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We provide additional evidence for the existence of zero-width resonances in the intense-field photodisso-
ciation of H2

+. In a previous investigation �Atabek, Chrysos, and Lefebvre, Phys. Rev. A 49, R8 �1994�� the
situation, in a two-channel dressed picture, corresponded to a diabatic crossing point classically reachable in
both adiabatic potentials. A semiclassical explanation could be modeled after that developed for predissociation
in the intermediate-coupling regime. At higher frequencies the crossing point lies between the two turning
points. A numerical study shows that zero-width resonances exist also in such a case. An extension of the
semiclassical approach provides an explanation for the occurrence of these resonances. It is shown that they
survive even when going to a multichannel description. The associated wave functions and probability densi-
ties are studied: they are very similar to those of the upper adiabatic potential, with a minor component in the
lower adiabatic channel. Some conditions for the production of such long-lived dressed molecular species are
stated.
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I. INTRODUCTION

When a molecular species is subjected to a high-intensity
laser field, some spectacular effects can arise: they are called
bond softening �1,2�, vibrational trapping �3,4� or dynamical
dissociation quenching �5�. Most of these studies, both theo-
retical and experimental, have been performed on the H2

+

species and the theory was initiated by one-dimensional
models. It has also been shown �6� that it is possible to
choose the laser intensity and frequency in order to reduce
the photodissociation resonance widths, of this ion or of its
isotopic parent D2

+, to zero. This is similar to an effect ob-
served in the predissociation of the molecule IBr and given a
semiclassical explanation by Bandrauk and Child �7,8�. In
the latter case one may say, as a first rough statement, that
this arises when there is a near coincidence of a diabatic
level with an adiabatic level. One may follow the change in
these energies as one varies the rotational quantum number
in order to provoke such a near coincidence �8,9�. Reso-
nances of zero width �sometimes called bound states in the
continuum� have also been discussed when there is an inter-
ference between two resonances belonging to two different
channels �10�. In this work only one resonance is present in
the energy range under study. The description of strong-field
photodissociation is based on dressed potential energy curves
with positions �and therefore crossing points� depending on
the frequency, while the coupling depends on the intensity. It
is therefore very easy to reach the conditions for a vanishing

width. In the previous study �6� the semiclassical approach
could be immediately adapted to this situation because in all
cases examined in �6� the crossing points, as in the formal-
ism developed by Child �8�, could be reached classically in
the different channels. Another way to state this condition is
that, with the usual conventions to depict the potential energy
curves of a dressed diatomic species, the turning points are
on the left of the crossing point. The study concluded by
pointing out that, for a given frequency, the conditions for
zero width for D2

+ and H2
+ correspond to significantly dif-

ferent intensities so that one species would dissociate while
the other could survive. We have here in view the case of
higher laser frequencies. As shown below, the crossing point
of the diabatic potential curves, in a two-channel description,
is now between the adiabatic turning points. We first produce
convincing evidence that, for a given frequency and in a
two-channel description, it is still possible to produce reso-
nances of practically zero widths by properly choosing the
intensity �Sec. II�. In Sec. III we first give a simplified semi-
classical explanation of the zero width for the case where the
crossing point can be reached classically in both channels.
This short-range picture is then applied to the present case.
An extension of the semiclassical formalism gives an expla-
nation based on a destructive interference between two paths.
Section IV shows that these resonances can be obtained even
when going to a multichannel Floquet picture. The semiclas-
sical argument provides an explanation. In Sec. V we exam-
ine a few wave functions and probability densities of these
particular states. The conditions for production and detection
of such dressed species are discussed in Sec. VI.

II. NUMERICAL RESULTS

As in the previous study �6� the potential energy curves of
the electronic ground state 1�g

+ and of the first electronic
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excited state 1�u
+ of H2

+, as well as the transition moment
between the two states, are taken from the work of Bunkin
and Tugov �11�. The wavelength of the laser is taken equal to
80 nm, giving 125 000 cm−1 for the energy of a light quan-
tum. A preliminary study is based on a two-channel repre-
sentation of the Floquet problem �12,13�, with the ground-
state potential dressed by the photon energy. The
methodology to get resonance energies includes exterior
complex scaling �14� of the nuclear coordinate and
asymptotic analysis of the open-channel amplitudes, after a
diabatic-to-adiabatic transformation to eliminate the persis-
tent interchannel coupling due to the form chosen for the
transition moment �15�.

Figure 1 gives the two dressed diabatic potentials and the
two adiabatic potentials obtained at the intensity producing a
zero-width resonance originating from the vibrational ground
state of the free molecule. This shows clearly that the cross-
ing point of the diabatic potentials is between the two clas-
sical turning points in the two adiabatic channels. The calcu-
lations are performed by progressively increasing the laser
intensity with, at low intensity, a trial energy which is a
field-free energy with vibrational quantum number vdiab. We
have followed in this way the five lowest diabatic energies.
For vdiab=0,1 ,3, and 4 the width starts, as expected, as a
linear function of the intensity, then passes through a maxi-
mum. This is followed by a decrease to zero for an intensity
which will be hereafter called a critical intensity. There are
then oscillations leading to further critical intensities. This is
illustrated in Fig. 2 which gives the variation of the quantity
−2 Im�ER� �the rate in cm−1� as a function of the intensity for
vdiab=0. ER is the complex resonance energy; “Im” stands
for the imaginary part. It is useful to check how sensitive is
the rate in the vicinity of a critical intensity. From the data

represented in Fig. 2 the rate remains less than 0.2 cm−1 for
a range of the field amplitude extending from 0.0539 to
0.0609 a .u., that is, a 13% change. This shows that there is
robustness around the critical intensity. For vdiab=2 we were
unable to get plausible results: the calculation soon went to
unphysical numbers with extremely high width. In a parallel
study of D2

+ we observed exactly the same circumstance. We
will come back to this point when discussing the probability
densities of the zero-width resonances �Sec. V�.

Table I gives the initial dressed field-free energies, the
energies of the first zero-width resonance, the corresponding
intensities, and also, for future discussion, the nearest energy
belonging to the upper adiabatic potential calculated for
these intensities. The table gives also a quantity to be derived

TABLE I. Numerical study of zero-width resonances issuing
from the dressed zero-field ground vibrational states of H2

+, with
vibrational quantum numbers and energies given in columns 1 and
2. The resonance energies and the corresponding intensities are in
columns 3 and 4. Columns 5 and 6 give the vibrational quantum
number and the energy closest to the resonance energy of the upper
adiabatic potential for these intensities. No width is given for the
resonance energies because they can be made arbitrarily small. For
the intensities given in the table they are generally of the order of
10−6 cm−1. No physically acceptable result could be obtained when
starting from the field-free state with vdiab=2. Column 7 gives a
quantity occurring in the semiclassical treatment of Sec. III. Ac-
cording to this analysis Q should be close to 3� /4�2.356. All
energies are in cm−1 with the origin at the asymptotic value of the
repulsive potential. Intensities I are in units of 1013 W/cm2.

vdiab Ediab ER I vadiab Eadiab Q

0 103701.26 108561.48 11.19 0 108537.80 2.220

1 105937.19 110296.17 9.05 1 110242.23 2.341

2 108049.17

3 110037.21 111878.17 6.97 2 111779.73 2.621

4 111901.29 113304.35 4.97 3 113148.57 2.803

FIG. 1. The two adiabatic potentials V+ and V− �in units of
105 cm−1� resulting from the interaction of the dressed ground-state
potential Vg+ �� with the excited state potential Vu of H2

+. The
wavelength is �=80 nm and the intensity I=11.19�1013 W/cm2.
The dotted horizontal line shows at which energy there is occur-
rence of a zero-width resonance. The thin vertical line shows the
position of the diabatic crossing point r0. This point is between the
left turning points of both adiabatic potentials r− and r+. Short-
range scattering theory examines the events occuring in the dashed
rectangle. rt is the right turning point in the upper adiabatic poten-
tial. The origin of the energies is at the asymptotic value of the
repulsive potential Vu.

FIG. 2. The variation with intensity of the rate �in cm−1� for the
resonance originating from the ground vibrational state of the free
molecule. This is a two-channel calculation. Near intensities I
�11.19�1013 W/cm2 and I�33.65�1013 W/cm2 the width can
be made arbitrarily small. Some amplification factors �50 times or
104 times� are needed to see the oscillations of the rate.
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in the semiclassical treatment of Sec. III. The change under-
gone by the resonance energies as the field is switched on
may also be followed by looking at the trajectories of the
energy in the complex plane. This is shown in Fig. 3 for two
initial states with vdiab=0 and 3.

III. SEMICLASSICAL APPROACH

We will first of all give a simplified version of the semi-
classical method when applied to the previously treated case
of two turning points on the left of the diabatic crossing point
�8�. The situation is depicted in Fig. 4. We consider the two
adiabatic potentials in the neighborhood of the diabatic

crossing point �represented by the dash-dotted rectangle�,
without paying attention, for the moment, to the fact that the
upper adiabatic potential can accommodate bound states.
Imagine the system to be originally in the upper adiabatic
potential and described by a wave traveling toward the criti-
cal region where a transition to the lower adiabatic potential
can take place. We make use of the diagrammatic represen-
tation developed by Child �see, for example, �16��. Figure 5
shows how the crossing region symbolized by the box C� �in
fact as a result of complex crossing points in the adiabatic
picture� splits the original wave. After reflection on turning
points r− and r+, there is further splitting by the box C� so
that the amplitude in the lower adiabatic channel has two
contributions: it is possible to either stay in the upper poten-
tial at the first crossing encounter and then go to the lower
potential at the back encounter, or vice versa. The conse-
quence is that there is an interference between the two
routes. Following the expressions given by Child �16�, we
find for the inelastic scattering amplitude Q−�:

Q−� = − i���1 − �2��exp�− 2i	
r0

r+

dr k+�r�
ei�

− exp�− 2i	
r0

r−

dr k−�r�
e−i�� . �1�

� is exp�−�	� where, for linear potentials, 	 is the familiar
Landau-Zener parameter V12

2 /v �
F�, with V12 for the con-
stant diabatic coupling, v for the classical velocity at the
crossing point r0, and 
F for the difference in slopes at the
crossing point. � is a phase depending on the strength of the
coupling. The adiabatic wave numbers k±�r� are 
2m�E
−V±�r���1/2. In fact the upper adiabatic potential supports
bound states which are, in a semiclassical picture, trapped
between left and right turning points. Let us call such a turn-
ing point rt. We multiply the amplitude Q−� by

exp�2i�r0

rt dr k+�r�� and obtain a modified amplitude Q̃−�which
can be written

FIG. 3. The trajectories in the complex plane of the resonance
energies issued from the field-free vibrational states vdiab=0 �left
panel� and 3 �right panel�. The starting point of each curve corre-
sponds to a diabatic energy with no width. After reaching the criti-
cal intensities an amplification factor �50 times or 103 times� helps
in revealing that this is followed by a range of rather small widths.
For vdiab=3 the crossing corresponds to two resonance energies
equal to ER=110 154.20− i225.03 cm−1, but for two different inten-
sities �0.738�1013 and 2.153�1013 W/cm2� so that no phenom-
enon can be associated with this “degeneracy.”

FIG. 4. Two adiabatic potentials with the left turning points both
on the left of the diabatic crossing point. Short-range scattering
theory examines the events occurring in the dash-dotted rectangle,
ignoring that at the energy symbolized by a horizontal line there is
also a right turning point for a state supported by the upper adia-
batic potential.

FIG. 5. Diagrammatic representation of the short-range inelastic
transition from the upper to the lower adiabatic potential. An in-
coming wave of amplitude Q+� in the upper adiabatic potential
reaches the crossing region symbolized by the box C�, which pro-
duces two wavelets reflected by the turning points r− and r+. On the
way back each wavelet is again split into two by the box C�. The
final amplitude of interest is Q−�.
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Q̃−� = − i���1 − �2�e−i��exp�2i�	
r+

r0

dr k+�r�

+ 	
r0

rt

dr k+�r� + �
� − exp�2i�	
r−

r0

dr k−�r�

+ 	
r0

rt

dr k+�r�
�� . �2�

Let us assume now that the energy E is such that the two
following conditions can be simultaneously satisfied:

	
r+

r0

dr k+�r� + 	
r0

rt

dr k+�r� + � = �v+ +
1

2

� �3�

and

	
r−

r0

dr k−�r� + 	
r0

rt

dr k+�r� = �vd +
1

2

� , �4�

where v+ and vd are two integers. vd is distinct from vdiab
since the levels defined by Eq. �4� are supported by a piece-
wise adiabatic potential with a discontinuity at r0. In the limit
of a very weak coupling vd becomes vdiab. v+ is different
from the vibrational quantum vadiab of the upper adiabatic
potential because of the phase factor �. In the limit of a
strong coupling v+ becomes vadiab. We get now for the scat-
tering amplitude

Q̃−� = − i���1 − �2�e−i��exp�2i�v+ +
1

2

��

− exp�2i�vd +
1

2

���

= − i���1 − �2�e−i��ei� − ei�� = 0. �5�

The particle is then trapped on the upper adiabatic potential.
Dissociation is completely quenched. This quenching is due
to a destructive interference which in a scattering situation
gives rise to the so-called Stückelberg oscillations �17�. A
coupled-channel calculation has confirmed this semiclassical
analysis �9�.

It is interesting to give another view of this phenomenon
based on the identification of the semiclassical paths that
allow the transition from one potential to the other to take
place. This somewhat alternative treatment will be useful to
treat the situation where the crossing point is not classically
reachable in both channels. The formalism has been devel-
oped to describe low-energy atomic and molecular collisions
�18–20�. We will refer more specifically to the work of Laing
et al. �20� since they give simple descriptions for the three
possible configurations of the turning points: �a� both left-
turning points to the left of the diabatic crossing point; �b�
one to the left, one to the right; �c� both turning points to the
right. We recall that according to Fig. 1 we are dealing with
case �b�. Let us recall first of all how this formalism works
for case �a�. This is again, in the present context, a short-
range scattering view of the process which has to be later
completed by a boundary condition about the upper adiabatic
potential. It is important to stress �cf. �18�� that the semiclas-

sical theory is entirely formulated with the adiabatic poten-
tials and their continuations in the complex plane, taking no
account of the residual nonadiabatic couplings. We look for
situations with a strong radiative interaction, meaning a
strong diabatic coupling and therefore a small nonadiabatic
transition probability. This implies that the prefactor
�p�1− p��1/2, present in the transition amplitude �20�, where p
is the transition probability in the crossing region, can be
approximated as p1/2. The transition amplitude takes the
simple form

S−,+ = S1e−i
 + S2ei
. �6�

The phase 
 is to be determined later. S1 and S2 correspond
to the two paths of Fig. 6 and are given by

S1 = exp�− i	
r

r0

dr�k+�r��
P1exp�− 2i	
r0

r−

dr k−�r��
�e−i�/2exp�i	

r0

r

dr�k−�r��
 , �7�

S2 = exp�− i	
r

r0

dr�k+�r��
exp�− 2i	
r0

r+

dr k+�r�

�e−i�/2P2exp�i	

r0

r

dr�k−�r��
 . �8�

P1 and P2 represent the contributions along complex seg-
ments shown in Fig. 6, with the crossing point chosen in

FIG. 6. The two semiclassical paths contributing to the short-
range scattering amplitude for a transition from the upper to the
lower adiabatic potential. r0 is the real part of the complex crossing
point r* and its complex conjugate r*

*. Damping takes place along
the dashed paths toward and away from the complex crossing
points. Along the real parts of the path different phases are accu-
mulated, which result in an interference that may produce a vanish-
ing of the amplitude at some particular energies. The upper path can
be translated as S1 of Eq. �7�, while the lower path produces S2 of
Eq. �8�.
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order to produce a damping of the waves �20�. They are
given by

P1 = exp�− i	
r0

r*

dr�k+�r� − k−�r��
 �9�

and

P2 = exp�i	
r0

r*
*

dr�k+�r� − k−�r��
 . �10�

We have introduced in each amplitude a factor e−i�/2 not
present in the expression given in �20� to account for the
reflection on each turning point �16�. Transition occurs either
at r* for S1 or at r*

* for S2. It can be proven �16,19� that, if a
linear model is adopted for the region close to the crossing,

P1 = P2 = P . �11�

There is therefore a common factor in the two terms of the
transition amplitude which expresses the fact that the damp-
ing of the wave is the same along the two complex paths.
Ignoring common factors of modulus unity, the effective
transition amplitude is

S−,+ � − iP�exp�− 2i	
r0

r−

dr k−�r�
e−i


+ exp�− 2i	
r0

r+

dr k+�r�
ei
� . �12�

We multiply this amplitude by exp�2i�r0

rt dr k+�r�� and obtain

S̃−,+ = − iP�exp�2i	
r−

r0

dr k−�r�
exp�2i	
r0

rt

dr k+�r�
e−i


+ exp�2i	
r+

r0

dr k+�r�
exp�2i	
r0

rt

dr k+�r�
ei
� .

�13�

Comparing S̃−,+ of Eq. �13� with Q̃−� of Eq. �2� when �
�1, we see that they are identical �except for a trivial factor�
if we make the choice 
=�+� /2 �which leads to a differ-
ence of two terms rather than a sum as in Eq. �13�� and if P
is identified with �. According to Child � is −� /4 in the
weak-diabatic-coupling limit and goes to zero as the cou-
pling is increased. The discussion about the occurrence of
zero-width resonances follows that given previously.

We now turn to the case �b�, with a diabatic crossing point
between the two left-turning points. The short-range disposi-
tion of the two adiabatic potentials and all the relevant points
along the real axis are shown on Fig. 1. We indicate on Fig.
7 the semiclassical paths to be followed in order to describe
a transition from the upper to the lower adiabatic potential.
The dashed parts of the paths indicate where damping takes
place, instead of just phase accumulation. The damping takes
place now not only along the excursions toward or away
from the complex crossing point, but also along a real seg-
ment �from r+ to r0�, but with an imaginary wave number.
There are again two contributions

S1 = exp�− i	
r

r+

dr�k+�r��
exp�− i	
r+

r0

dr k+�r�
P1

�exp�− i	
r0

r−

dr k−�r�
 � e−i�/2exp�i	
r−

r0

dr k−�r�

�exp�i	

r0

r

dr�k−�r��
e−i
 �14�

and

S2 = exp�− i	
r

r+

dr�k+�r��
exp�− i	
r+

r0

dr k+�r�
P1

� exp�i	
r0

r

dr�k−�r��
ei
. �15�

P1 is given by Eq. �9�. We note that the same excursion
toward a complex intersection point is implied in the two
paths. The damping along the two paths is the same and we
can write for the effective transition amplitude, after ignoring
identical contributions of modulus unity,

S̃−,+ = exp�− i	
r+

r0

dr k+�r�
P1

��e−i�/2exp�2i	
r−

r0

dr k−�r�
e−i
 + ei
� . �16�

The condition for a vanishing of this amplitude can be writ-
ten as

�1 + exp�2i	
r−

r0

dr k−�r�
e−2i
e−i�/2� = 0 �17�

or

FIG. 7. The two interfering paths of the semiclassical treatment
to be followed when the diabatic crossing point is between the two
left turning points of the adiabatic potentials. The upper path corre-
sponds to S1 of Eq. �14�, while the lower path produces S2 of Eq.
�15�.

ZERO-WIDTH RESONANCES IN INTENSE-FIELD… PHYSICAL REVIEW A 74, 063412 �2006�

063412-5



2	
r−

r0

dr k−�r� − 2
 −
�

2
= �2n + 1�� . �18�

For n=0 this is

	
r−

r0

dr k−�r� = 
 +
3�

4
. �19�

In Table I we give for each zero-width resonance the quantity
denoted Q, which is

Q = 	
r−

r0

dr k−�r� . �20�

All values of Q are close to 3� /4=2.356. This can be ob-
tained if one takes 
�0. A necessary condition for a zero
width is therefore, again, that a destructive interference is at
work to cancel the transition amplitude. However, trapping
can occur only if at this energy there is effectively a bound
state in the upper adiabatic potential. Table I shows that each
time we observe a zero-width resonance the energy of that
resonance is indeed close to that of a bound state of the upper
adiabatic potential. This is confirmed in Sec. V by a com-
parison between probability densities of the Floquet ap-
proach and those supported by the upper adiabatic potential.
The semiclassical treatment also provides an explanation for
the additional values for the critical intensities, as displayed
in Fig. 2. For n=1, we should have, to produce a destructive
interference between the two paths,

Q = 	
r−

r0

dr k−�r� = 
 +
7�

4
. �21�

Accepting again 
�0, this gives Q close to 5.50. Numerical
integration provides Q=5.23.

Finally, it is useful to stress that, if a situation with the
two turning points to the right of the crossing point could be
produced, no interference could operate since in that case
there is only one path to go from the upper to the lower
adiabatic potential �19,20�.

IV. THE MULTICHANNEL CASE

It is well known that in the presence of a high-intensity
laser it is often necessary to go beyond a two-channel ap-
proach in the Floquet picture. The two-channel formulation
describes the absorption of a single photon. Multiphoton pro-
cesses may also occur, which require additional channels to
be included �21�, according to the following scheme:

�g,n� ↔ �u,n − 1� ↔ �g,n − 2� ↔ �u,n − 3� ¯ . �22�

Figure 8 shows the rate versus intensity for the two- and
four-channel approaches applied to the resonance issued
from the fourth field-free vibrational state of the molecule
�vdiab=3�. The two additional channels �g ,n−2� and �u ,n
−3� correspond to the absorption of two and three photons.
The rates are shown in the neighborhood of the critical in-
tensities. Beyond four channels there is no significant change
of the results. The four-channel description can therefore be

considered as the converged limit as far as the number of
channels is concerned. The critical intensity yielding a zero-
width resonance is somewhat smaller when going to the con-
verged study, but the width can again be made very small by
“zooming” near this intensity. We conclude that such reso-
nances are present, irrespective of the number of channels. A
detailed semiclassical study based on four or more channels
appears to be rather complicated, due to the number of paths
that can lead to dissociation. Each open channel adds its
contribution to the total width. Our argument will be based
on a circumstance which has been stressed in �21�: each path
leading to dissociation has to go through the crossing present
in the two-channel description. If for some reason the ampli-
tude for a transition through this first crossing vanishes, the
entire process leading to dissociation is quenched. The first
crossing plays the part of a doorway crossing. Therefore the
analysis showing that the short-range transition amplitude
can be made to vanish as a result of an interference of two
terms is still valid. It remains to explain why there is a
change in the critical intensity. We attribute this to the dis-
tortion suffered by the two primitive potentials �those of the
two-channel Floquet picture� as a result of the interaction
with the additional channels. The argument about the fact
that in a multichannel approach the transition at the first
crossing met by the system is essential to eventually quench
the dissociation can also be applied to an extension including
rotational effects. This was explained in �6� and is valid for
the present case. This is due to the chainlike structure of the
coupling with the channels with higher rotational quantum
numbers,

�g,n,J = 0� ↔ �u,n − 1,J = 1� ↔ �g,n − 2J = 2� ↔ ¯ .

�23�

The two-channel Floquet picture is making use of the first
two elements of this chain which are sufficient, to a good
approximation, to describe the trapping.

V. WAVE FUNCTIONS AND PROBABILITY DENSITIES

The study of the wave functions shows that at each criti-
cal intensity the component wave function in the upper chan-

FIG. 8. Rate versus intensity for a two-channel approach �N
=2� or a four-channel approach �N=4�. The resonance under inves-
tigation is issued from the field-free vdiab=3 vibrational state. The
critical intensities for a zero-width resonance are, respectively, I
=6.972�1013 W/cm2 for N=2 and I=6.808�1013 W/cm2 for N
=4.
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nel of the Floquet treatment is extremely close to the wave
function of the upper adiabatic channel at this same intensity.
This is in agreement with the analysis showing that for the
width to vanish we must satisfy two conditions: �a� we must
be at an energy where there is vanishing of the short-range
transition amplitude, but also �b� at this energy there must be
a level of the upper adiabatic potential. This is illustrated by
the probability densities ��r� given in Figs. 9 and 10 for an
initial choice vdiab=0 and 3. These densities are defined as
the sum over the channels of the square moduli of the com-
ponent wave functions. This is justified by the fact that a
zero-width resonance wave function is square integrable.
One observes a remarkable agreement between the densities
of the two approaches, except in Fig. 10 where there is on
the left a small hump in the Floquet density. This hump is
associated with the lowest adiabatic channel, with a turning
point to the left of the equilibrium distance of the field-free
molecule. The study of the densities in Fig. 10 reveals a
curious circumstance which may be related to the failure to
follow the fate of the diabatic state with vdiab=2. While for
vdiab=0 and 1 there is no change in nodal structure when
going from a null intensity to the first critical intensity, for
vdiab=3 and 4, there is a decrease by 1 of the number of
nodes. This is also observed in D2

+. We note that for vdiab
=0 the dressed state corresponds to a slight lengthening of
the bond. This is due to the fact that the equilibrium distance
of the upper adiabatic potential is to the right of that of the
field-free molecule. There is in this case only a very weak
component of the wave function in the lower channel.

VI. PRODUCTION AND DETECTION

We first of all examine the possibility of an adiabatic
transfer from a field-free vibrational state to a dressed zero-
width resonant state. Our example will be again the reso-
nance state issued from the vdiab=0 field-free state. Figure 2
shows that, before reaching the zero-width resonant state, the

rate passes by a maximum of the order of 200 cm−1. The
lifetime is at this intensity �2.65�10−14 s. It is therefore
required that the excitation process be significantly shorter
than this time in order for some molecules to survive along
the way. Let us say ten times shorter. The period of the field,
with �=80 nm, is �2.67�10−16 s. This corresponds to
about ten oscillations during that time. Thus we are within
the limits for the applicability of Floquet theory �22�. A cri-
terion for adiabatic transport is that the ratio of the Rabi
frequency to the field frequency is at the intensity of the
maximum rate much lower than 1. For the present example,
near the crossing region, we have 
�I /��0.04.

We can also imagine a sudden pulse such that the mol-
ecule is exposed in a very short time to the critical intensity
leading to the zero-width resonant state. Let us describe the
excitation process in the simplest possible way: the various
dressed adiabatic states are populated with probabilities

TABLE II. Franck-Condon amplitudes and factors between the
field-free ground vibrational state of H2

+ and the states of the upper
dressed adiabatic potential at the intensity I=11.19�1013 W/cm2

producing a zero-width resonance.

vadiab �0diab �vadiab� ��0diab �vadiab��2

0 0.9320 0.8686

1 −0.2834 0.0803

2 0.1586 0.02516

3 0.1027 0.01054

4 −0.07304 0.005335

5 0.05518 0.003045

FIG. 9. The probability densities ��r� obtained when using the
field-free ground vibrational state as a starting point. Left panel: the
field-free state. Middle panel: the density of the two-channel Flo-
quet function at the first critical intensity producing a vanishing of
the width. Right panel: the density calculated for the lowest state of
the upper adiabatic potential at the critical intensity.

FIG. 10. The probability densities ��r� obtained when using the
field-free vibrational state with vdiab=3 as a starting point. The
three panels have the same meaning as in Fig. 9. We note the
change in the number of nodes when going from the field-free treat-
ment to the Floquet and adiabatic approaches at the critical inten-
sity. The change is progressive along the trajectory. The difference
between the Floquet wave function and the adiabatic wave function
resides in the hump around r=1.4 a .u., which is associated with the
lowest channel.
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proportional to the Franck-Condon factors between the origi-
nal diabatic vibrational state and the final dressed adiabatic
states.

We give in Table II these Franck-Condon factors. It is
clear that the lowest adiabatic state is favored. Since at this
intensity only one of the adiabatic states has a small width,
all other states should disappear quickly. This means that in
the detection of the dissociation products there should be, as
a signature of the existence of molecules raised to a zero-
width resonant state, a signal with a significant delay with
respect to the signal following immediately the excitation.
The fact that after the critical intensity there is generally a
range of intensities where the width remains rather small �cf.
Fig. 2� means that there is a certain flexibility in the choice
of the laser intensity.

VII. CONCLUSIONS

The present work has some points in common with the
study of so-called vibrational trapping �cf. for instance, �4��.
In such studies one examines the fate of the molecule when a
pulse is applied. One or several resonances may be excited,
depending on whether the pulse is smooth or sudden. The
main difference is that the choice of the intensity is not tai-
lored to match the potential structure of the dressed mol-
ecule. We have shown that there exist in the case studied
here, as well as in the previous study �6�, very special inten-
sities that may facilitate the trapping of the molecule in a
dressed adiabatic state. A test is under way to examine how
the molecule responds when the peak intensity is chosen to
be precisely a critical intensity.
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