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We present analytical stationary solutions for the Gross-Pitaevskii equation �GPE� of a Bose-Einstein con-
densate �BECs� trapped in a double-well potential. These solutions are compared to those described by �Mah-
mud et al., Phys. Rev. A 66, 063607 �2002��. In particular, we provide further evidence that symmetry
preserving stationary solutions can be reduced to the eigenstates of the corresponding linear Schrödinger
equation. Moreover, we have found that the symmetry-breaking solutions can emerge not only from bifurca-
tions, but also from isolated points in the chemical potential–nonlinear interaction diagram. We also have found
that there are some moving nodes in the symmetry-breaking solutions.
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I. INTRODUCTION

The Gross-Pitaevskii equation �GPE� describes many fea-
tures of Bose-Einstein condensates �BECs� of dilute atomic
gases in an external potential at zero temperature �1�. The
properties of the ground state of the GPE with external po-
tential have been extensively studied; and many interesting
phenomena have been reported. Of special interest is that the
mean–field interaction profoundly modifies the density pro-
files and the stability of the ground state �1�. Recently, the
properties of the non-ground-state stationary solutions of the
GPE have attracted more attention both theoretically and ex-
perimentally �2–4�. For example, the dark solitons have been
created in the atomic gases with a positive scattering length
by phase engineering optical techniques �4–6�.

Based on �3�, one can classify the stationary solutions of
GPE as symmetry preserving and symmetry-breaking solu-
tions. Whereas the vortices and solitons observed in experi-
ments �4,5,7,8� are symmetry-preserving solutions, which
can be reduced to the eigenstates of the corresponding linear
Schrödinger equations, the macroscopic quantum self-
trapping state in the two states �9–12� and a non-Bloch state
�13,14� in periodical potential are symmetry-breaking solu-
tions, and they cannot be reduced to the eigenstates of the
corresponding linear Schrödinger equations.

The system of GPE with double wells is a good system to
investigate the properties of the stationary solutions of GPE
and also good for studying the special nonlinear dynamics,
for example, the nonlinear self-trapping effect which was
predicted theoretically in 1997 �9� and realized experimen-
tally �11,12,15� last year. It has been shown that there are
stationary solutions, which are either symmetry preserving or
symmetry breaking, both numerically and analytically in this
system �2,3�. With the help of the double square well �2�,
which allows one kind of analytical solution for GPE, Rein-
hardt and his collaborators have confirmed the numerical cal-
culation for GPE with double-well traps �3�. This provides
one possible way to investigate the properties of the station-
ary solution for GPE with double wells. It is interesting to
know how the stationary solutions change as the nonlinear
interaction increases or decreases, how the symmetry-
breaking stationary solutions emerge, and how many kinds

of the stationary solutions there are for the fixed nonlinear
interaction.

In this paper, we present different stationary analytical
solutions for GP equations with double square wells. Com-
pared with the solutions of �2�, ours can be reduced to the
eigenstates of the corresponding linear Schrödinger equa-
tions. It is this feature which enables us to understand the
above-mentioned interesting problems concerning the sta-
tionary solutions for GPE. It allows us to obtain the critical
nonlinear interaction value, over which the symmetry-
breaking solution emerges. And from the relation of the pro-
files of the stationary solutions and chemical potentials with
the nonlinear interaction, we can directly see the means of
the symmetry and symmetry-breaking and different station-
ary solutions for special nonlinear interaction.

II. MODEL AND THE SOLUTIONS

Considering that the BECs of dilute atomic gases are con-
fined by a very anisotropic harmonic potential �����x,
where ��,x are the confined frequency in the y-z space and x
direction� and that the BECs are loaded in a double square
well in the weak confined direction �x direction�, then the
dynamics of this system is governed by the one-dimensional
�1D� GP equation

i �
���x,t�

�t
= �−

�2

2m

�2

�x2 + V�x� + g0���x,t��2���x,t� ,

�1�

where g0=4��2a /m is the 1D reduced nonlinear interaction
constant. The potential is of the form

V�x� = �� �x� � a

0 b � �x� � a �a = 1
2 ,V0 � 0�

V0 �x� � b .

The stationary solution can be written as

	�x� = r�x�exp�− i
/ � t�

and after rescaling the equations, we arrive at the equation
for r�x�
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r�x� = −
�2

�x2r�x� + V�x�r�x� + �r�x�3, �2�

where �=N0g02mL2 /�2 and N0 is the total number of the
atom. The energy and the potential are measured in units of
�2 /2mL2, and L is the length of the total space �here L=2a�.
Due to the double-well case, the stationary solution is just
the real function, so we have assumed that our solution r�x�
is a real function. As in Ref. �2�, the solution of �2� can be
written in terms of the Jacobi elliptical function.

Generally, we have two different solutions depending on
the relation of the chemical potential and the barrier height.
First for 
�V0

r1�x� = Asn�Kx + �,n1� , �3�

where

n1 =
A2

2K2�, 
 = K2 + V0 +
A2

2
� . �4�

This solution is also valid for V0=0, which corresponds to
the region of b� �x � �a. It is easy to check that when �=0,
our solution is reduced to r1�x�=A sin�Kx+��, where n1=0,

=K2+V0. This is nothing but the eigenstates of linear
Schrödinger equations for 
�V0. We have two different Ja-
cobi functions for 
�V0, corresponding to the region of
�x � �b. To the case with one node in the barrier region, the
solution is

r2�x� = Bsc�Qx + ,n2� , �5�

n2 = 1 −
B2

2Q2�, 
 = V0 − Q2 −
B2

2
� �6�

but to the case without node,

r2�x� = Bnc�Qx + ,n2� , �7�

n2 = 1 −
B2

2Q2�, 
 = V0 − Q2 + B2� . �8�

Same as the solution �3� in �=0, our solutions are re-
duced to r2�x�=B sinh�Qx+� for �5� and r2�x�=B cosh�Qx
+� for �7�, where n2=1, 
=V0−Q2. It is interesting to note

that those two solutions are precisely identical with the
eigenstates of linear Schrödinger equations for one node or
no node within the barrier.

Please note here that we do not restrict the value of n1
from 0 to 1 as is usually used in the Jacobi elliptic function.
But this problem could be solved by the modular transforma-
tion table �see Table I, where m1=m /1+m, m2=1/m� �16�.
The Jacobi elliptical functions sc and nc are constructed from
the Jacobi elliptical sn, cn, and dn �see Table II� or �16��.

III. SYMMETRY-PRESERVING AND SYMMETRY
BREAKING SOLUTIONS

As mentioned in the Introduction, we have two different
kinds of stationary solutions depending on whether the sta-
tionary solution has its linear counterpart �3�. The symmetry-
preserving solution has the linear counterpart, as it could be
reduced to the eigenstates of the corresponding linear
Schrödinger equations. But the symmetry-breaking solution
could not be reduced, therefore it does not have the linear
counterpart. Such being the case, we are required to find the
stationary solutions of Eq. �1�. It is worthwhile to note that
our method is just the usual one in the linear case.

With the help of �3�, �5�, and �7�, solutions in the three
regions can be written in the form

f1�x� = A1sn„K1�x + a�,n1…, − a � x � − b

f2�x� = Bnc„Q�x + �,m…, �x� � b

f3�x� = A2sn„K2�x − a�,n2…, b � x � a �9�

for the case without node inside the barrier. For the case with
one node inside the barrier, we have

f1�x� = A1sn„K1�x + a�,n1…, − a � x � − b

f2�x� = Bsc„Q�x + �,m…, �x� � b

f3�x� = − A2sn„K2�x − a�,n2… b � x � a . �10�

We have considered the fact that the solutions vanish on
and outside the potential �x � �a. To fix the parameters A1,

TABLE I. The modular transformation of Jacobi elliptic functions.

m�0 0�m�1 m�1 m=0 m=1

sn�u �m� 	m1sd�u	1−m �m1� sn�u �m� 	m2sn�u /m2 �m2� sin�u� tanh�u�
sc�u �m� 	m1sc�u	1−m �m1� sc�u �m� 	m2sd�u /m2 �m2� tan�u� sinh�u�
cn�u �m� cd�u	1−m �m1� cn�u �m� dn�u /m2 �m2� cos�u� sec h�u�
dn�u �m� nd�u	1−m �m1� dn�u �m� cn�u /m2 �m2� 1 sec h�u�

TABLE II. Other Jacobi elliptic functions.

ns�u �m�
1/sn�u �m� sc�u �m�
sn�u �m� / cn�u �m� sd�u �m�
sn�u �m� /dn�u �m�
nc�u �m�
1/cn�u �m� cs�u �m�
cn�u �m� / sn�u �m� cd�u �m�
cn�u �m� /dn�u �m�
nd�u �m�
1/dn�u �m� ds�u �m�
dn�u �m� / sn�u �m� dc�u �m�
dn�u �m� / cn�u �m�
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A2, K1, K2, Q, B, and , we need the continuity

f1�− b� = f2�− b� ,

f1��− b� = f2��− b� ,

f2�b� = f3�b� ,

f2��b� = f3��b� , �11�

and normalization conditions

�
−a

−b

�f1
2�x��dx + �

−b

b

�f2
2�x��dx + �

b

a

�f3
2�x��dx = 1, �12�

and we need that the chemical potential is the same in dif-
ferent regions �
1=
2=
3�. The definition of the chemical
potential 
 can be found in Eqs. �4�, �6�, and �8�.

In Fig. 1 we present the first four symmetric and antisym-
metric solutions for −100���100. It is clear that all of
these solutions can be reduced to eigenstates of the corre-
sponding linear Schrödinger equations ��=0�. All of these
solutions are symmetry-preserving solutions. A barrier height
of V0=1000, barrier width 2b=0.1, and well width 2a=1 are
used all through this paper. The shaded part represents the
barrier region in all the figures. It is hence easy to see that the
effect of the nonlinear interaction on the profile of the wave
function of the high energy state is smaller than that in the
case of the low energy state. This situation is the same as in
the lattice case �14�. In Fig. 4, the chemical potential has
been plotted as the function of the nonlinear interaction.
From Fig. 4, one can read that the chemical potential differ-
ence between the ground state and the first excited state in-
creases with the increase of the strength of the nonlinear
interaction. This seems to suggest that the positive nonlinear
interaction enhances tunneling effects but the negative non-

linear interaction eliminates it. When the nonlinear interac-
tion is very large and negative ��c�−54.5�, the symmetrical
properties of the “ground” state change from the symmetry
to the antisymmetry �2,3�. In fact, when the nonlinear inter-
action is negative and large, the symmetry-preserving solu-
tion is not the ground state. But this will be discussed in the
later part of the paper.

In Fig. 2 we present the first four symmetry-breaking so-
lutions for positive nonlinear interactions up to 100. When
�=100, these four solutions are exactly the one presented in
�2�. In �2�, they also show the profile of the first kind of
solution in Fig. 2 for �=15, 30, 50, and 100. But here our
results show that this solution emerges from the bifurcations
of the chemical potential of the first excited state at �c
�0.32 �see Fig. 4�. Some more detailed behavior can be read
from Fig. 2. This solution has been predicted in �10�. Its
chemical potential is larger than that of the first excited state.
It is easy to see that the node in this solution is moving as the
nonlinear interaction increases. From 0.32 to 5.563, the node
is displacing from within the barrier to the right well. The
fourth solution emerges from another bifurcation
��c�1.48�, at which the chemical potential is the same as
the fourth symmetry-preserving solution �the third excited
state�. For this solution, there is one fixed node and two
moving nodes. Due to the increase of the nonlinear interac-
tion, one of the moving nodes moves from the barrier region
into the well. Finally, there are two moving nodes in the right
well and one fixed node in the left well. The second and third
solutions in Fig. 2 belong to a new kind of symmetry-
breaking solution. They occur from the same isolated point
��c�51.284� in the diagram of the chemical potential and
the nonlinear interaction. Here an isolated point is one point
whose chemical potential �or eigenvalue� is not the same as
the neighboring points in the diagram of the chemical poten-
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FIG. 1. The symmetry-preserving solutions of GP equations.
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FIG. 2. �Color online� The symmetry-breaking solutions of GP
equations for positive nonlinear interaction.
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tial and nonlinear interaction, whether it is the symmetry
preserving or symmetry-breaking solution. Therefore their
profiles are modified completely differently with the increase
of the nonlinear interaction. The second one has one fixed
node and one moving node while the third one has two mov-
ing nodes.

The self-trapping effect as predicted in 1997 �10� was
experimentally realized in �11,12,15�. This dynamical effect
can be understood very well based on the two mode approxi-
mation �10�. In our case, due to the zero phase difference
between the two well wave functions, the condition for the
self-trapping can be written as �=2�1+	1−�2� /�2. It is
easy to check that all of the symmetry-breaking solutions
satisfy this condition. We show this calculation in Table III,
where �c is the critical value for the self-trapping �10� and �
is our solutions.

In Fig. 3, the symmetry-breaking solution for negative
nonlinear interaction has been presented up to −100. When
�=−100, they are the same as the Fig. 4 in �2� but with a
different order. Same as the symmetry-breaking solutions in
positive nonlinear interaction, the first and fourth solutions
emerge from the symmetry-preserving solution at
�c�−0.32 and at �c�−1.46, respectively. Please note that
the first kind of symmetry-breaking solution emerges from

the ground state and its chemical potential is less than that of
the ground state. Therefore this state is the ground state of
the system �from Fig. 4�. This is what is called the quantum
phase transition in this system �2,3�. This solution does not
have any node and its profile shows that the particle would
stay in one of the wells for negative nonlinear interaction.
The fourth solution includes one fixed node and a moving
one. Now the node moves from the well into the barrier
region with the decrease of the nonlinear interaction. Around
��−33.239 the node is in the barrier region.

Again, the second and the third solutions occur from the
isolated point at �c�−43.08 in the diagram of the chemical
potential with the nonlinear interaction. Now their nodes be-
come fixed. Again the density profile has a completely dif-
ferent behavior with the decrease of the nonlinear interac-
tion. The second solution will collect the particles to one
well but the third one keeps them in two wells. There is still
another crossover between the third and the fourth solutions
near −100. That is why my order of the solution is different
from �2� at �=−100.

In Fig. 4 we plot the chemical potential as the function of
nonlinear interaction both for symmetry-preserving and
breaking solutions. Due to the high barrier, the quantum tun-
neling effect between the two wells is small and the chemical
potential difference between the ground state and the first
excited state is small also. From Fig. 4, one can directly see
that the symmetry-preserving solution can be reduced to the
eigenstate of the linear Schrödinger equations ��=0�, while
the symmetry-breaking one cannot. To see this more clearly,

TABLE III. Different numbers for the first symmetric-breaking
solutions

� �c �

5.0627 0.4945 0.9955

10.0627 0.4940 0.9960

20.0627 0.4932 0.9985
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FIG. 3. �Color online� Same as Fig. 2 for negative nonlinear
interaction.
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we amplify the figure around �=0 �Fig. 4�a� is for the
ground state and the first excited state and Fig. 4�b� is for the
second excited state and the third excited state�. The embed-
ded figure in Fig. 4 �left� shows the critical point for the
quantum phase transition �2,3�. We denote the symmetry-
preserving solutions as “L,” and the symmetry-breaking so-
lutions and positive nonlinear interaction as “NP,” and the
symmetry-breaking solutions and negative nonlinear interac-
tion as “N.” It is clearly shown that the symmetry-breaking
solution can emerge from two kinds of points. One is the
bifurcation and the other one is the isolated point in this
diagram. We arrange our solution in Figs. 1–3 in the chemi-
cal potential order. It is easy to see that the nature of the
mean-field ground state and the structure of the energy spec-
trum of the nonlinear system depend on the value of the
nonlinear interaction.

IV. CONCLUSION

We have presented one analytical solution which could be
reduced to eigenstates of the corresponding linear
Schrödinger equations. And we have shown the clear and
direct evidence to the relation of the symmetry-preserving
stationary solution and the eigenstates of the linear
Schrödinger equations. Based on the origin of the symmetry
breaking state, one can find two kinds of different symmetry-
breaking solutions, neither of which can be reduced to the
eigenstates of the corresponding linear Schrödinger equa-
tions and have one critical nonlinear interaction, over which
the symmetry-breaking solution emerges. One of the inter-
esting things is that the first kind of symmetry-breaking so-
lution can exist under the following conditions: �1� for posi-
tive nonlinear interaction, it emerges from the first excited
state and the third excited state; �2� for negative nonlinear
interaction, it emerges from the ground state and the second

excited state. We understand this based on the superposition
of the eigenfunctions of the linear Schrödinger equations.
And high accuracy of the critical value of the nonlinear in-
teraction has been found for the first kind of symmetry-
breaking solution which emerges from the symmetry pre-
serving one. This explains why we cannot find the
symmetry-breaking solution from the ground state for the
positive nonlinear interaction �17�. As this method is just
valid for the small nonlinear interaction, we cannot yet un-
derstand the second kind of symmetry-breaking solution. But
how the profile of the stationary solution changes with the
nonlinear interaction has also been presented. Our calcula-
tion shows that the symmetry-breaking solution satisfies the
self-trapping condition. This will help one to understand this
effect from stationary solutions.

Considering the situations realized in the experiment, our
model can be regarded as too simple. But this model can be
solved analytically and is good enough to provide qualitative
description. Usually, one can understand the realistic double
well by the quartic function ax4+bx2+c. The chemical po-
tential or the eigenvalue of GPE may show a little difference
from the results of our simple model, but they are consistent
quantitatively �3�.

Note added. Recently, we noted two papers �18,19� which
approach the same problem with similar techniques. In the
present work we provide a more detailed analysis of the den-
sity profiles of stationary solutions as a function of the non-
linear interaction and we find a symmetry-breaking solution.
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