�� �

k2

2m0
,

where �12 and �11 are the normal and anomalous self-
energies. Setting here k=0 leads to the Hugenholtz-Pines
relation

�1 = �11�0,0� − �12�0,0� .

In the HFB approximation, one has

�11�0,0� = 2�0, �12�0,0� = ��0 + �1�0,

from which one immediately obtains Eq. �46�.
With multiplier �46�, spectrum �42� takes the form

�k =��ck�2 + � k2

2m
�2

, �48�

in which the sound velocity is

c ���

m
. �49�

For the diagonal Hamiltonian �43�, it is straightforward to
calculate all averages, such as the normal average

nk � �ak
†ak� �50�

and the anomalous average

�k � �aka−k� . �51�

Their integration over momenta gives the density of uncon-
densed particles

�1 =� nk
dk

�2��3 �52�

and, respectively, the anomalous average

�1 =� �k
dk

�2��3 . �53�

The quantity 	�1	 can be interpreted as the density of pair-
correlated atoms �19�.

In what follows, we concentrate on the zero-temperature
properties of the system. When T=0, then �bk

†bk�=0. The
normal average �50� is

nk =
�k − �k

2�k
, �54�

while the anomalous average �51� becomes

�k = −
�

2�k
. �55�

Combining Eqs. �38�, �39�, �46�, and �49�, we have
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�k =
k2

2m
+ �, � = mc2.

The equation for the sound velocity �49� can be represented
as

mc2 = ��0 + �1�0. �56�

Note that from here, in the limit of asymptotically weak in-
teractions, we get the Bogoliubov expression

c ���00

m
�0 → 0� .

For the density of uncondensed atoms �52�, we find

�1 =� �k − �k

2�k

dk

�2��3 =
�mc�3

3�2 . �57�

And for the anomalous average �53�, we have

�1 = −
�

2
� 1

�k

dk

�2��3 . �58�

The integral �dk /�k in Eq. �58� is ultraviolet divergent.
To overcome this, we can resort to the standard procedure of
analytic regularization �5,32�. For this purpose, we first con-
sider the integral in the limit of asymptotically small 0,
when the dimensional regularization is applicable, and then
analytically continue the result to arbitrary interactions. The
dimensional regularization gives

� 1

�k

dk

�2��3 = −
2

�2m3/2��00.

Using this in Eq. �58�, we obtain

�1 =
�mc�2

�2
�m�00. �59�

It is important to stress that the anomalous density �59�
enjoys the natural limiting property

�1 → 0 ��0 → 0� . �60�

The physics of property �60� is evident. The existence of
both the condensate density �0 and the anomalous density �1
is caused by the gauge symmetry breaking. Both of them are
nonzero as soon as the symmetry is broken, while both be-
come zero if the symmetry is restored. Any of these quanti-
ties could be treated as an order parameter for the broken-
symmetry phase. So, both of these quantities, �0 and �1, have
to nullify simultaneously, when one of them tends to zero.

We may also note that simplifying �1 by replacing
�m�00 by mc, as is done in Ref. �14�, is admissible only in
the limit of weak interactions, when �0��, But for strong
interactions, when �0→0, this replacement does not hold,
since then the limiting property �60� is not satisfied. There-
fore, the results of Ref. �14� are quantitatively correct in the
limit of weak interactions, though for strong interactions they
may give only a qualitative picture. And our aim in the
present paper is to give a careful analysis of the system prop-

erties for arbitrary strong interactions in the whole range of
0� �0,��. This requires us to employ Eq. �59�, which ex-
plicitly satisfies the limiting condition �60�.

IV. SYSTEM CHARACTERISTICS AT VARYING
INTERACTIONS

The effective interaction strength can be characterized by
the dimensionless gas parameter

� � �1/3as. �61�

One often uses the quantity �as
3 as a parameter quantifying

the interaction strength. However, parameter �61�, in our
opinion, is more convenient, since it better distinguishes be-
tween weak and strong interactions. Thus, the majority of
experiments with ultracold trapped gases �1–7� deals with
weakly interacting atoms, so that �as

3�10−8−10−4, which
corresponds to ��10−3−10−2. The effective interactions can
be noticeably strengthened by loading atoms in optical lat-
tices �33�. Contrary to weakly interacting gases, superfluid
4He is a strongly interacting system. The 4He atoms can be
represented by hard spheres of diameter as �34,35�. At satu-
rated vapor pressure, one has �35� as=2.139 Å and �
�0.022 Å−3, hence �as

3�0.215, which is still much less than
1. But the corresponding ��0.599 is close to 1. So, weak
interactions are characterized by ��1, while a strongly in-
teracting system has ��1.

It is convenient to introduce the dimensionless sound ve-
locity

s �
mc

�1/3 , �62�

the fraction of uncondensed atoms

n1 �
�1

�
=

N1

N
, �63�

and the anomalous fraction

� �
�1

�
. �64�

In these dimensionless quantities, Eq. �56� becomes

s2 = 4��n0 + ��� . �65�

Here

n0 = 1 − n1 �66�

and

n1 =
s3

3�2 , �67�

while the anomalous fraction �64� is

� =
2s2

�3/2
��n0. �68�

Four quantities, s, n0, n1, and �, are defined by the system of
four equations �65�–�68�.
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In the limit of asymptotically weak interactions, when �
→0 and �→0, the condensate fraction and sound velocity
tend to the Bogoliubov expressions

nB = 1 −
8

3��
�3/2 �69�

and, respectively,

sB = 2��� . �70�

For the higher orders with respect to �, we find

n0 � 1 −
8

3��
�3/2 −

64

3�
�3 −

640

9�3/2�9/2, �71�

s � 2���1/2 +
16

3
�2 +

32

9��
�7/2 −

3904

27�
�5, �72�

� �
8

��
�3/2 +

32

�
�3 −

64

�3/2�9/2. �73�

For asymptotically strong interactions, when �→�, we
obtain

n0 �
�

64
�−3 −

1

512
��5

9
�1/3

�−5, �74�

s � �3�2�1/3 −
1

64
��5

9
�1/3

�−3 +
1

1536
��7

3
�1/3

�−5, �75�

� �
�9��1/3

4
�−1 −

�

64
�−3 −

1

128
��4

3
�1/3

�−4

+
1

512
��5

9
�1/3

�−5. �76�

So, the condensate fraction tends to zero, together with the
anomalous fraction, as �→�, in agreement with condition
�60�.

For the whole region of �, we solve numerically the sys-
tem of Eqs. �65�–�68�, showing the results in Figs. 1–3.

Figure 1 presents the condensate fraction �66� and this
fraction �69� in the Bogoliubov approximation. At small �,
up to ��0.1, n0 and nB practically coincide with each other.
For ��0.1, the Bogoliubov approximation overestimates the
condensate fraction. But nB=0 at �=0.762, while n0 is yet
finite, though small. The condensate fraction of a homoge-
neous Bose gas, at zero temperature, as a function of the gas
parameter was calculated by means of the Monte Carlo simu-
lation by Giorgini et al. �36� up to ��0.5. For this region of
�, our n0 is in good agreement with the Monte Carlo calcu-
lations. Monte Carlo techniques have also been used for
studying the condensate fraction of trapped atoms �37–39�.
But the latter results cannot be directly compared with n0 in
a homogeneous gas, since in traps, the condensate fraction is
a function of spatial variables as well as of the trap shape
�37–41�. What is possible and interesting to compare is the
condensate fraction in superfluid 4He at zero temperature and
our n0 at ��0.6 corresponding to liquid 4He with hard-core

interactions. For ��0.6, we have n0�0.15, which is close to
the condensate fraction n0�0.1, measured in experiments
�as is reviewed in Refs. �3,42�� as well as obtained by Monte
Carlo simulations �see review articles �43,44��.

Figure 2 shows the dimensionless sound velocity �62� and
its Bogoliubov approximation �70�. These quantities practi-
cally coincide up to ��0.1. For ��0.1, the Bogoliubov
form sB underestimates s until ��0.7, after which it overes-
timates the latter.

In Fig. 3, we compare the fraction of uncondensed atoms
�67� with the anomalous fraction �68�. As is seen, ��n1 up
to ��0.7. The anomalous fraction � becomes substantially
smaller than n1 only for very large ��1. This is in agree-
ment with other calculations �45� confirming that anomalous
averages cannot be neglected at low temperatures.

Let us now analyze the ground-state energy

E � �H� + �N �T = 0� . �77�

According to Eq. �43�,

FIG. 1. Condensate fraction n0 �solid line� and its Bogoliubov
approximation nB �dashed line� as functions of the gas parameter �.

FIG. 2. Dimensionless sound velocity s �solid line� and its Bo-
goliubov approximation sB �dashed line� as functions of the gas
parameter �.
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�H� = EB �T = 0� .

The system chemical potential, defined in Eq. �18�, is ex-
pressed through the Lagrange multipliers �46� and �47� and
the fractions n0 and n1, which gives

� = �1 + n1 + � − 2�n1��0. �78�

For the dimensionless chemical potential

�̄ �
2m�

�2/3 , �79�

we get

�̄ = 8���1 + n1 + � − 2�n1� . �80�

From Eq. �44�, we have

EB = EHFB + N� �k − �k

2�

dk

�2��3 , �81�

where the integral is calculated invoking the dimensional
regularization �5�, giving

� �k − �k

2�

dk

�2��3 =
8�mc�5

15�2m�
.

Equations �34� and �41� yield

EHFB

N
=

�0

2
�n0

2 − 2n1
2 − �2� − �0n0. �82�

Summarizing these formulas, we find

E

N
=

�0

2
�1 + n1

2 − 2�n1 − �2� +
8�mc�5

15�2m�
. �83�

It is convenient to define the dimensionless ground-state en-
ergy

E0 �
2mE

�2/3N
, �84�

for which we obtain

E0 = 4���1 + n1
2 − 2�n1 − �2 +

4s5

15�3�
� . �85�

This can be compared with the Lee-Huang-Yang approxima-
tion �46–48�

ELHY = 4���1 +
128

15��
�3/2� , �86�

derived for small �.
In the limits of asymptotically small and large �, the di-

mensionless chemical potential �80� tends to

�̄ → 8�� +
256

3
���5/2 �� → 0� �87�

and, respectively,

�̄ → 16�� �� → �� . �88�

The dimensionless ground-state energy �85� at small ��1
possesses the expansion

E0 � 4�� +
512

15
���5/2 +

512

9
�4, �89�

which reproduces the Lee-Huang-Yang approximation �86�
for �→0. And for large ��1, we find

E0 � 8�� +
6

5
�9�4�1/3 −

3

4
�3�5�1/3�−1 +

1

64
�3�8�1/3�−4.

�90�

Note that expressions �87� and �88� can also be obtained
from Eqs. �89� and �90� using the relation �=�E /�N, valid
for T=0.

FIG. 4. Dimensionless ground-state energy E0 �solid line� and
the Lee-Huang-Yang approximation ELHY �dashed line� as functions
of the gas parameter �.

FIG. 3. Fraction of uncondensed atoms n1 �dashed line� and
anomalous fraction � �solid line� as functions of the gas param-
eter �.
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Figure 4 illustrates the behavior of the ground-state en-
ergy �85� and the Lee-Huang-Yang approximation �86�. The
latter is known to practically coincide with the energy calcu-
lated through the Monte Carlo simulations �36� up to �
�0.4. As is seen from the figure, our E0 is also very close to
ELHY in the region 0���0.4, but is lower than ELHY for
��0.4. Hence, E0 reproduces well the available data of
Monte Carlo calculations up to ��0.4.

V. CONCLUSION

The notion of representative statistical ensembles is ap-
plied to Bose systems with broken global gauge symmetry. A
general procedure is described for constructing the grand
Hamiltonian for the representative ensemble of an arbitrary
equilibrium Bose system. A self-consistent mean-field theory
is developed, which is both conserving and gapless. The
properties of a uniform Bose gas at zero temperature are
studied both analytically and numerically for the gas param-
eter varying between zero and infinity. Thus, in the frame of

the suggested approach, strongly interacting systems can also
be considered. For instance, as is known �35,43�, some of the
properties of superfluid 4He can be understood by treating
the potential as a hard-core interaction of diameter as
=2.139 Å, which, at saturated vapor pressure, corresponds to
��0.6. For the latter �, we find the condensate fraction n0 of
order 10%, which agrees with the condensate fraction in he-
lium at zero temperature, measured in experiments �42� and
found in Monte Carlo simulations �43�, being also of order
10%. Another application of the developed self-consistent
mean-field theory with arbitrary strong interactions could be
the description of Bose-Einstein condensation of multiquark
clusters in nuclear matter �49,50�.
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