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We demonstrate a scheme for the Fourier synthesis of periodic optical potentials with asymmetric unit cells
for atoms. In a proof of principle experiment, an atomic Bose-Einstein condensate is exposed to either sym-
metric or sawtooth-like asymmetric potentials by superimposing a conventional standing wave potential of � /2
spatial periodicity with a fourth-order lattice potential of � /4 periodicity. The high periodicity lattice is realized
using dispersive properties of multiphoton Raman transitions. Future applications of the demonstrated scheme
could range from the search for novel quantum phases in unconventionally shaped lattice potentials up to
dissipationless atomic quantum ratchets.
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The properties of solid-state materials are much deter-
mined by the internal spatial structure of its constituents.
Most natural solid-state materials are crystals, in which the
constituents are spatially ordered following the principle of
lattice structures. A large class of different unit cells is
known, whose classification into crystal classes, point, and
space groups is well established within the field of crystal-
lography �1�. Recently, artificial crystals of atoms bound by
light, so called optical lattices, have developed into model
systems for solid-state physics problems. In such systems,
effects like Bloch oscillations and the Mott-insulator transi-
tion were observed �2,3�. On the other hand, current quantum
gas experiments with optical lattices have been limited to
sinusoidal atom potentials. Recent theoretical work pointed
out that in unconventional lattice structures, novel quantum
phases are expected �4,5�. A possible way to produce arbi-
trarily shaped potentials, at least in one dimension, is the use
of beams that are inclined under different angles, which may
seem impractical and hard to phase-stabilize especially if
larger numbers of beams are required. Notably, such phase
stabilization has recently been achieved for two near-
resonant standing waves �6�. For thermal atoms, some non-
standard optical lattices, such as subwavelength structure po-
tentials or asymmetric lattices, have been realized with
magneto-optical potentials or gray lattices �7,8�. These
schemes require near-resonant optical radiation whose inher-
ent dissipation impedes the use of quantum degenerate
atomic gases. With the so far demonstrated schemes, the
class of realizable lattice potentials furthermore seems lim-
ited.

Here, we demonstrate a scheme to create dissipationless
optical lattice potentials with � /4 spatial periodicity, which
is realized with a fourth-order Raman process. Building upon
this potential, a Fourier synthesis of lattice potentials is dem-
onstrated. By combining the � /4 period multiphoton poten-
tial with a conventional lattice of � /2 spatial periodicity with
appropriate phase, an asymmetric lattice with variable asym-
metry is realized. The scheme for the generation of the � /4
period lattice potential is generalizable, in principle, to opti-
cal lattice potentials with � /2n spatial periodicity, where n is
an integer number. By diffraction of a rubidium Bose-
Einstein condensate at the optical light shift potential, ab-
sorption images of atom clouds closely connected to the re-

ciprocal lattice of the synthesized potential structures were
observed.

In conventional optical lattices with two counterpropagat-
ing beams of wavelength �, the resulting optical potential
V�z�=−�� /2� �E�z��2, with � as the atomic polarizability, is
proportional to cos2 kz= �1+cos 2kz� /2, yielding the well-
known � /2 spatial periodicity. The atoms here undergo vir-
tual two-photon processes of absorption of a photon from
one laser beam and stimulated emission into the counter-
propagating beam. For a Fourier synthesis of arbitrarily
shaped potentials, the required higher harmonics can, in prin-
ciple, be generated by using a combination of standing
waves with wavelengths of the fractional harmonics � /n,
where n is integer, yielding a lattice potential of spatial pe-
riod � /2n. A lattice potential of the same periodicity could
also be produced, in case each virtual absorption or stimu-
lated cycle could be replaced by a simultaneous process in-
duced by n photons of the fundamental wavelength � ab-
sorbed or emitted along the corresponding direction �see Fig.
1�a��. The spatial period of this higher-order lattice potential
can be expressed as �eff,n /2=� /2n, where �eff,n=� /n de-
notes the effective wavelength of an n-photon field. A direct
measurement of this effective multiphoton wavelength is in

FIG. 1. �a� Left: Virtual two-photon process in a conventional
optical lattice, yielding a � /2 spatial periodicity of the lattice po-
tential. Right: Virtual four-photon process contributing to a lattice
potential with � /4 spatial periodicity. In this simple scheme, how-
ever, the usual lattice potential of � /2 periodicity due to second-
order processes dominates. �b� Improved scheme for generation of a
four-photon lattice with � /4 spatial periodicity, as used in our ex-
perimental work. Compared to the four-photon process of �a�, no
second-order standing-wave processes occur. The scheme can be
generalized to lattice potentials with � /2n periodicity, where n is an
integer number.

PHYSICAL REVIEW A 74, 063622 �2006�

1050-2947/2006/74�6�/063622�4� ©2006 The American Physical Society063622-1

http://dx.doi.org/10.1103/PhysRevA.74.063622


general a very difficult task, as has been discussed in the
context of Heisenberg-limited measurements �9�. Here we
use the high-frequency resolution of Raman transitions be-
tween ground-state sublevels to separate in frequency space
the desired 2nth-order process from lower-order contribu-
tions. Theoretical work has predicted that a lattice potential
of � /2n spatial periodicity is indeed expected with this ap-
proach �10–12�. For early theoretical work analyzing the use
of Raman transitions to create optical potentials for atoms,
see �13�. For experimental work on an improved spectral
resolution with multiphoton Raman transitions, see �14�.
Other work has demonstrated that a near-resonant Raman
lattice can cool atoms to a few microkelvins �15�.

Figure 1�b� shows the used scheme for a four-photon lat-
tice, which yields a periodic potential with � /4 spatial peri-
odicity. The scheme uses three-level atoms with two stable
ground states �g0� and �g1� and one electronically excited
level �e�. Compared to the four-photon ladder scheme �right
graph of Fig. 1�a��, one absorption and one stimulated emis-
sion process have been interchanged by a stimulated emis-
sion and absorption process of an oppositely directed photon,
respectively. To avoid second-order standing-wave pro-
cesses, a minimum of three laser frequencies is required. The
atoms are irradiated with two driving optical fields of fre-
quencies �±�� from the left and one field with frequency �
from the right. A nonzero two-photon detuning � is used to
suppress resonant Raman processes. The adiabatic light shift
potential for, e.g., atoms in state �g0�, exhibits here the de-
sired fourth-order energy shift V� �1+cos 4kz� with spatial
periodicity � /4 �10–12�. The depth of the optical potential is
given by �� /2���eff

+ �eff
− with �eff

+ =�g0,e
+ �e,g1

0 /2� and �eff
−

=�g1,e
− �e,g0

0 /2�. Here, �g0,e
+ and �e,g1

0 ��g0,e
0 and �e,g1

− � are
the Rabi frequencies for the transitions �g0�⇔ �e� and
�e�⇔ �g1� driven by the light fields with frequency �+��
and � �� and �−���, respectively. Further, � denotes the
optical detuning from the excited atomic level �e�, which
with ���� is assumed here to be identical for all three
optical frequencies. It should be pointed out that the four-
photon energy shift is not proportional to I2, i.e., the effect
does not originate from the nonlinearity of the multiphoton
transitions �16�. In an atom optics picture, the obtained � /4
spatial periodicity can be understood by considering the mo-
mentum transfer to an atom during virtual four-photon cycles
of alternating absorption and stimulated emission, which is
±4�k, being a factor 2 above the corresponding processes in
a standing laser wave. By combining lattice potentials of
different spatial periodicities, in principle, arbitrarily shaped
periodic potentials can be generated.

In our experimental setup �see Fig. 2�, light detuned some
2 nm to the red of the rubidium D2-line is generated by a
high-power diode laser system. The emitted radiation is split
into two beams �beam 1, beam 2�, from which, after passing
independent aousto-optical modulators �AOM 1, AOM 2�,
the two counterpropagating beams realizing the lattice poten-
tials are derived. The AOMs are used for switching of the
optical fields, and in the case of beam 2, to superimpose
several optical frequency components onto a single beam
path. To generate the rf drive signals for the AOMs, we use a
set of four phase-locked function generators. While AOM 1
is driven with a single radio frequency, for AOM 2, the radio

frequency signals of three function generators are combined.
In this way, the three different optical frequencies required to
synthesize the asymmetric lattice can be generated in beam
2. After passing the AOMs, the two beams are fed through
optical fibers and focused in a counterpropagating geometry
onto a Bose-Einstein condensate �BEC� confined in a
CO2-laser dipole trap. The typically used optical lattice beam
powers are 18 mW for the frequency components �±��
and 24 mW �4 mW� for the components with frequency � in
beam 1 �beam 2� on a 40 	m beam waist. The optical lattice
beams are inclined under an angle of 41°, respectively, to the
horizontally orientated CO2-laser trapping beam.

Our 87Rb BEC is produced all optically by evaporative
cooling in a tightly focused CO2-laser beam operating near a
wavelength of 10.6 	m, as described in detail in �17�. By
activating a magnetic gradient field during the evaporation
phase, a spin-polarized condensate with approximately
10 000 atoms in the mF=−1 Zeeman state of the F=1 ground
state is produced. A magnetic bias field generates a fre-
quency splitting �Z/2
�805 kHz between neighboring
Zeeman ground states of the rubidium atoms. For a typical
optical frequency difference �� /2
=930 kHz, we arrive at
a Raman detuning � /2
�125 kHz. The magnetic bias field
forms an angle with respect to the optical beam axis, so that
the atoms experience both �+, �−, as well as 
 polarizations.
To realize the multiphoton lattice as shown in Fig. 1�b�, we
use the F=1 ground-state levels mF=−1 and 0 as states �g0�
and �g1�, respectively, and the 5P3/2 manifold as the elec-
tronically excited state �e�. Since the lattice beam detuning is
orders of magnitude larger than the upper state hyperfine
structure splitting, Raman transitions only couple neighbor-
ing ground-state Zeeman levels. For alkali-metal atoms, the
Raman lattice detuning is limited to a value of order of the
excited-state fine-structure splitting ��15 nm for Rb, 34 nm
for Cs�, which for these atoms for typical parameters limits
the expected coherence time of the multiphoton lattice to a
value of order of 1 s due to photon scattering. Longer coher-
ence times should be possible, e.g., with the use of meta-
stable P-triplet states of two-electron atoms, as, e.g., the 3P2
state in atomic ytterbium with a 17 s lifetime, an atom with
which BEC has recently been achieved �18�. After the gen-
eration of the BEC, the lattice beams are activated for a

FIG. 2. Scheme of experimental setup for a Fourier synthesis of
periodic atom potentials �FG: frequency doubled function genera-
tor; VCO: voltage controlled oscillator; AOM: acousto-optical
modulator�. Also shown are the frequencies emitted by the rf
sources FG1, FG2A, FG2B, and FG2C, which are used to derive
different optical frequency components in the lattice beams from a
single optical source.
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period T=6 	s. To read out the spatially varying potential of
the multiphoton lattice, we study the far-field diffraction pat-
tern of the imprinted phase grating after a free-falling time of
10 ms. From the measured diffraction patterns, we can re-
construct the optical potential.

As is well known from crystal structure analysis, mea-
surements of the intensity of a scattered or diffracted beam
do not in general allow one to reconstruct the lattice struc-
ture, as is known as the phase problem. For many special
cases, a reconstruction is, however, possible �19�. In our ex-
periment, assuming that the one-dimensional lattice is invari-
ant to spatial translations of � /2, the reciprocal lattice is
limited to the harmonics � /2n and it is straightforward to
show that a measurement of the atom diffraction pattern
W�p�= ���p��2 allows one to reconstruct the spatial lattice
structure.

We have fitted the result of a numerical solution of the
time-dependent, momentum-picture Schrödinger equation to
our experimental far-field diffraction data. The used
Hamiltonian was H= p2 /2m+V�z�, where V�z�=

V1

2 cos�2kz�
+

V2

2 cos�4kz+�. For known phase  and pulse length T, the
potential depths V1 and V2 of the two- and four-photon lattice
components were left as free parameters and could thus be
determined from the fit. Interestingly, we found no major
difference between these results and an analytical solution
for the atomic diffraction pattern obtained using the simple
thin grating �Raman-Nath� approximation �roughly below
20% difference�. In the Raman-Nath approximation, the ki-
netic energy in the Hamiltonian is neglected, which requires
�i� T�1/�rec, where �rec is the recoil frequency, and �ii�
T�Tosc /4, where Tosc is the oscillation period �20�. The first
condition is fulfilled in our experiment, whereas the second
is not. The difference between the numerical solution and the
predictions in the Raman-Nath approximation is due to the
neglect of the center-of-mass motion in this approximation.

Within the Raman-Nath regime, a quite intuitive connec-
tion between the lattice structure and its far-field diffraction
pattern is possible. A BEC with initially homogeneous
phase accumulates here a spatially varying phase shift
���z�=−V�z�T /�, and one finds that the far-field momentum
distribution is W�p�� �F�ei���z���2, where F denotes the Fou-
rier transform with respect to z �21�. For small pulse enve-
lopes, in which the exponential factor can be linearized,
the time-of-flight image is directly related to the Fourier
transform of the potential V�z�, i.e., the reciprocal lattice.
Within second order we find W�p�� �F(1− iV�z�T / �
−�V�z�T / � �2 /2)�2, which allows us to express the probability
to find an atom in ± first diffraction orders as W�±2�k�
� � S1

4
�2

�1+ � S2

4
�2

±S2 sin � with Sx=VxT /�.
By choosing variable amplitudes and phases of the lattice

potentials, different lattices were Fourier synthesized. To be-
gin with, we investigated a conventional optical lattice. Fig-
ure 3�a� shows a typical obtained absorption image along
with the reconstructed potential �which yielded a potential
depth V1�3.4 	K�. For this measurement, only two coun-
terpropagating beams with frequency � were required. Fig-
ure 3�b� shows corresponding results obtained for the four-
photon lattice potential �V2�2.5 	K�, as realized with the
scheme shown in Fig. 1�b�. For this measurement, two

beams with frequency �±�� and one counterpropagating
beam with frequency � were activated. The main peaks of
the absorption image here are spatially separated by twice
the amount shown in Fig. 3�a�, which reflects the �by a factor
2� smaller spatial periodicity of � /4 of this four-photon lat-
tice.

To demonstrate a Fourier synthesis of atom potentials,
two- and four-photon lattice potentials were overlapped.
Here, all four light fields were used �see Fig. 2�, so that in
addition to the optical frequency components shown in Fig.
1�b�, also a counterpropagating beam with frequency � was
active. By changing the phase of the control beam with fre-
quency � with respect to the other beams, the phase of the
four-photon contribution could be varied relative to the po-
sition of the two-photon potential. Figures 3�c� and 3�d�
show far-field diffraction patterns and the reconstructed unit
cells for such lattices. For the measurement shown in Fig.
3�d� �V1�5.6 	K, V2�3.8 	K�, the phase of the four-
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FIG. 3. �Color online� Far-field diffraction images of lattice po-
tentials and corresponding reconstructed spatial structure of the lat-
tice potentials. �a� Two-photon lattice with � /2 spatial periodicity.
�b� Four-photon lattice with � /4 spatial periodicity. Due to its
smaller spatial periodicity, the splitting of the clouds is a factor 2
above that observed in �a�. �c� Asymmetric lattice realized by su-
perimposing two- and four-photon lattice potentials. �d� Same as in
�c�, but with an additional phase shift of 180° for the four-photon
lattice potential.
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FIG. 4. Diffraction efficiency into the orders with momentum
+2�k �bars� and −2�k �crosses� as a function of the phase shift of
the four-photon component of the lattice potential. Each point cor-
responds to the average of four measurements. The data have been
fitted with sinusoidal functions.
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photon contribution was changed by 180° with respect to
that shown in Fig. 3�c� �V1�4.5 	K, V2�3.7 	K�. In both
images, the diffraction pattern is clearly asymmetric, espe-
cially when considering the amplitude of the ±2�k peaks.
This is attributed as evidence for asymmetric atom poten-
tials, as also visible in the shown reconstructed lattice poten-
tials.

We have also investigated diffraction patterns from lattice
potentials with a more complete range of phase shifts of the
four-photon potential. As the fundamental period of the com-
bined lattice is � /2, we anticipate that the relative magnitude
of the ±2�k diffraction peaks gives an indication for the
asymmetry of the lattice potential. Figure 4 shows the frac-
tion of atoms diffracted into the ±2�k orders relative to the
total number of atoms as a function of the phase shift. The
data points have been fitted with sinusoidal functions, which
is in accordance with theory for small pulse envelopes. One
clearly observes the variation of asymmetry of the diffraction
pattern as a function of the phase between the different Fou-
rier components. The deviations of the fitted curves to the
theoretical formula given above is attributed to the fact that

the Raman-Nath regime is not strictly fulfilled.
To conclude, we report on the realization of atom poten-

tials suitable for atomic Bose-Einstein condensates with spa-
tial periodicity � /4 using multiphoton Raman transitions.
This has allowed us to demonstrate a scheme for the Fourier
synthesis of asymmetric shaped lattice potentials. In future, it
would be interesting to extend this scheme to include even
smaller period lattice potentials. In the search for new quan-
tum phases, tailored high-periodicity lattices are of interest,
e.g., in the context of subhealing length physics, atom lithog-
raphy �22�, and quantum computing �23�. Another intriguing
perspective includes studies of quantum ratchets with atomic
quantum gases. It is expected that the investigation of the
extremely weakly damped regime, in which the atomic iner-
tia plays a large role, will allow for novel quantum dynami-
cal phenomena �24�.
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