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The multiphoton resonant excitation of three-level atoms by the two laser fields of different frequencies is
investigated. The time evolution of the system and analytical solutions expressing Rabi oscillations of the
probability amplitudes at the two-color multiphoton resonant excitation are found using a nonperturbative
resonant approach. The specific examples for experimental implementation of two-color multiphoton resonant
excitation of hydrogen atoms are considered.
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I. INTRODUCTION

The possibilities to control quantum systems, e.g., to ob-
tain desired coherent superposition states using external elec-
tromagnetic fields have been studied intensively since the
period of development of nonlinear optics �1,2� and is con-
sidered nowadays because of its significance in the contem-
porary problems of quantum informatics �3,4�. Diverse
schemes for the controlling of quantum systems with one-
photon resonant excitation of atoms and associated coopera-
tive processes have been described comprehensively in sev-
eral review articles and books �see, e.g., Refs. �1,2��. On the
other hand, in the strong laser fields one can expect for mul-
tiphoton resonant excitation of atoms �5–7�. As was shown in
Ref. �5� multiphoton resonant excitation of atoms is effective
if the atomic system has a mean dipole moment in the ex-
cited states. Otherwise, the energies of the excited states of a
three-level atomic system should be close enough to each
other and the transition dipole moment between these states
must not be zero.

The multiphoton resonant excitation of atoms will allow
observing cooperative effects in high frequencies domain
and it is also significant for high order harmonic generation
�8,9�. Other interesting applications of multiphoton resonant
excitation concern dipolar molecules with a permanent di-
pole moment �10�. Research on ultracold dipolar molecules
is progressing very fast �11�. Especially interesting is the
possibility to design a quantum information device �12�. In
many cases for the implementation of quantum logic gates it
is necessary to excite polar molecules and the transition fre-
quency between the desired states lies in the uv domain and
the problem reduces to resonant multiphoton excitation of
such systems by actual laser fields.

In the present work we investigate the multiphoton reso-
nant excitation of a three-level atom by the two laser fields of
different frequencies towards the formation of coherent su-
perposition states. The resonance condition for this scheme
of the two laser fields of different frequencies: n1�1+n2�2
=�0 �n1,2=0 , ±1, ±2, . . . �. expands the spectrum of possible
combinations for the implementation of multiphoton reso-
nance between the atomic ��0� and waves ��1 and �2� fre-
quencies. First of all this is important from the point of view

of experimental realization. As existing optical lasers operate
on given frequencies associated with the difference of ener-
getic levels of atoms, hence it will be difficult from the ex-
perimental point of view to realize multiphoton resonance
with a given atomic system by a single laser radiation.

The set of equations for the probability amplitudes is
solved using a nonperturbative resonant approach, which is a
generalization of widely used rotating wave approximation
�RWA� �13–15� �for more recent discussions and related ref-
erences on the subject see also Refs. �16–20��. The consid-
ered method can be traced back to the averaging method for
the Kapitza pendulum �21,22�, that is, a classical pendulum
with a periodically moving point of suspension. In this
method the motion is separated into a slow part and a fast
part. The fast part results to effective potential. In our model
fast parts are nonresonant terms �counter-rotating terms� and
they account for dynamic Stark shifts. For a two-level sys-
tem in the case of one photon resonance this is known as a
Bloch-Siegert shift �14� which can be viewed as an extreme
situation of the dynamic Stark splitting �16�.

The multiphoton resonant excitation problem is reduced
to Rabi problem with a generalized “Rabi frequency” which
has a nonlinear dependence on the amplitudes of electromag-
netic waves. We have also performed numerical calculations
considering the concrete examples of existing laser param-
eters.

The organization of the paper is as follows. In Sec. II we
present analytical treatment of considered problem. In Sec.
III we present numerical calculations. Finally, conclusions
are given in Sec. IV.

II. BASIC MODEL AND RESONANT SOLUTION

Let us consider a three-level atom interacting with the two
radiation fields of frequencies �1 and �2 as it is shown in
Fig. 1�a�. We assume an atom to be in a V configuration in
which two upper levels �2� and �3� with mean dipole mo-
ments are coupled to a single lower level �1�. We assume that
only �1�→ �2� and �1�→ �3� transitions are dipole allowed.
Usually the stationary states of atoms have definite parity
and the diagonal matrix elements of dipole moment are zero
for these states. For the hydrogen atom due to the random
degeneration upon orbital moment there are stationary ex-
cited states which have not definite parity. Consequently, hy-
drogen atom may have a mean dipole moment in the excited*Electronic address: avetissian@ysu.am
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stationary states. The linear Stark shift for hydrogen atom is
a well known example illustrating this fact �23� �for the other
spherically symmetric atoms only quadratic Stark shift ex-
ists�. For dipolar molecules the molecular states do not have
definite parity as well, which results in a mean dipole mo-
ment in the stationary states.

Another possible three-level scheme is shown in Fig. 1�b�
and one can refer it as a � configuration. In this case lower
level �1� is coupled to an upper level �2� which in turn is
coupled to an adjacent level �3� ��1�→ �3� transition is dipole
forbidden�. If the energies of excited states in � configura-
tion are close enough to each other �the frequency associated
with the level’s difference should be small compared with
Rabi frequencies of the waves� then by the unitary transfor-
mation

Ŝ =�
1 0 0

0
1
�2

−
1
�2

0
1
�2

1
�2
	 �1�

the problem can be reduced to the V configuration �Fig.
1�a��. This is obvious for the hydrogen atom in parabolic
�23� and spheric coordinates. In the first case, the atom has a
mean dipole moment in the excited states, while in the sec-
ond case the mean dipole moment is zero for stationary
states but due to the random degeneration upon orbital mo-
ment there is a transition dipole moment between degenerate
states. Hence, we will consider the scheme of the V configu-
ration.

The Hamiltonian for the system will be presented in the
form

Ĥ = �1�1�
1� + ��2 + V22��2�
2� + ��3 + V33��3�
3� + �V12�1�
2�

+ V13�1�
3� + H.c.� , �2�

where

V�� = − d���E1 cos��1t� + E2 cos��2t + ��� , �3�

d�� is the matrix element of the electric dipole moment, E1,2
are slowly varying amplitudes of linearly polarized electro-
magnetic waves, and �=const is the phase difference be-
tween the two waves. The terms V22 and V33 in Eq. �2� ac-
count for interaction due to the mean dipole moments and
these terms are crucial for the multiphoton resonance.

The wave function of the system can be written in the
form

���t�� = a1�t�e−�i/���1t�1� + a2�t�e−�i/����2t+�0
t V22dt��2�

+ a3�t�e−�i/����3t+�0
t V33dt��3� . �4�

From the Schrödinger equation

i�
����t��

�t
= Ĥ���t�� �5�

one can obtain the equations for the probability amplitudes
a1�t�, a2�t�, and a3�t�:

i
da1

dt
= F12�t�a2 + F13�t�a3,

i
da2

dt
= F12

† �t�a1,

i
da3

dt
= F13

† �t�a1, �6�

where

F12�t� =
V12�t�

�
e�i/�����1−�2�t−�0

t V22�t�dt�, �7�

F13�t� =
V13�t�

�
e�i/�����1−�3�t−�0

t V33�t�dt�, �8�

and F† denotes the complex conjugation of F. With the help
of expansion in Bessel function

eix sin 	 cos 	 =
1

x
�

s=−





sJs�x�eis	

the functions F12�t� and F13�t� can be represented in the fol-
lowing form:

F12�t� = �
s1

�
s2

�12�s1,s2�e�i/����1−�2+�s1�1+�s2�2�t, �9�

F13�t� = �
s1

�
s2

�13�s1,s2�e�i/����1−�3+�s1�1+�s2�2�t, �10�

where

�12�s1,s2� = −
d12

d22
��1s1 + �2s2�

� Js1

d22E1

��1
�Js2


d22E2

��2
�eis2�, �11�

�13�s1,s2� = −
d13

d33
��1s1 + �2s2�Js1


d33E1

��1
�Js2


d33E2

��2
�eis2�

�12�

represent the coupling of levels by s1 and s2 photons.
In this representation the quasienergy levels �2,3−s1�1

−s2�2 �s1,2= ±1, ±2, . . . � close to the ground state arise. The

FIG. 1. Three-level atomic structures for �a� V type with mean
dipole moments in the excited states and �b� � configuration with
the coupling transition between the excited states.
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probabilities of multiphoton transitions between these levels
will have maximal values for the resonant transitions

�1 − �2,3 + n1�1 + n2�2 � 0, n1,2 = ± 1, ± 2,… . �13�

Hence, if resonant condition holds for any pair of photons
numbers �n1=n, n2=m�, normal resonance, then the func-
tions �9� and �10� can be represented in the following form:

F12�t� = ��12 + f12�t��ei
2t, �14�

F13�t� = ��13 + f13�t��ei
3t, �15�

where

�12 = �12�n,m�, �13 = �13�n,m� �16�

are resonant coupling constants and

f12�t� = �
s1�n

�
s2�m

�12�s1,s2�ei��s1−n��1+�s2−m��2�t, �17�

f13�t� = �
s1�n

�
s2�m

�13�s1,s2�ei��s1−n��1+�s2−m��2�t, �18�

are rapidly oscillating functions on the scale of waves’ peri-
ods. In Eqs. �14� and �15� we have introduced resonance
detunings

�
2,3 = �1 − �2,3 + �n�1 + �m�2. �19�

The resonance condition �13� can also be satisfied by diverse
pairs of photons numbers, degenerate resonance. Particularly
if �2=k�1, where k is an integer number, then there are
many channels of resonance transitions and one should take
into account all possible transitions. In this case resonant
couplings are

�12 = �
s2

�12�n − ks2,s2�; �13 = �
s2

�13�n − ks2,s2�

�20�

and

f12�t� = �
s1�n

�
s2

�12�s1 − ks2,s2�ei�s1−n��1t, �21�

f13�t� = �
s1�n

�
s2

�12�s1 − ks2,s2�ei�s1−n��1t, �22�

�
2,3 = �1 − �2,3 + �n�1. �23�

Following the ansatz developed in Ref. �5� we will solve
the system of equations in the resonant approximation. As
consequence of separation of Eqs. �14� and �15� the probabil-
ity amplitudes can be represented in the form

a1�t� = ā1�t� + 	1�t� ,

a2�t� = �ā2�t� + 	2�t��e−i
2t,

a3�t� = �ā3�t� + 	3�t��e−i
3t, �24�

where āj�t� are the time average of aj�t� and 	 j�t� are rapidly
oscillating functions. Substituting Eq. �24� into Eq. �6� and

separating slow and rapid oscillations, as well as taking into
account Eqs. �14� and �15�, we obtain the following set of
equations for the time average amplitudes āj�t�:

i
dāj

dt
= �

�=1

3

F̄j�ā�; j = 1,2,3, �25�

where

F̄
ˆ

= ��2 + �3 �12 �13

�12
* − �
2 + �2� �23

�13
* �23

* − �
3 + �3�
	 . �26�

Here terms �2, �3, and �23 describe dynamic Stark shifts.
For the normal resonance we have

�l = �
s1�n

�
s2�m

��1l�s1,s2��2

�s1 − n��1 + �s2 − m��2
; l = 2,3, �27�

�23 = − �
s1�n

�
s2�m

�12
* �s1,s2��13�s1,s2�

�s1 − n��1 + �s2 − m��2
, �28�

while for the degenerated resonance

�l = �
s1�n

1

�s1 − n��1
��

l2

�1l�s1 − kl2,l2��2
; l = 2,3,

�29�

�23 = − �
s1�n

�
l2

�
s2

�12
* �s1 − ks2,s2��13�s1 − kl2,l2�

�s1 − n��1
.

�30�

Thus, we have a set of linear ordinary differential equa-
tions with fixed coefficients, the general solution of which is
given by a superposition of three linearly independent solu-
tions

āj = �
�=1

3

Cj� exp�i��t� , �31�

where C�� are constants of integration determined by the
initial conditions, and the factors �v are the solutions of the
third-order characteristic equation

det�F̄ˆ − �Î� = 0. �32�

The set of equations �25� has been derived using the as-
sumption that the amplitudes ā� are slowly varying functions
on the scale of the electromagnetic waves periods that puts
the following restrictions:

�F̄j�� � min��1,�2� �33�

on the characteristic parameters of the system considered.
The solution �31� is very complicated and in order to re-

veal the physics of multiphoton resonant excitation process
let us consider the solution at the exact resonance when the
dynamic Stark shift is small compared with the Rabi fre-
quency. Then the solution �31� for the system situated ini-
tially in the ground state is
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ā1�t� = cos �t ,

ā2�t� =
�12

*

i�
sin �t ,

ā3�t� =
�13

*

i�
sin �t , �34�

where

� = ���12�2 + ��13�2. �35�

The solution �34� expresses oscillations of the probability
amplitudes at the multiphoton resonant excitation analo-
gously to ordinary Rabi oscillations. However, in this case
the generalized Rabi frequency has essentially nonlinear de-
pendence on the amplitudes of the wave fields �through
Bessel functions�.

As is seen from Eqs. �11�, �12�, and �16� the Rabi fre-
quency is proportional to the ratio d1j /djj, while dynamic
Stark shift is proportional to �d1j�2 /djj

2 . Therefore, for the sys-
tems with �djj�� �d1j� the dynamic Stark shift plays minor
role. However, for the large photon numbers the dynamic
Stark shift of atomic levels becomes comparable to Rabi
frequency and takes the states off resonance. For compensa-
tion of dynamic Stark shift one should take an appropriate
detuning. The solution can also be written in explicit form
when by the appropriate detunings the Stark shifts are com-
pensated. For simplicity we will present the solution for the
normal resonance when �12, �13, and �23 are real functions
and

��12� � ��13� � � .

Then from Eqs. �25� and �26� it follows that the desired
detunings are


2 = 
St2 � − 2�2 − �3 +
�12

�13
�23, �36�


3 = 
St3 � − �2 − 2�3 +
�12

�13
�23. �37�

In this case the solution �31� for the system situated initially
in the ground state is

ā1 = e−i��2+�3�t cos �2�t ,

ā2 =
1

i�2

�12

�
e−i��2+�3�t sin �2�t ,

ā3 =
1

i�2

�13

�
e−i��2+�3�t sin �2�t . �38�

For �n ,m�-photon resonance the atomic inversion oscillates
at a frequency

�R � 2�2��1n + �2m��d12

d22
Jn
d22E1

��1
�Jm
d22E2

��2
�� .

�39�

III. NUMERICAL SOLUTION (HYDROGEN ATOM)

In this section we will apply the obtained results for hy-
drogen atom and will present some numerical simulations
with the specific parameters of available laboratory lasers.
For the hydrogen atom 1S-2P transition falls in the vacuum
ultraviolet range 3/8 a.u. �hereafter we use atomic units�.
This is a spectral domain where strong coherent radiation is
difficult to generate and two or higher photon resonant exci-
tation is of interest. Taking into account the problem symme-
try it is more appropriate to consider hydrogen atom in para-
bolic coordinates �5�. If the waves have parallel
polarizations, then without loss of generality we can take the
axis of polarizations as the Z axis of parabolic coordinates.
Then within the two levels with the main quantum numbers
1 and 2 we have V configuration illustrated in Fig. 1�a�. The
excited states have opposite mean dipole moments �d33

=−d22=3 a.u.�, and the transition matrix elements of the
electric dipole moment are d12=−d13=27/35 a.u. Hence for
the coupling parameters we have

�13 = �− 1�s1+s2�12 =
27

36 ��1s1 + �2s2�

� Js1

3E1

�1
�Js2


3E2

�2
�eis2�. �40�

For the normal resonance the dynamic Stark shift is the same
for the excited levels. The latter can be calculated from Eqs.
�27�, �28�, �36�, and �37�


St =
214

312 �
s1�n

�
s2�m

�3 + �− 1�n+m+s1+s2�
�n − s1��1 + �m − s2��2

���1s1 + �2s2�2Js1

2 
3E1

�1
�Js2

2 
3E2

�2
� . �41�

The solution �38� is applicable for hydrogen atom �at �=0�
and the generalized Rabi frequency will be

�R � �2
25

35�Jn
3E1

�1
�Jm
3E2

�2
�� . �42�

FIG. 2. �Color online� Rabi oscillations at two-photon two-color
resonance �n=1, m=1� for the hydrogen atom. Time in units of the
low frequency wave period. The electric field strengths are E1

=E2=0.02 a.u.; the dynamic Stark shift and the detuning are much
smaller than the Rabi frequency.
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For the numerical solution of Eq. �6� with the goal of the
two color resonant excitation of hydrogen atom we consider
high power excimer lasers combined with optical and infra-
red lasers. Figure 2 displays the temporal evolution of the
state populations for two-photon two-color resonance with
F2 excimer laser �157 nm, n=1� and second harmonic of
Nd:YAG laser �532 nm, m=1� with E1=E2=0.02 a.u., which
corresponds to laser intensities I�1.4�1013 W/cm2. For
the chosen laser systems the detuning of resonance is 

=0.00084 a.u. The generalized Rabi frequency and the dy-
namic Stark shift calculated by Eqs. �42� and �41� are equal
to �R=0.0063 a.u. and 
St=0.00039 a.u., respectively. As is
seen, the Rabi frequency is much larger than the detuning
and the dynamic Stark shift. Hence, we see Rabi oscillations
with the frequency �42�. Figure 3 displays three-photon reso-
nance with ArF excimer laser �193 nm, n=1� and Alexan-
drite �655 nm, m=2� with E1=E2=0.03 a.u., which corre-
sponds to laser intensities I�3.15�1013 W/cm2. The
detuning in this case is 
=0.00019 a.u., the generalized Rabi
frequency �R=0.00633 a.u., and the dynamic Stark shift

St=0.00084 a.u. The oscillation frequency coincides with
high accuracy with the generalized Rabi frequency �42�.

Figure 4 displays four-photon two-color resonant excita-
tion of hydrogen atom with XeF excimer �351 nm, n=2� and
Ti:sapphire �780 nm, m=2� laser systems with E1=E2
=0.025 a.u. In this case 
=0.0014 a.u., �R=0.00135 a.u.,
and 
St=0.00139 a.u. As is seen, for these parameters the
dynamic Stark shift and detuning are comparable with the
Rabi frequency. Nevertheless, for the chosen electric field
amplitudes the detuning is compensated by the appropriate
dynamic Stark shift. The calculations were also made for the
finite wave pulses describing the envelope of low frequency
laser field by Gaussian function exp�−�t−�2��2 / �2�2��. The
state populations for finite wave pulses are shown in Fig.
4�b� for �2� /2�=12. For the chosen pulse length, in the final
state we have �100% overpopulation.

IV. CONCLUSION

We have presented a theoretical treatment of the multi-
photon resonant excitation of three-level atoms by two laser
fields of different frequencies. The solution of Schrödinger
equation was found using nonperturbative resonant ap-
proach. The obtained solutions express oscillations of the
probability amplitudes at the multiphoton two color resonant
excitation analogously to Rabi oscillations. The generalized
Rabi frequency has essentially nonlinear dependence on the
amplitudes of the wave fields. We also made numerical cal-
culations for hydrogen atom assuming specific parameters of
available laboratory lasers. Our calculations for hydrogen
atom suggest that by the appropriate uv and optical pulses
with moderately strong intensities �1013 W/cm2 one can re-
alize two-color multiphoton resonant excitation.
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FIG. 3. �Color online� As in Fig. 2, but for three-photon two-
color resonance �n=1, m=2� for hydrogen atom. The electric field
strengths are E1=E2=0.03 a.u.

FIG. 4. �Color online� Two-color four-photon resonant excita-
tion of hydrogen atom by XeF excimer �n=2� and Ti:sapphire �m
=2� lasers. The electric field strengths are E1=E2=0.025 a.u.; the
Rabi frequency is comparable with the dynamic Stark shift, but the
latter is compensated by the appropriate detuning. Temporal evolu-
tion of the state populations for �a� continuous waves and �b�
Ti:sapphire laser pulse of finite duration with �2� /2�=12.
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