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We treat three-dimensional bosonic clusters with up to N=40 atoms, interacting additively through two-body
van der Waals potentials, in the near-threshold regime. Our study includes super-borromean systems with N
atoms for which all subsystems are unbound. We determine the energetics and structural properties such as the
expectation value of the interparticle distance as a function of the coupling strength. It has been shown that the
coupling strength g*

�N�, for which the N-body system becomes unbound, is bounded by the coupling constant
g*

�N−1�, for which the next smaller system with N−1 atoms becomes unbound, i.e., g*
�N�

� �N−1�g*
�N−1� /N. By

fitting our numerically determined ground-state energies to a simple functional form with three fitting param-
eters, we determine the relationship between g*

�N� and g*
�N−1�. Our trimer and tetramer energies fall on the

so-called Tjon line, which has been studied in nuclear physics. We confirm the existence of generalized Tjon
lines for larger clusters. Signatures of the universal behavior of weakly bound three-dimensional clusters can
possibly be observed in ultracold Bose gases.
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I. INTRODUCTION

Weakly bound few-body systems have been studied ex-
tensively by the atomic, nuclear, and condensed matter phys-
ics community since the early days of quantum mechanics.
Within the framework of nonrelativistic quantum mechanics,
the properties of a many-body system are determined by the
mass and statistics of the constituents and by the potential
energy surface. In many cases, the many-body potential en-
ergy surface can be approximated quite accurately by a sum
of two-body potentials. The interaction strength g of the
N-body system is then determined by the underlying two-
body potential and, assuming N identical mass m particles,
the mass m. The coupling constant g*

�N�, for which the
N-body cluster becomes unbound, defines the threshold. We
refer to this coupling constant as “critical coupling constant”
since the N-body system is stable if g�N��g*

�N� but unstable if
g�N��g*

�N�. This paper investigates the near-threshold regime
of bosonic three-dimensional N-body clusters, i.e., the re-
gime where g�g*

�N�. This near-threshold regime is particu-
larly interesting since some properties of the bosonic many-
body system become independent of the details of the
underlying potential energy surface, i.e., some properties of
weakly bound clusters consisting of N bosons become uni-
versal as g→g*

�N� �1–10�.
Our study includes the characterization of “super-

borromean” N-body clusters �11�. Borromean trimers, which
consist of three bosons for which each dimeric subsystem is
unbound, have been studied in detail in the literature
�12–14�. Super-borromean clusters, which consist of N
bosons for which all subsystems with N−n, where n
=1, . . . ,N−2, are unbound, in contrast, have not been studied
in much detail. To characterize these delicate systems, we
perform precise diffusion Monte Carlo calculations for clus-
ters interacting additively through realistic shape-dependent
two-body van der Waals potentials. We determine the critical
coupling strengths g*

�N� for atomic clusters with up to N=40
bosons and compare with variational bounds. The near-
threshold behavior of weakly bound three-dimensional

bosonic clusters has been investigated in a series of papers
�3,5,8,9�. We believe, however, that advances in the theoret-
ical understanding, including predictions derived using effec-
tive theories and zero-range models �9,15�, and in the nu-
merical treatment make it worthwhile to revisit the
characterization of weakly bound three-dimensional clusters.
In particular, we present more accurate energies for a larger
range of coupling strengths and for a larger range of cluster
sizes than previous studies.

The present study is additionally motivated by recent ex-
periments on extremely weakly bound molecules created
from ultracold Bose and Fermi gases. Utilizing Feshbach
resonances the effective interaction strength between two at-
oms at ultracold temperatures can be changed essentially at
will through application of an external magnetic field
�16,17�. The existence of this external knob has led to the
observation of extremely weakly bound diatomic molecules
in highly excited vibrational states �18–20� and provided evi-
dence for the formation of Efimov trimer states �1,21� in an
ultracold environment. Furthermore, recent experiments on
cold Cs atoms evidence the creation of larger weakly bound
clusters �22�; these experiments point towards Feshbach en-
gineering of weakly bound clusters. Feshbach resonances
arise from the coupling of two Born-Oppenheimer potential
curves through a hyperfine Hamiltonian and require, in gen-
eral, a multichannel description. In the case of a broad reso-
nance, however, the change of the effective scattering length
can be described within a single channel model �23�. Using a
single channel approximation, this paper describes weakly
bound three-dimensional bosonic clusters with varying atom-
atom scattering lengths with up to N=40 atoms.

Section II A describes the many-body Hamiltonian and
the characteristics of the underlying two-body potential. Sec-
tion II B is devoted to a discussion of our numerical ap-
proach to solving the many-body Schrödinger equation. Our
results for the energetics and structural properties are pre-
sented in Secs. III and IV, respectively, and our conclusions
in Sec. V.
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II. SYSTEM AND NUMERICAL APPROACH

A. Many-body Hamiltonian

Consider the Hamiltonian H for N bosons with mass m,

H = −
�2

2m
�
j=1

N

� j
2 + �

j�k

N

V�rjk� , �1�

where � j
2 and rjk denote, respectively, the three-dimensional

�3D� Laplace operator of the jth boson and the internuclear
distance between particles j and k. This Hamiltonian as-
sumes a many-body potential energy surface written as a
sum of atom-atom potentials V�r�. Our calculations are per-
formed for a realistic van der Waals triplet tritium-tritium
potential �24–29�, which is repulsive at short interparticle
distances r and falls off at large r as �n=6,8,. . .−Cnr−n. Figure
1 shows the tritium-tritium potential as a function of the
interparticle distance r. The potential has a minimum of
depth −4.6 cm−1 at r�7.8a0, where a0 denotes the Bohr ra-
dius. Solving the one-dimensional scaled radial Schrödinger
equation shows that the tritium dimer has no bound state �11�
�see also Sec. III A�. The scattering length a,

a = lim
k→0

−
tan���k��

k
, �2�

of the tritium dimer is negative, i.e., a=−82.1a0 �11�, which
indicates that the dimer is only slightly short of binding. In
Eq. �2�, ��k� denotes the energy-dependent s-wave phase
shift and k the relative wave vector of the equivalent one-
body problem with reduced mass m /2.

Our interest in this paper is in a detailed description of
weakly bound clusters with varying coupling constant near
threshold. To change the coupling strength g of the cluster,
we vary the atom mass m, i.e., we consider “artificial” clus-
ters with atom masses that are heavier and lighter than the
tritium mass. By rewriting the many-body Schrödinger equa-
tion in scaled units, it can be readily seen that changing the
atom mass changes the coupling strength. For example, for
systems interacting additively through Lenard-Jones poten-
tials with well depth 	 and length scale 
 the coupling con-
stant g is directly proportional to the atom mass

g = 4m	
2/�2. �3�

As alluded to in the introduction, the coupling strength
can be varied experimentally via a Feshbach resonance
�30,31�. Although a full description of a Feshbach resonance
requires the coupling between at least two channels—in tri-
tium, e.g., of the singlet and triplet potential curves �coupled
through a long-range hyperfine Hamiltonian� �11,32�—some
properties can be described within a single channel model.
We thus envision that changing the atom mass in our single
channel treatment can be mapped to changing the strength of
an external magnetic field, and hence of the atom-atom scat-
tering length, in the vicinity of a two-body Feshbach reso-
nance. We expect that our calculations uncover the “generic”
behaviors of three-dimensional bosonic van der Waals clus-
ters, which are interacting additively through two-body po-
tentials with repulsive short-range core and long-range tail
with leading −C6 /r6 term. In particular, we believe that us-
age of a different two-body potential in Eq. �1� will result in
the same qualitative but possibly different quantitative be-
haviors of weakly bound bosonic clusters.

Plus signs in Fig. 2 show the atom-atom scattering length
a for the tritium-tritium potential as a function of the atom
mass m. The scattering length a diverges at m
�5933.4�2�me, where me denotes the electron mass and the
value in parentheses denotes the uncertainty of m arising
from the numerical determination of the scattering length a.
Since this is the mass at which the dimer becomes unbound,
we refer to this mass as the critical mass m*

�2� of the dimer. A
vertical solid line in Fig. 2 marks the value of m*

�2�. We find
that the scattering length a vanishes for m�2311.0�2�me.
This mass value is indicated by a vertical solid line in Fig. 2
and puts an upper bound on the critical mass for the bulk
system �N→��, i.e., m*

����2311.0me �2�. This bound is ob-
tained variationally by expanding the energy in terms of the
density. For negative a, the leading order in the expansion
becomes negative and the bulk system is necessarily bound
�2�. Section III C compares our critical masses m*

�N� calcu-
lated for up to N=40 atoms with the variational upper bound
for m*

���.
Diamonds in Fig. 2 show the effective range reff, which

we calculate through the relationship
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FIG. 1. Triplet tritium-tritium interaction potential as a function
of the internuclear distance r.
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FIG. 2. Plus signs and diamonds show the atom-atom scattering
length a and the effective range reff, respectively, as a function of
the atom mass m for the triplet tritium-tritium potential �see text�.
To guide the eye dotted lines connect the symbols. Vertical solid
lines indicate the mass m�2311.0me, at which a goes through zero,
and the critical mass m*

�2��5933.4me, at which the scattering length
a diverges.
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−
1

a�k�
� −

1

a
+

1

2
reffk

2, �4�

as a function of the atom mass m. In Eq. �4�, a�k� denotes the
energy-dependent scattering length, a�k�=−tan���k�� /k. The
effective range is largest in the region where the two-body
scattering length vanishes. In the region where a diverges,
reff takes on values of the order of 10a0. The scattering length
a, the effective range reff and the van der Waals length rvdW,
where rvdW= �mC6 /�2�1/4, are the relevant length scales of
the two-body problem near threshold. For a zero-range
model with a single parameter, namely the scattering length
a, to be applicable for N=2, a needs to be the largest length
scale in the problem. This condition can be expressed as

�E2� 
 min� �2

mreff
2 ,

�2

mrvdW
2 	 , �5�

where E2 denotes the ground-state energy of the dimer. For
zero-range models to be applicable to clusters with N�2, a
condition similar to Eq. �5�, possibly with an additional scal-
ing factor N or N�N−1� /2, needs to be fulfilled.

B. Numerical treatment of N-body clusters

To determine the ground-state energy and wave function
of the two-body system �Eq. �1� with N=2�, we separate off
the center of mass motion and scale the wave function for the
interparticle distance to remove first derivative terms in the
kinetic energy operator. The scaled one-dimensional radial
Schrödinger equation can then be solved by diagonalizing
the Hamiltonian using B splines. To treat very weakly bound
dimers with varying mass m, we optimize the adaptive grid
�i.e., the grid spacings, the number of grid points and the
integration interval� for each mass. The upper integration
limit is determined by the size of the bound state; integrating
the Schrödinger equation out to roughly 100a leads to con-
verged results for all two-body systems considered in Sec.
III A.

The calculations of the trimer energies are, due to the
larger number of degrees of freedom, more involved than
those of the dimer energies. Separating off the center of mass
motion reduces the nine-dimensional problem to a six-
dimensional problem. Since we are in this paper primarily
interested in ground-state properties, we restrict ourselves to
states with vanishing total angular momentum, i.e., J=0. The
resulting three-dimensional Hamiltonian can be written in
terms of the Whitten and Smith hyperspherical coordinates
�33�, which allow the Bose symmetry to be accounted for
readily. To solve the corresponding scaled Schrödinger equa-
tion, we expand the wave function in angle-dependent chan-
nel functions �, which depend parametrically on the hyper-
radius R, and a set of weight functions F�R�. Our numerical
implementation is described in Ref. �34�. We check the con-
vergence by changing the hyperangular grid, the hyperradial
grid, the number of channel functions included in the expan-
sion, and the step size used in the numerical determination of
the derivatives of the channel functions. The trimer ground-

state energies presented in Sec. III B have an accuracy of a
few percent. For selected trimers, we also report the first
excited state energy with J=0.

For cluster systems with more than a few atoms, basis set
expansion-type techniques become computationally unfea-
sible. Consequently, we solve the many-body Schrödinger
equation for N�4 using alternative techniques, i.e., the
variational quantum Monte Carlo �VMC� method and the
diffusion Monte Carlo �DMC� method with importance sam-
pling �35�. Our numerical implementations follow Ref. �36�.
The VMC method minimizes the energy of the cluster sys-
tem by optimizing the many-body wave function, which is
written in terms of a set of parameters p� . The optimized
variational wave function �T then enters our DMC calcula-
tions, which result in essentially exact ground-state energies,
as a guiding function. Due to the stochastic nature of the MC
algorithms, the DMC energies reported in Sec. III C have
statistical uncertainties.

We use two different functional forms for the variational
wave function. For small clusters with about up to N=10
atoms, each atom has roughly the same average distance to
all other atoms in the cluster. In this case, our variational
wave function �T is written as a product of pair wave func-
tions � �37�,

�T�r�1, . . . ,r�N� = 

j�k

N

��rjk� , �6�

where

��r� = exp�−
p−5

r5 −
p−2

r2 − p0 ln�r� − p1r	 . �7�

For larger clusters, the variational wave function given in
Eqs. �6� and �7� does not give a good variational energy and
we additionally include a variational Fermi function which
depends on the distance Rj of the jth atom to the center of
mass of the cluster �38�,

�T�r�1, . . . ,r�N� = �

j�k

N

��rjk�	�

l=1

N

�̄�Rl�	 . �8�

Here, � is given by Eq. �7� with p0= p1=0 and

�̄�R� = �1 + exp�R − pe

p

	�−1

. �9�

The variational parameters pe and p
 determine the size of
the cluster and the sharpness of the cluster’s surface region,
respectively. For each cluster system considered, we opti-
mize the variational parameters by minimizing the energy
expectation value 
�T�H��T� / 
�T ��T�. The 3N-dimensional
integrals are evaluated using the Metropolis algorithm. Our
VMC energies, except for those for the systems closest to
threshold �see Sec. III C�, recover more than about 75%–
80% of the essentially exact DMC ground-state energies.

The DMC calculations become computationally more de-
manding as we approach the threshold, since the kinetic and
potential energy nearly cancel. In the near-threshold regime
great care must be taken to avoid any guiding function bias
and to ensure convergence of the DMC calculations. To
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check that our DMC code describes extremely weakly bound
clusters accurately, we compare the DMC energies for the
trimer with those calculated by the hyperspherical B-spline
treatment. We find agreement to within the statistical uncer-
tainty for m�6000me but do not obtain reliable DMC ener-
gies for significantly smaller masses.

Unlike the DMC energy expectation value, which is es-
sentially exact �except for statistical uncertainties and pos-
sible time step errors�, the expectation value of any structural
quantity B is in the “standard” DMC algorithm calculated
with respect to the mixed density,


B�DMC = 
��B��T�/
���T� . �10�

Here, � denotes the exact stationary ground-state wave func-
tion �35�. To improve upon this mixed estimator, we calcu-
late the so-called extrapolated expectation value 
B�ex �39�,


B�ex = 2
B�DMC − 
B�VMC, �11�

where 
B�VMC denotes the VMC expectation value,


B�VMC = 
�T�B��T�/
�T��T� . �12�

For the systems studied in this paper, the extrapolated expec-
tation values 
B�ex are expected to be fairly close to the exact

expectation values. Section IV reports expectation values for
the pair distribution function P�r� and the interparticle dis-
tance r.

III. ENERGETICS

This section presents our numerically determined energies
for clusters with up to 40 atoms and their interpretation.

A. N=2

Plus signs in Fig. 3�a� show the absolute value of the
s-wave ground-state energies E2 for two particles interacting
through the triplet tritium-tritium potential for a number of
different m, i.e., m� �5933.4me ,10000me�. The tritium dimer
itself is, as mentioned in Sec. II A, unbound. The ground-
state energies shown in Fig. 3 extend over nearly 10 orders
of magnitude; E2 for the most weakly bound dimer consid-
ered with m=5933.4 is −6�10−11 cm−11, and that for the
most strongly bound dimer considered with m=10 000me is
−0.19 cm−1.

We can compare the numerically determined ground-state
energies E2 with the energies E2

� predicted from a zero-range
model, which supports a bound state for positive a,

E2
� = −

�2

ma2 . �13�

A solid line in Fig. 3�a� shows the absolute value of the
zero-range energies E2

�. In the region where the zero-range
model provides a good description of the dimer energies, the
scattering length is the largest length scale in the problem,
i.e., a�reff and a�rvdW �see Fig. 2�. As a becomes compa-
rable to reff, the energies E2

� deviate visibly from the exact
energies E2 and Eq. �13� must be modified to account for the
dependence of the energy on the effective range reff in addi-
tion to a.

We now describe an analysis that allows an accurate de-
termination of the critical mass m*

�2� from the two-body
ground-state energies. In principle, this analysis is not
needed since our scattering length calculations allow the
critical mass m*

�2� to be determined with high accuracy �see
Sec. II A�. The analysis presented in the next two paragraphs
for N=2 is meant as a test of principle; an analogous analysis
is in Secs. III B and III C applied to larger clusters. For N
=3 and 4, accurate calculations of the dimer plus atom scat-
tering length can be performed but are not pursued here;
note, however, that the computational demands for the N
=4 calculations are quite stringent �40�. For N�4, only ap-
proximate calculations for the N−1 plus atom scattering
length have been performed to date �41�.

Within effective range theory, the two-body ground-state
energies E2 near threshold are determined by Taylor expand-
ing the logarithmic derivative of the bound state wave func-
tion about the critical mass m*

�2� �42,43�,

�m�E2� = �
i=1

�

ci
�2��m − m*

�2��i, �14�

where the ci
�2� denote expansion coefficients. In particular,

very close to threshold, m�E2� is directly proportional to �m
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FIG. 3. �a� Plus signs show the absolute value of the numeri-
cally determined two-body ground-state energies E2 as a function of
the atom mass m. To guide the eye, a dotted line connects the
symbols. For comparison, a solid line shows the absolute value of
the two-body energies E2

�, Eq. �13�, obtained from the scattering
length a. �b� Plus signs show the scaled dimer ground-state energies
�m�E2� as a function of the atom mass m. The scaled energies
�m�E2� vary to first order linearly with m. A solid line shows our fit
to the scaled energies �m�E2�, treating c1

�2�, c2
�2�, and m*

�2� as fitting
parameters �see text�. �c� Solid, dashed, and dotted lines show the
lowest two-body energies for l=0, 1, and 2, respectively, as a func-
tion of the atom mass m. Note that the mass range shown in the
lowest panel differs from the mass ranges shown in the upper two
panels.
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−m*
�2��2. Plus signs in Fig. 3�b� show the scaled energies

�m�E2�, which vary roughly linearly with m. Close inspec-
tion, however, reveals deviations from a linear behavior. This
indicates that the first term in the expansion given by Eq.
�14� is dominant, but that the second expansion coefficient
c2

�2� contributes non-neglegibly. To determine m*
�2�, c1

�2�, and
c2

�2�, we fit our scaled energies for m� �5933.4me ,10000me�
to the first two terms of the expansion given by Eq. �14�. The
resulting fit with m*

�2�=5933.5�1�me, c1
�2�=1.1623�2�

�10−2�cm−1/me and c2
�2�=−2.243�5��10−7�cm−1/me

3

agrees well with the exact energies and is shown by a solid
line in Fig. 3�b�. The numbers in parentheses indicate the
uncertainty of the fitting parameters, excluding possible nu-
merical inaccuracies of the two-body energies. The critical
mass extracted by fitting to the dimer bound state energies is
in excellent agreement with the critical mass m*

�2�

=5933.4�2�me determined from the scattering length calcula-
tions �see Sec. II A�.

The calculations for larger clusters necessarily cover, due
to numerical difficulties, a smaller range of energies, i.e., we
are not able to perform bound state calculations as close to
threshold as for the dimer. Furthermore, our cluster energies
for N�3 can only be determined within a statistical uncer-
tainty, which adds an additional complication. If we exclude
the two-body energies very close to threshold from our fit,
i.e., if we perform a fit to the scaled energies with m
� �6800me ,10000me� �which is roughly comparable to the
corresponding ranges considered for N�3, see Secs. III B
and III C�, we find a critical mass m*

�2�=5932.1�8�me, where
the uncertainty in parentheses reflects, as above, the uncer-
tainty of the fit. Since c2

�2� is negative the critical mass pre-
dicted by this fit, which excludes the energies closest to
threshold, is expected to be smaller than the exact threshold
value. The deviation from the fit that includes the whole
mass range �see above� is about 1.5me, thus providing us
with an estimate of the error made when extracting the criti-
cal mass from a set of energies, which excludes the very
near-threshold regime.

None of the dimers considered in this section supports an
excited l=0 state, where l denotes the orbital angular mo-
mentum quantum number. Some of the dimers do, however,
support rotationally excited states with l�0. Even l states
are allowed for bosons and fermions with opposite spin, and
odd l states for spin-aligned fermions. Figure 3�c� shows the
two-body bound state energies for l=0 �solid line�, l=1
�dashed line�, and l=2 �dotted line� as a function of the atom
mass m. The near-threshold behavior of the l�0 states is,
due to the presence of the angular momentum barrier of the
effective potential, distinctly different from that of the l=0
states �for which the angular momentum barrier vanishes�.
Very close to threshold, m�E2� for the s-wave state is propor-
tional to �m−m*

�2��2 while m�E2� for the states with l�1 is
proportional to �m−m*

�2,l�� �44�. Here, m*
�2,l� denotes the criti-

cal mass of the dimer system with angular momentum l. The
scaling given here can be derived, e.g., by evaluating the
logarithmic derivative of the l-dependent bound state wave
function in the limit of vanishingly small binding energy
�see, e.g., Ref. �45��. The next section discusses the energet-
ics of the trimer.

B. N=3

Plus signs in Fig. 4 show the absolute value of the trimer
ground-state energies, obtained by solving the Schrödinger
equation using hyperspherical coordinates �see Sec. II B�, as
a function of the atom mass m. The ground-state energies E3
extend over nearly three orders of magnitude. The most
weakly bound trimer considered with m=5430me has a
ground-state energy of −4.8�10−4 cm−1, and the most
strongly bound trimer considered with m=7500me has a
ground-state energy of −0.27 cm−1.

To determine the critical mass m*
�3�, we fit the scaled en-

ergies �m�E3� /N to the expected threshold behavior for N
�3 �44�,

�m�EN�
N

= �m − m*
�N��1/2��

i=0

�

ci
�N��m − m*

�N��i	 . �15�

Note that this expansion differs from that for N=2, Eq. �14�,
which was used in an earlier study �5� to analyze clusters
with N�2. The scaling behavior for N�3 reflects the pres-
ence of an angular momentum barrier in the hyperradial
Schrödinger equation and is closely related to the fact that
the size of the larger clusters remains—in contrast to the size
of the dimer ground state, which becomes infinite—finite at
threshold �see, e.g., Ref. �14��. Our fits for the trimer ener-
gies include three terms in Eq. �15�. The resulting fitting
parameters c0

�3�, c1
�3�, c2

�3�, and m*
�3� are given in Table I. The

fit, shown by a solid line in Fig. 5�b�, describes the trimer
energies very well. Since the trimer contains three “dimer
bonds,” the critical mass m*

�3� for the trimer is significantly
smaller than that for the dimer. The smallest mass for which
we reliably determine a negative trimer energy provides an
upper bound for the critical mass m*

�3�.
Diamonds in Fig. 4 show the first excited state energy E3

�1�

with J=0 as a function of m. Although the mass at which the
excited state becomes unbound is larger than that at which
the ground state becomes unbound, the excited state energies
approach the threshold in qualitatively the same way as the
ground-state energies do. In fact, the excited state of the
helium trimer, which is an Efimov state �4�, was for a long
time considered to be the possibly most promising candidate
for observing universal behaviors experimentally �46�. We
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FIG. 4. Plus signs and diamonds show, respectively, the absolute
value of the ground-state and first excited state energies with J=0
of the trimer as a function of the atom mass m. To guide the eye,
dotted lines connect the symbols.
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note that the near-threshold behavior of trimer states with J
�0 is predicted to be qualitatively different from that of the
J=0 states �47�.

C. NÏ40

We now turn to the discussion of weakly bound clusters
with up to N=40 atoms. Symbols in Fig. 5�a� show the ab-
solute value of the ground-state energies EN /N per particle as
a function of the atom mass m for N=2–10. The energies for
N=2 and 3 are also shown in Figs. 3 and 4, respectively. The
statistical uncertainties of the DMC energies EN /N per par-
ticle, N�4, are not shown in Fig. 5 since they are smaller
than the symbol sizes. The overall behavior of the ground-
state energies is similar for all N. Below, we use our energies
for N=2–10 �see Fig. 5�, and N=20 and 40 �not shown� to
determine the critical masses m*

�N�.
Symbols in Fig. 5�b� show the scaled energies �m�EN� /N

for N=2–10 as a function of the atom mass m. To determine
the critical masses m*

�N�, we fit the scaled energies �m�EN� /N
for each N to the functional form given in Eq. �15�. For N
�8, we find that the fitting parameters m*

�N�, c0
�N�, c1

�N�, and
c2

�N� are determined reliably by our numerical data. For N
�9, the parameter c2

�N� cannot be determined reliably from
our numerical data and we use only three fitting parameters
�see Table I�. The critical m*

�N� decreases with increasing N as
expected, and has the largest uncertainty for N=20. For this
cluster size, our numerical calculations do not extent as close
to threshold as for the other cluster sizes. A more precise
extrapolation of the threshold value is complicated by the
fact that the DMC energies have error bars and that the de-
termination of the energy becomes numerically more de-
manding the closer the system’s mass is to the critical mass
m*

�N�. We note that a strict upper bound for the critical mass
m*

�N� is given by the smallest mass for which we report a
bound state.

Asterisks in Fig. 6�a� show the critical masses m*
�N� pre-

dicted by our fits for N=2–10, 20, and 40 as a function of
1/N. A diamond in Fig. 6�a� shows the upper bound for the
critical mass m*

��� of the bulk system, i.e., m*
���=2311.0me

�see Sec. II A�. We choose the 1/N-scale since it allows the
critical mass for the dimer and the bulk system to be shown
on the same graph; to the best of our knowledge, the func-
tional dependence of m*

�N� on the system size is unknown.
Our critical mass for N=40 is significantly larger than the
upper bound m*

��� determined variationally for the bulk sys-
tem. Indeed, a four-parameter fit of the form

m*
�N� = D + E/N + F/N2 + G/N3 �16�

to our critical masses for up to 40 atoms, shown by a solid
line in Fig. 6�a�, predicts a larger critical mass for the bulk
system than the upper bound m*

���=2311.0me at which the
scattering length crosses zero. We speculate that our calcula-
tions for comparatively small N cannot be used to extrapolate
m*

��� reliably since the ratio of bulk to surface atoms in-
creases appreciably with increasing N. Furthermore, our ex-
trapolated critical masses have non-negligible uncertainties.
To connect the results discussed here to a realistic physical
system, we note that homogeneous atomic spin-polarized hy-
drogen, which has an atom mass of m=1837me and interacts
through a sum of two-body potentials only slightly different
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FIG. 5. �a� Symbols show the absolute value of the numerically
determined ground-state energies EN /N per particle as a function of
the atom mass m for N=2–10; the energies for N=2 and 3 are also
shown in Figs. 3 and 4, respectively. To guide the eye, dotted lines
connect energies for the same N. �b� Symbols show the scaled en-
ergies �m�EN� /N as a function of the atom mass for N=2–10. Solid
lines show our fits to the scaled energies using Eq. �14� for N=2
and Eq. �15� for N�3 �see text�. For each N, the crossing point of
the fit with the zero-energy line predicts the critical mass m*

�N�.

TABLE I. Fitting parameters for three-dimensional bosonic
clusters with N=3–10, 20, and 40 interacting additively through a
triplet tritium-tritium potential. For N=3–8, we use four fitting pa-
rameters, i.e., m*

�N�, c0
�N�, c1

�N�, and c2
�N�. For N=9–40, we use three

fitting parameters, i.e., m*
�N�, c0

�N�, and c1
�N�. The numbers in paren-

theses indicate the uncertainties of the fit, neglecting possible un-
certainties of the energies �see text�.

N
m*

�N�

�me�
c0

�N�

��cm−1�
c1

�N�

�10−4�cm−1/me
2�

c2
�N�

�10−8�cm−1/me
4�

3 5421�2� 0.280�4� 2.0�1� −3.1�3�
4 5016�13� 0.392�25� 2.0�3� −2.4�1.0�
5 4719�6� 0.479�8� 1.8�1� −1.7�2�
6 4454�3� 0.473�5� 2.4�1� −2.7�2�
7 4274�7� 0.491�12� 2.6�2� −2.7�5�
8 4139�9� 0.515�26� 2.7�5� −3.4�2.6�
9 3995�2� 0.521�7� 2.3�1�
10 3906�15� 0.569�33� 2.2�3�
20 3264�40� 0.387�58� 4.6�3�
40 3068�7� 0.692�16� 2.9�2�
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from that considered here, exists under normal pressure as a
gas and not as a liquid �48�.

The critical mass m*
�N� of the N-body system is bounded

by the critical mass of the system with N−1 particles through
m*

�N��m*
�N−1��N−1� /N �14�. A dotted line in Fig. 6�a� shows

this lower bound, assuming m*
�2�=5933.4me. Figure 6�b� in-

dicates that this analytical estimate provides a weak bound
for all bosonic systems considered here. An upper bound is
given by m*

�N�=m*
�N−1�.

To relate our critical masses to an experimentally tunable
parameter, we calculate the scattering length for each m*

�N�

and refer to it as the critical scattering length a*
�N�. Asterisks

in Fig. 6�b� show the critical scattering length a*
�N� as a func-

tion of 1 /N. Figure 6�b� suggests that borromean trimers
exist for a�−68.2a0 and borromean tetramers for
a� �−68.2a0 ,−33.3a0�. Investigation of the stability of these
weakly bound borromean states is beyond the scope of this
paper.

D. Correlations

We now investigate correlations between energies of the
three- and four-particle systems. The description of universal

properties of the trimer �10�, such as the description of Efi-
mov states, requires two parameters, a two-body momentum
scale ��2� �typically taken to be inversely proportional to the
s-wave scattering length a� and a three-body momentum
scale ��3� �in some studies, the three-body parameter �* is
used instead �49,50��. While the universal behaviors of the
trimer are quite well understood �10�, much less is known
about those of larger systems. For example, although one
expects a new momentum scale ��4� to be needed for the
description of universal properties of the tetramer �15,51�,
there is evidence that at least some observables of the tet-
ramer near threshold are independent of this new momentum
scale �9�. In this context, a number of studies have focused
on the Tjon line �5,52–55�, which was first investigated in
nuclear physics and refers to the approximately linear corre-
lation between the energies of the four-nucleon and the three-
nucleon system �54,55�. In the following, correlations be-
tween our trimer and tetramer energies, which are calculated
for realistic atom-atom interactions, are demonstrated.

Plus signs in Figs. 7�a� and 7�b� show the ratio between
the ground-state energies E4 and E2 as a function of the ratio
between the ground-state energies E3 and E2 on a linear and
double-logarithmic scale, respectively. Unlike in Tjon’s
original work for fixed dimer energy �54,55�, we scale the
trimer and tetramer energies in Fig. 7 by the dimer energy
since E2 depends on the atom mass m. For each data point,
the ground-state energies E2, E3, and E4 are calculated for
the same atom mass m. The systems closest to threshold are
those with the largest energy ratios. For the smallest mass,
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FIG. 6. �a� Asterisks show the critical masses m*
�N�, predicted by

our fits to the scaled ground-state energies �m�EN� /N, as a function
of 1/N for N=2–10, 20, and 40. The diamond shows an upper
bound for the critical mass m*

��� of the bulk system and the solid
line shows our four-parameter fit, Eq. �16�, with D=2693�42�me,
E=13 938�727�me, F=−22 023�3473�me, and G=14 216�4500�me

to the critical masses m*
�N� �the numbers in parentheses denote the

uncertainty of the fit, neglecting possible uncertainties of the critical
masses�. The dotted line shows a lower bound for m*

�N� using the
equal sign in the relationship m*

�N�
�m*

�N−1��N−1� /N and m*
�2�

=5933.4me. As expected, our numerically determined critical
masses lie above this analytical bound. �b� Asterisks show the criti-
cal scattering length a*

�N� as a function of 1/N for N=2–10, 20, and
40. To guide the eye, a dotted line connects the symbols.
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FIG. 7. Plus signs show the energy ratio E4 /E2 as a function of
the energy ratio E3 /E2 �E4, E3, and E2 denote ground-state ener-
gies� on �a� a linear scale and �b� a log-log scale. Solid lines show
our two-parameter fit �see text�. Dotted lines show the result ob-
tained within an effective quantum mechanical approach �9�. The
data with the largest energy ratios correspond to systems closest to
threshold, and those with the smallest energy ratios correspond to
systems farthest away from threshold.
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m=5950me, included in Fig. 7�b�, the absolute value of E2 is
nearly four orders of magnitude smaller than that of E3, and
more than four orders of magnitude smaller than that of E4.
A two-parameter fit of the form E4 /E2=B3+C3E3 /E2, shown
by solid lines in Figs. 7�a� and 7�b�, describes the depen-
dence of E4 /E2 on E3 /E2 quite well �especially for systems
close to threshold�, thus confirming the existence of the Tjon
line for atomic clusters. In particular, we find B3
=−34.9�8.3� and C3=5.008�5� �see also Table II�, where the
numbers in parentheses indicate the uncertainty of the fit,
neglecting possible inaccuracies of the energy ratios.

For comparison, dotted lines in Figs. 7�a� and 7�b� show a
result derived within an effective quantum mechanics ap-
proach applied to bosonic clusters with N=2–4 helium at-
oms �9�. This study finds B3=−24.752 and C3=4.075 for
69�E3 /E2�142. This range of E3 /E2 values is significantly
smaller than that considered in the present paper �solid lines
in Figs. 7�a� and 7�b��. The slope of the Tjon line derived
within the effective quantum mechanical approach, applied
to helium clusters, is somewhat smaller than our slope,
which is derived from a series of numerical calculations for
weakly bound van der Waals clusters. We find that our slope
decreases if we perform a fit that excludes energy ratios for
systems very close to threshold. This may explain the dis-
crepancy between the results obtained within the two ap-
proaches.

It has been argued that, if the four-body momentum scale
��4� coincides with the three-body momentum scale ��3�

�15�, the slope of the Tjon line is about five. This argument
suggests that the systems studied in the present paper have
approximately equal three- and four-body momentum scales.
In agreement with this finding, a different effective quantum
mechanical approach �9� finds that, at the level of approxi-
mation treated in the study, no new four-body momentum
scale is needed to determine the near-threshold properties of
the tetramer. We speculate that the Tjon line is roughly five
for all atomic systems near threshold and that the ground-
state energy of any weakly bound tetramer interacting addi-
tively through van der Waals potentials with repulsive core
can be estimated quite reliably if the corresponding dimer
and trimer ground-state energies are known. We note that
these conclusions may not apply to cluster systems that are
not chemically inert, i.e., for which the many-body potential

energy surface cannot be written as a sum of spherically
symmetric two-body potentials.

We now consider correlations between the tetramer
ground-state energy E4 and the trimer excited state energy
E3

�1�, both scaled by the dimer ground-state energy E2. Plus
signs in Fig. 8 show the energy ratio E4 /E2 as a function of
the energy ratio E3

�1� /E2 on a linear scale. A solid line shows

our two-parameter fit E4 /E2= B̄3+ C̄3E3
�1� /E2 with B̄3=

−558�35� and C̄3=565�29�, while a dotted line shows that

derived in Ref. �9� for 1.54�E3
�1� /E2�2 with B̄3=−742.0

and C̄3=645.1. The agreement of the slopes, derived within
two different frameworks and applied to two different sys-
tems, is quite reasonable. We now use the approximate linear
dependence of E4 /E2 on E3 /E2 and of E4 /E2 on E3

�1� /E2 to

predict the slope C̃3 for the approximately linear dependence

of E3 /E2 on E3
�1� /E2, E3 /E2= B̃3+ C̃3E3

�1� /E2. From our slopes

C3 and C̄3, we obtain C̃3=112�6�. For comparison, a fit to

our data gives C̃3=124�5�. The good agreement lends sup-
port to the predictive power of the approximately linear cor-
relations between energy ratios of clusters with varying num-
ber of atoms.

Correlations between the energies of two clusters differ-
ing in size by one atom, i.e., a linear relationship of the form
EN+1=bN+cNEN, have been predicted analytically based on a
separable approximation scheme for any cluster size �56� and
numerically by performing variational calculations for small
mixed 3Hei-

4Hej clusters with i+ j�5 �53�. We find that our
energies of clusters differing in size by one atom are not well
described by such a linear two-parameter fit. If we instead
scale, as in the investigation of the correlations between the
tetramer and trimer energies, our ground-state energies of the
�N+1�- and N-atom clusters by the energy of the
�N−1�-atom cluster, we find an approximately linear rela-
tionship. Plus signs in Figs. 9�a�–9�f� show the energy ratios
EN+1 /EN−1 as a function of EN /EN−1 for N=4–9, and solid
lines a linear fit of the form EN+1 /EN−1=BN+CNEN /EN−1.

TABLE II. Fitting parameters BN and CN for N=3–9. Numbers
in parentheses denote the uncertainty of the two-parameter fit
EN+1 /EN−1=BN+CNEN /EN−1, neglecting possible uncertainties of
the energy ratios.

N BN CN

3 −34.9�8.3� 5.008�5�
4 −3.37�27� 3.10�8�
5 −2.27�08� 2.78�2�
6 −1.71�03� 2.49�2�
7 −1.55�07� 2.45�2�
8 −1.50�06� 2.36�3�
9 −1.11�11� 2.18�5�
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FIG. 8. Plus signs show the energy ratio E4 /E2 as a function of
the energy ratio E3

�1� /E2 on a linear scale �E2 and E4 denote ground-
state energies, and E3

�1� denotes the first excited state energy with
J=0�. A solid line shows our two-parameter fit �see text�. A dotted
line shows the results obtained within an effective quantum me-
chanical approach �9�. The data with the largest energy ratios cor-
respond to systems closest to threshold, and those with the smallest
energy ratios correspond to systems farthest away from threshold.
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The fitting parameters BN and CN are summarized in Table II.
We refer to the approximately linear dependence of the en-
ergy ratios of clusters, which is illustrated in Fig. 9, as gen-
eralized Tjon lines. It will be interesting to investigate the
implications of the behaviors of these generalized Tjon lines
for the universal properties of weakly bound bosonic clus-
ters.

IV. STRUCTURAL PROPERTIES

This section presents selected structural properties of
weakly bound bosonic clusters in their ground state. The
expectation values for N�4 are calculated using the MC
estimator given in Eq. �11�. Figure 10 shows the pair distri-
bution function P�r� for N=4 and four different masses, i.e.,
m=5950me, 5750me, 5400me, and 5150me. The pair distribu-
tion function P�r� indicates the likelihood of finding two
particles at a distance r from each other and is normalized so
that

�
0

�

P�r�r2dr = 1. �17�

As the mass decreases, the maximum of P�r�, which is lo-
cated at r�10a0, decreases. Furthermore, the pair distribu-
tion functions extend to significantly larger r values for small
m than for large m. For example, the largest interparticle

distance sampled in our DMC runs for m=5950me is r
�100a0 while that for m=5150me is r�200a0. We find that
the densities, not shown, of the weakly bound clusters stud-
ied in this paper are structureless and do not possess any
shell structure. The highly diffuse clusters can thus be most
appropriately thought of as “diffuse liquid blobs.”

To compare the structural behaviors of clusters with dif-
ferent N, symbols in Fig. 11 show the expectation values of
the interparticle distance r for clusters in the ground state
with N=2–10 �denoted by 
r�N� as a function of the atom
mass m. For fixed N, 
r�N decreases, as expected, with de-
creasing mass m. For a given mass, 
r�N decreases with in-
creasing N. This behavior is consistent with the fact that the
energy per particle for fixed mass decreases with increasing
N. Furthermore, for fixed m, the expectation values 
r�N

should reach a constant in the large N limit. Indeed, Fig. 11
indicates that the difference between 
r�N for two clusters
differing in size by one atom is smaller for large than for
small N.

It has been suggested that scaling functions, which allow
the structural properties of the tetramer to be expressed in
terms of expectation values of the dimer and trimer, exist
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FIG. 9. Plus signs show the energy ratio EN+1 /EN−1 as a func-
tion of the energy ratio EN /EN−1 for �a� N=4, �b� N=5, �c� N=6, �d�
N=7, �e� N=8, and �f� N=9. Solid lines show linear fits of the form
EN+1 /EN−1=BN+CNEN /EN−1 �see text�. Note that the range of the
horizontal axis extends from 1 to 8 in all panels while that of the
vertical axis varies.
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pair distribution functions are calculated using the MC estimator
given in Eq. �11�, which combines the VMC and DMC expectation
values. Statistical uncertainties are not shown for clarity.

4000 5000 6000 7000 8000
Mass (in units m

e
)

20

30

40

<r
> 

(i
n 

un
its

 a
0)

N = 2

N = 10

FIG. 11. Expectation value 
r�N of the interparticle distance for
clusters in the ground-state with N=2–10 �from right to left� as a
function of the atom mass m. The expectation values for N�4 are
calculated using the extrapolated estimator, Eq. �11�, which com-
bines the VMC and DMC expectation values. Error bars, not
shown, are at most about 3 times as large as the symbol sizes.
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�15�; the exact functional forms are, however, to the best of
our knowledge unknown. Symbols in Fig. 12 show the ratio

r�4 / 
r�2 as a function of the ratio 
r�3 / 
r�2. For each data
point, the expectation values 
r�4, 
r�3, and 
r�2 are calculated
for the same mass. The error bars, not shown, are smaller
than two times the size of the symbols. These ratios are well
described by a two-parameter fit of the form 
r�4 / 
r�2

=G
r�3 / 
r�2+H�
r�3 / 
r�2�2 with G=0.751�5� and H
=0.313�7� �solid line�. We hope that the structural properties
presented here will stimulate and aid further studies of
weakly bound bosonic clusters.

V. CONCLUSION

The physics of weakly bound few-body systems can ex-
perimentally be investigated using ultracold atomic gases.
Indeed, the observation of resonances in an ultracold Bose
gas has recently been interpreted as evidence for the pres-
ence of loosely bound Efimov trimers �21�. Resonances as-
sociated with tetramers have also been reported �22�. These
experiments may just be the beginning of detailed studies of
the rich behaviors of few-body systems under controlled
conditions. On the theoretical side, little is known about the
universal near-threshold behaviors of three-dimensional sys-
tems with more than three particles. The reason is that ana-

lytical treatments become increasingly more complex as the
number of degrees of freedom increases. On the other hand,
numerical treatments are complicated by the fact that the
kinetic and potential energy nearly cancel, thus requiring
both to be calculated with high accuracy.

This paper presents a detailed study of the near-threshold
behaviors of weakly bound three-dimensional bosonic clus-
ters with up to 40 atoms, for which the underlying potential
energy surface is written as a sum of realistic van der Waals
atom-atom potentials with short-range repulsion and attrac-
tive long-range tail. In particular, we determine the critical
mass m*

�N� for clusters with N=2–10, 20, and 40 by perform-
ing calculations for each cluster as a function of the atom
mass m. To the best of our knowledge, these are the first
calculations that attempt an accurate determination of the
critical coupling strengths of clusters with up to 40 atoms.
Our critical masses are compared to analytical bounds. Fur-
thermore, we show that our numerically determined three-
and four-particle energies, scaled by the corresponding dimer
energies, fall on the Tjon line. We present numerical evi-
dence that the scaled energies of larger clusters differing in
size by one atom also correlate approximately linearly, i.e.,
the energy ratios fall on what we refer to as generalized Tjon
lines. We speculate that all atomic cluster systems show
similar near-threshold behaviors. Finally, we present selected
structural properties of weakly bound few-body systems.

In closing, we emphasize that the near-threshold behavior
of clusters crucially depends on the dimensionality. For ex-
ample, the near-threshold behavior of weakly bound two-
dimensional few-body systems �57,58� is very different from
that presented here for three-dimensional systems. We hope
that our work will stimulate further experimental and theo-
retical work on weakly bound clusters.
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