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We theoretically demonstrate that optical measurements of electron spin noise can be a spectroscopic probe
of the entangled quantum states of ultracold fermionic atom gases and unambiguously reveal the detailed
nature of the underlying interatomic correlations. Different models of the effective interatomic interactions
predict entirely new sets of resonances in the spin noise spectrum. Once the correct effective interatomic
interaction model is identified, the detailed noise line shapes of the spin noise can be used to constrain this
model. We estimate the magnitude of spin noise signals expected in ultracold fermionic atom gases via noise
measurements in classical alkali vapors, which demonstrate the feasibility of this approach.
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Ultracold alkali atoms �1� provide experimentally acces-
sible model systems for probing quantum states that manifest
themselves at the macroscopic scale. Recent experimental
realizations of superfluidity in dilute gases of ultracold fer-
mionic �half-integer spin� atoms �2� offer exciting opportu-
nities to directly test theoretical models of related many-
body fermion systems that are inaccessible to experimental
manipulation, such as neutron stars �3� and quark-gluon plas-
mas �4�. Ultracold atoms also offer the possibility to create
complex multilevel superfluids by moving into regimes be-
yond those describable by effective single-channel models
�5–7�, especially when one is exactly tuned to a Feshbach
resonance. Although the thermodynamic evidence for such
states is not yet evident in currently studied systems, in fact
as we shall see, the signatures are principally spectroscopic.
Moreover, however weak such phenomena may be, they in-
troduce qualitatively new fluctuations and represent distinct
forms of entanglement.

In this paper, we theoretically demonstrate that optical
measurements of electron-spin noise �8,9�—the intrinsic,
random fluctuations of electron spin—can be a spectroscopic
probe of the entangled quantum states of ultracold fermionic
atom gases. The spin noise spectra unambiguously reveal the
detailed nature of the interatomic correlations, thereby iden-
tifying the correct underlying model of the interatomic inter-
actions. By direct comparison with spin noise measurements
in classical alkali gases, we estimate the magnitude of spin
noise signals expected in ultracold fermionic atom gases, and
demonstrate the feasibility of this approach.

The excitation spectra of physical systems are often stud-
ied by measuring their response to an external perturbation.
Alternatively, measuring the spectrum of intrinsic fluctua-
tions of a physical system can provide the same information,
and these “noise spectroscopies� often disturb the physical
system less strongly and scale more favorably with system
size reduction. At very low temperatures, noise from quan-
tum fluctuations of an observable that does not commute
with the Hamiltonian of the system can be used as a probe of
the system properties. Because of the hyperfine coupling, the
electron spin is not a good quantum number in alkali gases,
and fluctuations of electron spin can be measured using op-
tical Faraday rotation. The electron spin noise spectrum con-

sists of a series of resonances occurring at frequencies cor-
responding to the difference between hyperfine/Zeeman
atomic levels. The integrated strength of the lines gives in-
formation about the occupation of the atomic levels, while
the line shapes depend on the properties of the condensed
atomic state. It is precisely the spectroscopic nature of the
electron spin noise measurement that allows one to distin-
guish between various many-body models for the quantum
states of ultracold fermionic atom gases: different models
predict entirely different sets of resonances in the noise spec-
trum, and once the correct effective interatomic interaction
model is identified, the line shapes of the spin noise can be
used to constrain this model.

To measure the electron spin noise via Faraday rotation
spectroscopy, a linearly polarized laser beam, with photon
energy tuned near but not exactly on the s-p optical transi-
tion of the outer s-orbital electron, traverses an ensemble of
alkali atoms �8�. The rotation angle of the laser polarization
traversing the sample is measured as a function of time. The
noise power spectrum of the rotation angle shows distinct
peaks. In the electronic ground state �s orbital� there is a
strong hyperfine coupling between the nuclear and electron
spins. For the electronic p orbital, the hyperfine splitting is
weak, however there is a strong spin-orbit coupling between
the p orbital and its spin. The laser photons directly couple to
the spatial part of the electron wave function, but because of
the spin-orbit splitting in the final state of the optical transi-
tion there is an indirect coupling between the laser photons
and the electron spin. A fluctuating birefringence, that is, a
difference in refractive index for left- and right-hand circular
polarizations, results from quantum fluctuations in the elec-
tron spin and leads to rotation of the polarization angle of the
laser. The experiment is sensitive to fluctuations of electron-
spin projection in the direction of laser propagation.

The Hamiltonian describing a system of alkali atoms con-
sists of a sum of one- and two-atom terms. The one-atom
Hamiltonian includes the kinetic energy, the Zeeman interac-

tion, and the hyperfine interaction between the nuclear spin I�

and the electron spin s�. The single-atom eigenvectors, the
starting point for describing the many-body system, are ob-
tained by diagonalizing the one-atom Hamiltonian. This
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Hamiltonian preserves the projection of total angular mo-

mentum, F� =s�+ I�, in the direction of the applied magnetic
field. The one-atom matrix elements can be grouped into
two-dimensional blocks involving the basis states �ImI��

1
2

1
2 �

and �ImI+1�� 1
2 − 1

2 �, except for the states �I ,mI= + I�� 1
2

1
2 �, and

�I ,mI=−I�� 1
2 − 1

2 �, which do not couple. The single-atom en-
ergies vary smoothly and do not cross with increasing mag-
netic field so the single-atom states can be labeled unambigu-
ously by �FmF�, where mF is a good quantum number, but F
is only a good quantum number at zero magnetic field.

For a linearly polarized optical beam with a Gaussian pro-
file, the spectral density of polarization angle noise is �10�

�N���
��f

= C�L�0

A
S���	1/2

, �1�

where

C =
2�

3

cr0

m0

1

��

�
S�px�Px��2

��s-p − ��
. �2�

Here �0 is the density of atoms, � is the angular frequency of
the laser, �s-p is the angular frequency of the optical reso-
nance, r0 is the classical electron radius, m0 is the electron
mass, c is the speed of light, 
S�px�Px� is the momentum
matrix element for the optical transition, and the optical
beam area is A=2� R0

2 where R0 is the radius at which the
beam intensity drops to 1/e of its peak value. The electron-
spin response function S��� is

S��� =
1

�0
� dtei�t� d3r
�z�r,t��z�0,0�� , �3�

where z is the direction of laser propagation, �z�r , t� is twice
the z projection of the electron-spin density operator, and
S��� satisfies the sum rule �d�S���=2�. The spin response
function S��� has peaks at frequencies near the separation
between single-atom spin levels

S��� = 
ij

�
i��z�j��2Si→j��� , �4�

where �i , j� label the single-atom spin levels, �
i��z�j��2 is a
one-atom matrix element that determines line strengths and
selection rules, and Si→j��� contains information about the
many-body state. The response function Si→j��� is zero un-
less at least one of the states i or j has nonzero occupation.
For laser propagation orthogonal to the magnetic field the
selection rules require that the one-atom quantum number,
mF change by ±1 between the two single-atom levels.

Equations �1� and �2� show that the noise signal decreases
linearly with inverse frequency detuning from the optical
resonance. By contrast, the energy dissipated into the atomic
system, either by optical absorption or Raman scattering, de-
creases quadratically with inverse frequency detuning. Thus
noise spectroscopy measurements are weakly perturbative in
the sense that the noise spectroscopy signal decreases more
slowly with inverse frequency detuning than does the energy
dissipated into the system.

Spin noise spectroscopy measurements will provide inter-
esting information about the underlying interatomic interac-

tion in fermionic gases of either 6Li �I=1� or 40K �I=4�
atoms. Here, we specifically consider the 40K system, which
is particularly promising for studying multilevel fermionic
models �6�: For 40K the subspace of interacting atomic states
is very restrictive, because the hyperfine coupling constant is
negative so that the lowest energy state is mF=− 9

2 . Experi-
mentally, 40K atoms are trapped in the two lowest hyperfine
states, � 9

2 ,− 9
2 � and � 9

2 ,− 7
2 �. In the s-wave limit, the open chan-

nel can couple to only one closed-channel state � 7
2 ,− 7

2 �, and
the interacting part of the Hamiltonian reduces to a three-
level system. Figure 1 shows the schematic of the 40K Zee-
man structure, the one-atom matrix elements �see Eq. �4��
and corresponding resonance frequencies, at the magnetic
field of the Feshbach resonance �B=202 G�. We denote the
atomic states � 9

2 ,− 9
2 �, � 9

2 ,− 7
2 �, and � 7

2 ,− 7
2 �, as 1, 2, and 18,

respectively.
In the two-level model �11,12�, the noise spectrum con-

sists of lines corresponding to occupied-to-occupied and
occupied-to-unoccupied states transitions. We use the
Hartree-Fock–Bogoliubov �HFB� formalism to calculate the
zero-temperature spin-spin response functions Si→j���. We
find that the spin-spin response function corresponding to a
transition between two occupied states is

S1→2��� =
1

�0
N�kE���1 − �kE

��kE
− 	kE

2 �E=��−�12�, �5�

where N�k� is the density of states, and �k= 
ak
†ak� and 	k

= 
akak� are the normal and anomalous densities, respec-
tively. In Eq. �5� we denote by �12 the energy separation
between levels 1 and 2. Since for any k value, �k

2+	k
2=�k, the

strength of the 1→2 �occupied-to-occupied� transition van-
ishes in the two-level model. The vanishing strength of the
�occupied-to-occupied� transition is a consequence of the
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FIG. 1. �Color online� �Top� Zeeman structure of 40K �I=4�. In
the two-level theoretical model of the condensate, only the two
lowest hyperfine states are occupied. In the three-level model �6�,
states 1, 2, and 18 are occupied. �Bottom� The one-atom matrix
elements �
i��z�j��, which determine the spin-response function S���
�see Eq. �4��, and corresponding frequencies, at the magnetic field
of the Feshbach resonance �B=202 G�. In the two-level model,
lines 17–18 and 3–18 are forbidden, and line 1–2 has zero strength.
Lines 3–18 and 2–17 are almost degenerate.
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Pauli exclusion principle for a system with two equally
populated atomic spin states �13�, just as for the noninteract-
ing system. If the two occupied states were not equally popu-
lated, the transition strength would not vanish. In the case of
a transition from an occupied �a� to an unoccupied state �b�,
the corresponding spin-spin response function becomes

Sa→b��� =
1

�0
�N�kE��kE

�Ek+�
k−��=�−�ab
, �6�

where � is the chemical potential such that N1=N2=�0 /2. In
Fig. 2 we depict the line shape of the occupied-to-
unoccupied transitions calculated in the two-level model as a
function of the dimensionless parameter �= �kFa�−1. Here kF

is the Fermi momentum and a is the s-wave scattering
length. In the normal phase �a→−0�, the line shape of an
occupied-to-unoccupied transition becomes a delta function
located at the energy separation between levels 1 and 2. On
the BCS side, the quasiparticle dispersion exhibits a local
minimum at a finite momentum value, and the corresponding
singularity in the density of states �12� is reflected by the
characteristic shape of the spin-spin correlation function
�14�. On the BEC side of the crossover the singularity in the
density of states is located at zero momentum, and the spin-
spin correlation function has a smooth shape.

The three-level model discussed in Ref. �6� involves the
lowest two hyperfine levels, 1 and 2, plus the topmost hyper-
fine state denoted by 18. In this model, the particle number
constraint becomes N1=N2+N18=�0 /2. Figure 3 shows the
characteristic shape of the lines predicted by the three-level
model as a function of the dimensionless parameter
�= �kFa�−1. The top panel illustrates the line shapes of the
1→2 transition, whereas the line shapes of the 1→18 tran-
sition are shown in the bottom panel. The contrast between
the predictions of the two-level and the three-level models is
evident: In the two-level model, the transitions between the
occupied levels, 1→2, have zero strength independent of �,
while in the three-level model the strength of the 1→2 tran-
sitions is nonzero. This is a consequence of the unequal
population of levels 1 and 2 in the three-level model. Tran-
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FIG. 2. �Color online� Calculated line shapes for occupied-to-
unoccupied transitions in the two-level model, as a function of the
dimensionless parameter �= �kFa�−1 �where kF is the Fermi momen-
tum and a is the s-wave scattering length�. Occupied-to-occupied
transitions have zero strength in the two-level model �13�. In an
ultracold gas of potassium atoms with a density ��0� of 1013 cm−3

the Fermi energy is F�5.6 kHz.
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FIG. 3. �Color online� Examples of line shapes in the three-level
model discussed in Ref. �6� for 40K: S1→2 and S1→18 transitions,
respectively. The line shapes depicted in panel �a� have no corre-
spondent in the two-level model, whereas the line shapes depicted
in panel �b� correspond to the line shapes shown in Fig. 2. The
intensity reduction by an order of magnitude of the lines in the
three-level model with respect to the case of the two-level model is
a direct consequence of the sum rule obeyed by S���, �d�S���
=2�, i.e., the presence of more lines in the noise spectrum leads to
a reduced intensity. Finally, the different energy scale of the line
shapes in panels �a� and �b� reflect the long-versus short-range na-
ture of the correlations involving the open and closed channels,
respectively �see Ref. �6� for further discussions�.
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FIG. 4. Spectra of spin noise, measured via Faraday rotation, in
a 41K vapor at 184 °C �density N=7.3�1013 cm−3�. Peaks corre-
spond to �mF= ±1 transitions. The probe laser �4 mW� is detuned
100 GHz from the D1 transition �4S1/2-4P1/2; 770 nm�, and B�

=25.6 G. The vapor is contained in a 10-mm-long cell, and the laser
beam diameter �to 1 /e peak intensity� is 65 �m. The noise data are
shown in units of voltage �nV Hz−1/2�, and Faraday rotation fluctua-
tions �nrad Hz−1/2�. The white-noise floor is primarily from photon
shot noise and amplifier noise. The discrete peaks show noise from
electron-spin fluctuations and have integrated values of 1.3, 2.3,
2.6, and 2.1 �rad. Similar signal magnitudes are expected in ultra-
cold atom systems �see the text�.
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sitions 17→18 and 3→18 are allowed in the three-level
model, but not in the two-level model.

In the last section we show that the expected signal mag-
nitudes are measurable. Because of the sum rule �S���d�
=2�, the expected spin noise signals in ultracold atom gases
can be directly estimated from corresponding measurements
in classical alkali gases. The theoretical results and scaling
prefactors of Eq. �1� apply equally to both classical and
quantum gases. Further, the optical matrix elements and
other terms in the prefactors �2� are the same for the isotopes
of a given alkali atom. Therefore, we measure spin noise
spectra in a classical vapor of 41K atoms �see Fig. 4�. The
four discrete peaks, with amplitudes of order 1 nrad/Hz1/2

above the white-noise floor, result from electron-spin fluc-
tuations between adjacent Zeeman-split hyperfine levels
��mF= ±1�. The integrated spin noise of the four peaks are
1.3, 2.3, 2.6, and 2.1 �rad, respectively. The ratios of the
measured integrated spin noise powers compare well with
the theoretical results from Eq. �1�. The overall magnitude of
the detected spin noise is about a factor 2 lower than theo-
retical expectation, which may result from uncertainties in
the laser beam diameter. In an ultracold gas of potassium
atoms with a density of 1013 cm−3 and a trap length of
0.2 mm, we expect a similar magnitude for the noise peaks

with a 20-�m-diam laser detuned 15 GHz from the optical
resonance. In ultracold atom gases the laser detuning can be
significantly less than 15 GHz and thus much larger noise
signals than shown in Fig. 4 should be achievable.

In summary, we have shown that electron-spin noise spec-
troscopy can be a spectroscopic probe of the quantum states
of ultracold atom gases. These measurements have the
unique ability to unambiguously reveal the spin entangle-
ment of various many-body quantum states of these systems.
In the specific case of 40K, we demonstrate that weak fluc-
tuations beyond the single-channel description are measur-
able spectroscopically, even though the single-channel de-
scription is believed to be very accurate for thermodynamic
properties. We specifically considered fermionic atomic
gases, but since the existence of multiple transitions is a
signature of entanglement of the spin degrees of freedom, the
basic approach should apply equally well to other more com-
plex systems.
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