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We give a detailed account of an ab initio computational treatment of multiphoton single ionization �with or
without excitation� as well as double ionization of two-electron atoms exposed to short-wavelength electric
fields. This treatment is time dependent and based on a spectral method of configuration interaction type
combined with Jacobi or J-matrix calculations. It involves a complete treatment of electron-electron correlation
in the initial and final states as well as during the time propagation. The atom eigenvalue problem is first solved
by means of the spectral method. It consists of expanding the atom wave function in a basis of products of
complex Coulomb-Sturmian functions of the electron radial coordinates and bipolar harmonics of the angular
coordinates. This method allows a high-resolution study of many atomic states, in particular high-lying singly
excited states as well as many doubly excited states. Results for He are presented and discussed in detail. The
time-dependent Schrödinger equation is then solved by means of an explicit scheme of Runge-Kutta type. An
accurate calculation of the probability of single and double ionization is carried out by projecting the ionizing
wave packet on fully correlated multichannel scattering wave functions generated by means of the J-matrix
method. After a detailed analysis of the accuracy of this method, we show that our results for the total cross
section of one-photon single and double ionization of He and H− are in very good agreement with those
obtained by the most sophisticated approaches. Two-photon double ionization of He is then considered, and
results are presented in a frequency regime where substantial discrepancies subsist between all existing calcu-
lations. Our results demonstrate that electron correlations in the final state play a significant role.
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I. INTRODUCTION

The study of the quantum dynamics of strongly correlated
two-electron atomic systems driven by short-wavelength os-
cillating fields is a fundamental problem in atomic physics
and a challenge for both experiment and theory. So far, most
of the experimental works have focused on one-photon
single ionization �SI� with excitation of the residual ion �1�
as well as one-photon direct double ionization �DI� of two-
active-electron atoms �2� by means of synchrotron light
sources at x-ray wavelengths. Partial photoionization cross
sections of He with both n and l final-ion-state separation
have been measured recently by using lifetime-resolved fluo-
rescence spectroscopy �3�. In the case of one-photon DI of
He, absolute measurements of energies and angles of emis-
sion of the two strongly correlated photoelectrons �4� have
provided a crucial test of the theoretical methods. At present,
substantial efforts regarding the development of new XUV
sources are made in two distinct directions. First, the genera-
tion of ultrashort pulses whose duration is close to the time
scale associated with the electron-electron correlation in at-
oms: namely, attosecond pulses �5�. Second, the development
of free-electron lasers operating at unprecedently high peak
intensities in the far-x-ray regime �6�. These developments
have opened the route to the study of the multiphoton single
and double ionization �or excitation� of atoms at high fre-
quency and intensity. Moving beyond the single-photon pro-
cess introduces experimental complications related to the
weakness of the signals. However, it also leads to a rich

variety of new processes enabling a deeper exploration of
electronic correlations �7�.

SI with excitation of the residual ion and direct DI of
atoms are processes where electron-electron correlation plays
a dominant role. In the case of the one-photon transitions, SI
with excitation and direct DI result from the electronic cor-
relation. The theory of such processes requires, in principle,
knowledge of the boundary conditions for the three-body
partial and complete fragmentation of the system. This
problem—in particular, the one related to the complete frag-
mentation of the atomic system—has been recognized as
very challenging since the early contributions of Rudge,
Seaton, and Peterkop �8�. One-photon direct DI of He has
been studied by many authors after the pioneer work of By-
ron and Joachain �9�. However, it is only over the last decade
that various nonperturbative approaches have been able to
provide accurate data for both total and differential one-
photon DI cross sections.

Brauner, Briggs, and Klar �10� derived an ansatz wave
function which accounts for the three-body Coulomb inter-
action in the asymptotic region. This function, which we re-
fer to as the BBK wave function, has been used by Maul-
betsch and Briggs to obtain the angular distribution of the
two photoelectrons in the case of He �11�. The results are in
relatively good agreement in shape but not in amplitude with
the experimental or other theoretical data �12�. A multichan-
nel double-continuum wave function has been generated
fully numerically by Nikolopoulos and Lambropoulos �7�
within the framework of discretized bases involving linear
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combinations of B splines. This wave function has been used
in the calculation of the total cross section of one- as well as
two-photon SI and DI of He.

Proulx and Shakeshaft �13� developed a sophisticated ap-
proach based on an expression for the total flux passing
through a hypersphere of very large radius. Boundary condi-
tions are incorporated within the stationary phase limit. Later
on, Pont and Shakeshaft �14� reformulated this approach and
managed to circumvent the problem of the asymptotic con-
ditions by invoking projection operators: double ionization is
separated from single ionization by projecting out the bound
states of the one-electron ion �or atom� left behind after
single ionization. These methods which require complex
scaling of the total Hamiltonian have been generalized, at
least formally, to treat multiphoton transitions �15�. How-
ever, to date, accurate results for total and differential cross
sections have been obtained only in the case of one-photon
DI of He. The first systematic study of the DI and SI with
excitation of the He isoelectronic sequence was carried out
by Kheifets and Bray �16� by means of the so-called conver-
gent close-coupling �CCC� approach. In this approach, the
Lippmann-Schwinger equation for the transition T matrix is
solved approximately by introducing a finite set of square-
integrable functions to represent both the bound and con-
tinuum target states. In this way, the three-body breakup am-
plitude is actually built up from two-body discrete channel
amplitudes. This approach has been recently applied to two-
photon DI �17�. The R-matrix formalism which is particu-
larly appropriate for the treatment of one-photon SI has also
been used to study the DI problem �18,19�. The most accu-
rate treatment is due to Malegat et al. �19� who developed an
hyperspherical R-matrix Floquet approach in which semi-
classical outgoing waves are used in the asymptotic region to
impose three-body boundary conditions. This method has
provided accurate results, in particular very close to thresh-
old, for both one-photon SI and DI �20�. An R-matrix Flo-
quet approach using B splines to treat DI of He has also been
developed by Feng and van der Hart �21�. Recently, this
approach has been generalized to the calculation of the two-
photon DI total cross section in He �22�. Finally, McCurdy et
al. �23� developed a method which, in spirit and formalism,
is very close to the Proulx-Shakeshaft approach. This method
uses a B-spline implementation of exterior complex scaling.

The study of multiphoton SI and DI processes introduces
further difficulties: given the high peak intensity and the ul-
trashort duration of the XUV pulse, the approaches based on
Floquet theory become rapidly numerically untractable. It is
therefore necessary to solve nonperturbatively and therefore
numerically the corresponding time-dependent Schrödinger
equation �TDSE�. Needless to say, in contrast to one-photon
processes, the high-frequency multiphoton SI and DI pro-
cesses represent essentially an open problem which has just
started to be investigated. There are basically two types of
methods to solve numerically the TDSE: The finite differ-
ence �FD� grid and spectral methods. Schematically, FD grid
methods consist in time propagating the total wave function
defined in terms of its finite-difference representation on a
spatial grid. Such methods are in fact local in the sense that
the spatial derivatives of the total wave function at a given
grid point depend on the value of the wave function at neigh-

boring grid points; this leads to the manipulation of rather
sparse matrices. In the case of the spectral methods, and for
reasons which will be clarified later, the total wave function
is first expanded in terms of the eigenstate wave functions of
the atomic Hamiltonian, the coefficients being time depen-
dent. These eigenstate wave functions are in turn expanded
in a finite basis of trial functions of the electron coordinates.
Test functions are then introduced to ensure that the station-
ary Schrödinger equation is satisfied as closely as possible by
the truncated series expansion. This is achieved by minimiz-
ing with respect to a suitable norm, the residual—i.e., the
error in the stationary Schrödinger equation produced by us-
ing the truncated expansion instead of the exact solution.
This leads to a generalized eigenvalue problem. The trial
functions are usually L2 integrable functions solutions of a
Sturm-Liouville problem. They are chosen according to the
physics of the problem and its asymptotic conditions. In gen-
eral, the test functions are either the same as the trial func-
tions, or Dirac � functions. In the latter case, we obtain a
so-called collocation spectral method which consists in im-
posing that the solution is correct in all the points of a given
grid. These points usually correspond to the abscissae of a
Gauss-type quadrature. Let us stress that in contrast to FD
methods, the collocation method �and in general all spectral
methods� is global because the spatial derivatives of the so-
lution wave function at a given grid point involve all the
other grid points. Despite the fact that for a long time—i.e.,
since the early works of Hartree—FD methods have been
considered more accurate than the use of limited basis sets,
spectral methods have notable strengths. For analytical func-
tions, errors typically decay at an exponential rather than a
�much slower� polynomial rate as a function of the number
of trial functions. This approach is surprisingly powerful for
many cases with nonsmooth or even discontinuous functions
�24�. Especially in several space dimensions, the relatively
coarse grids which suffice for most accuracy requirements
lead to very time- and memory-effective calculations. Fi-
nally, the fact that the solution wave function is expressed in
terms of a finite sum of known analytical functions makes
the extraction of valuable information �evaluation of observ-
ables, momentum-space representation, etc.� more tractable
than in the case of FD grid methods.

As in the case of the time-independent methods, the the-
oretical description of the asymptotic conditions for the com-
plete fragmentation of the target system remains a fundamen-
tal problem for both FD grid and spectral methods. In
addition to the fact that the two-electron single- and double-
continuum states may be degenerate in energy, the numeri-
cally built positive-energy states contain necessarily both
single- and double-continuum components because they are
calculated in a finite space. As a result, it is extremely diffi-
cult to disentangle the single- and double-ionization contri-
butions.

A fully numerical integration of the TDSE for laser-driven
He has been performed by Taylor and co-workers �25� in a
broad range of wavelengths from 780 nm �Ti:sapphire laser�
to 14 nm. The approach, which requires considerable com-
puter resources, is based on a mixed-basis set, a FD method
in which the radial coordinates r1 and r2 of the two electrons
are modeled on a FD grid and the four angular coordinates
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�1, �2, �1, and �2 are handled by writing the wave function
on a basis set of coupled spherical harmonics. The time
propagation is carried out by means of an explicit scheme.
Colgan et al. �26� developed a time-dependent close-
coupling theory describing one- and two-photon DI pro-
cesses in He, Li, and Be. Their method, which is very similar
to the method of Taylor and co-workers is also based on a
mixed angular basis set and a finite-difference method for the
radial part of the total wave function. However, they differ in
the way the SI and DI probabilities are calculated. In the
approach of Taylor and co-workers, the two-electron radial
space is divided into four regions associated with a given
ionization stage of He. The size of each of these regions is
fixed with some degree of arbitrariness. In the approach of
Colgan et al., the DI probability is obtained by projecting the
target wave function after the time propagation on an uncor-
related product of Coulomb wave functions. With this
method, Colgan et al. evaluated one- and two-photon total
and differential DI cross sections in He �27,28� with an un-
expected accuracy in many cases. This raises the unsolved
question of the role of the electronic correlation in the final
state. In principle, the final wave function has to be projected
on a �multichannel� scattering wave function with the correct
asymptotic behavior. Note that the presence of the electron-
electron interaction introduces already a phase shift which is
essentially built at short distances. Recently, Kleiman et al.
�29� extended the same approach to one-photon double
photoionization with excitation as well as triple ionization of
Li.

A spectral method of configuration interaction type to
solve the TDSE has been developed by Laulan and Bachau
�30,31� for He, H−, and Be. Products of B-spline functions
are used to represent the radial part of the atomic states while
the angular part is expressed in terms of coupled spherical
harmonics. B-spline functions offer the advantage of solving
the problem in a box, making the control of the density of
continuum states easier �32�. In the case of two-photon DI of
He, Laulan and Bachau �33� studied the role of the electronic
correlation in the final state by projecting the final wave
function �after propagation� on a double-continuum state in
which the electron-electron repulsion term is treated within
zero- and first-order perturbation theory. Their results show
no significant effect of the final-state electron correlation for
the total DI probability. There is, however, a clear influence
of this final-state electron correlation on the electron energy
distribution. As a matter of fact, the maximum of the electron
energy distribution is closer to the energy conservation line
when the first-order correction is introduced.

In the contribution, we present and discuss a spectral
method in which the radial part of the wave function is ex-
panded in terms of products of real or complex Coulomb-
Sturmian functions in the coordinates r1 and r2 and coupled
spherical harmonics for the angular coordinates �1, �2, �1,
and �2. This method has been briefly and partially described
in various situations �34–37�. We believe, however, that we
have now reached a stage where we have significant progress
to report. In particular, we show that by combining this ap-
proach with the J-matrix method developed by Heller and
Yamani �38�, it is possible to treat correctly the correlation in
the final state within a time-dependent scheme.

This contribution is structured as follows. After this long
introduction where we tried to give an account of the main
theoretical approaches developed so far to treat one- and
multiphoton SI and DI processes, we present in Sec. II the
basic framework of our theoretical approach. This section is
divided into three parts. The first part is devoted to structure
calculations. We show that very accurate singly and doubly
excited states are generated by solving a generalized eigen-
value problem within our spectral method. In the second
part, we give a brief account of the J-matrix method and
generate a multichannel continuum wave function of a two-
electron system. The accuracy of this method is then tested
by calculating the photoionization �with or without excitation
of the residual ion� cross section in various situations. The
last part of this section is devoted to the time propagation
and to the calculation of the relevant observables. In Sec. III,
we test our approach in the case of one-photon SI as well as
one-photon DI of He and H− where accurate data exist. Then,
we calculate and analyze the total cross section of two-
photon direct DI of He. Unless stated, atomic units are used
throughout this work.

II. THEORETICAL APPROACH

A. Atomic structure calculations

1. Spectral expansion of the atomic states

The bound-state wave function of a two-electron system
with total angular momentum L of projection M and total
energy E� satisfies the time-independent Schrödinger equa-
tion

�H − E����
L,M�x�� = 0, �1�

where x� stands for all electron position vectors. The non
relativistic Hamiltonian H reads

H = −
1

2
�r1

2 −
1

2
�r2

2 −
Z

r1
−

Z

r2
+

1

r12
. �2�

Z denotes the charge of the nucleus, which is assumed to be
infinitely massive. r1 and r2 are the radial coordinates of
electrons 1 and 2, respectively. r12= �r�1−r�2� is the interelec-
tronic distance. We now introduce our spectral method aimed
at solving Eq. �1�. All spectral methods are actually based on
the expansion of the solution ��

L,M in a truncated series of
the form

��,N
L,M�x�� = �

�=1

N

��,�
L,M���x�� . �3�

� is associated with a given set of basis parameters. N gives
the number of trial �or basis� functions ���x��. The N expan-
sion coefficients ��,�

L,M are calculated by annuling the residual
RN �39�,

RN�x�� = �H − E����,N
L,M�x�� , �4�

in an approximate sense by setting to zero the scalar product
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�RN,	�� =	 RN	�wdx�, 
 = 1, . . . ,N . �5�

The 	� are the test �or weighting� functions, and the weight
w is associated with the type of spectral method and with the
trial functions. If the test functions coincide with the trial
functions, we obtain the so-called Galerkin spectral method
in which the residual RN is equal to 0 in the mean. When the
test functions are given by a product 
i��x�i−x�� and the
weight w equal to 1, we obtain a collocation method in
which the residual RN is forced to be zero at the collocation
points �x�i�. Such a method is similar to a FD grid method
except that the choice of the collocation points is not arbi-
trary but related to the choice of trial functions. In most of
cases, the N collocation points are the abscissae of a Gauss
quadrature method; very often, this leads to a faster �expo-
nential� convergence in terms of the number of points �24�.

In the present case, we use a Galerkin spectral method. At
this stage, two types of basis can be considered: the so-called
explicitly correlated �EC� bases in which the basis functions
depend explicitly on the interelectronic distance r12 and the
configuration interaction �CI� bases in which the wave func-
tion is written as a linear combination of �antisymmetrized�
products of one-electron wave functions. EC bases involve
either Hylleraas functions �40� of the form r1

kr2
mr12

n e−�r1e
r2

with k, m, and n non-negative integers and � and 
 positive
nonlinear parameters, or functions of the perimetric coordi-
nates �41� u=−r1+r2+r12, v=r1−r2+r12, and w=r1+r2−r12.
These EC bases lead to a very accurate description of the
energy and wave function of the ground state as well as
singly or doubly excited states characterized by a small in-
terelectronic distance. Note that in the case of an EC basis
expansion in terms of Coulomb-Sturmian functions �see
�42,43� and below� of the perimetric coordinates, the matrix
associated with the Hamiltonian �2� is banded and all its
elements are calculated analytically �44�. This allows a treat-
ment of matrices of considerable size and accurate calcula-
tion of the energy of many singly or doubly excited states.
However, the matrix size needed in the case of very asym-
metrically excited states �characterized by a relatively large
interelectronic distance� becomes rapidly prohibitive and is
essentially limited to small total angular momenta L=0,1.

In the case of the CI bases, one exploits the multipole
expansion of the electron-electron Coulomb repulsion:

1

r12
= �

q=0

�

�
p=−q

q
4�

2q + 1

r
q

r�
q+1Yq,p

* �r̂1�Yq,p�r̂2� , �6�

where r=min�r1 ,r2� and r�=max�r1 ,r2�. The angular part
of the wave function in a CI scheme is expressed in terms of
bipolar harmonics �45� that couple the individual angular
momenta �1 and �2 of electrons 1 and 2, respectively, to the
resulting total angular momentum L. Hence, electronic cor-
relation is taken into account in CI calculations by including
various ��1 ,�2� pairs that are mixed in the infinite sum in Eq.
�6�. The accuracy of the CI results depends on the number of
radial functions in the basis set, as well as the number of
angular configurations included.

Due to their simplicity and flexibility, CI bases have been
widely used in many-electron atomic and molecular calcula-
tions using, for instance, Slater-type functions �46�, B splines
�32�, or hydrogenlike wave functions �47�. Indeed, the CI
approach has many interesting features. Its implementation
involves the evaluation of one- and two-dimensional inte-
grals, in contrast to EC bases where three-dimensional inte-
grals have to be evaluated. This feature makes the extension
of the CI approach to larger systems �with three or more
electrons� easy and straightforward contrary to the EC basis
expansion approach. Unfortunately, the CI approach has al-
ways been plagued with the difficulty of slow convergence in
terms of the number of radial functions and angular configu-
rations used. This slow convergence, which is particularly
acute for the ground-state energy, is essentially due to the
fact that the CI expansions do not satisfy the Kato cusp con-
dition associated with the coalescence of the two electrons
�48�. Indeed, the wave function of the system has a discon-
tinuous derivative when r1=r2. For a high asymmetrically
excited state �HAES�, however, in which one electron is in a
highly excited level while the other remains in a lower one,
there is little overlap between the two electron clouds. In that
case, the CI expansion is expected to converge more rapidly
and give accurate results. Despite the fact that EC basis ex-
pansions are usually preferred because of their accuracy and
fast convergence, we use here a CI expansion for two rea-
sons: first, we show that by adequately constructing the CI
expansion, it may be the best ab initio approach to treat
HAES’s; second, this type of approach is the most tractable
one by far, when dealing with the calculation of the observ-
ables in the present context of the time-dependent treatment
of multiphoton ionization of two-electron systems by short-
wavelength radiation.

Providing an accurate description of HAES’s in two-
electron systems has been a long-standing problem in theo-
retical atomic physics. Variational calculations yield very ac-
curate energies for low-lying states in He, but for �singly�
excited states having increasingly large principal quantum
number n, the accuracy and convergence of the results with
increasing basis size deteriorate rapidly. Improvements in CI
expansions have made possible the extension of variational
calculations in He for L=0 to the intermediate-n range �n up
to 18� �49�. However, the deterioration of the accuracy with
increasing degree of excitation of one of the electrons pre-
vails �see, e.g., �50�� and has prevented direct application of
variational calculations to higher Rydberg states. For higher
L-bound states, asymptotic expansions based on a core po-
larization model have been considered as the only reliable
approach due to difficulties encountered by various ab initio
variational calculations based on explicitly correlated expan-
sions �see, e.g., �51,52�.�. The difficulty in describing
HAES’s is due to the fact that two distinct regions of space
are associated with the electron probability distribution: a
region close to the nucleus for the inner electron and a region
far from the nucleus for the highly excited outer electron. A
basis expansion will be efficient in describing such a state if
it adequately spans these two regions. In this contribution,
we construct such basis expansion for a two-electron wave
function by combining the structure of the CI expansion and
the properties of the Coulomb-Sturmian functions. Before
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describing this method, it is worth mentioning that a substan-
tial improvement in the speed of convergence and the accu-
racy of the CI method has been achieved by Goldman �53�
through the so-called modified configuration interaction
�MCI� method. In this method, the one-electron functions
depend on r and r�, which allows for a better representa-
tion of the cusp. Furthermore, the angular convergence is
improved by increasing the number of angular configurations
mixed through the introduction of an a priori superposition
of angular functions that depend on a set of nonlinear param-
eters. Unfortunately, the extreme simplicity of the radial in-
tegrals in the standard CI method is lost and it seems more
difficult to extend the MCI to three- or more-electron sys-
tems than the standard CI. In addition, the optimization pro-
cedure of the nonlinear parameters requires many steps with
each time, the diagonalization of the Hamiltonian matrix.
When the matrix is large, such optimization is very time
consuming.

The solution of Eq. �1� is expanded as follows �from now
on, we drop the suffix N for clarity�:

��
L,M�r�1,r�2� = �

�1,�2

�
s

�
n1,n2

�k1sk2sn1n2�
�1�2LM

� A
Sn1�1

k1s �r1�

r1

Sn2�2

k2s �r2�

r2
��1�2

LM �r̂1, r̂2� , �7�

where �k1sk2sn1n2�
�1�2LM is the expansion coefficient. The operator

A projects onto either singlet or triplet states, so as to ensure
the symmetry or antisymmetry of the spatial wave function
as required by the Pauli principle. This operator is defined by
�1+�P� /�2 where the operator P exchanges both electrons
and � takes the value +1 for singlet states and −1 for triplet
states. The radial one-electron functions Sn,�

k �r� are Coulomb-
Sturmian functions �42,43� defined for a given angular mo-
mentum � and radial index n by

Sn,�
k �r� = Nn,�

k r�+1e−krLn−�−1
2�+1 �2kr� , �8�

where k is a nonlinear parameter assumed real for the time
being. Ln−�−1

2�+1 �2kr� is a Laguerre polynomial. The normaliza-
tion constant Nn,�

k given by

Nn,�
k =�k

n
�2k��+1� �n − � − 1�!

�n + ��! 1/2

�9�

is derived from the condition �0
�Sn,�

k �r�Sn,�
k �r�dr=1. The ra-

dial index n of the Sturmian functions is a positive integer
satisfying n��+1. The angular part of the expansion �7� is
expressed in term of bipolar spherical harmonics �45�,

��1,�2

LM �r̂1, r̂2� = �
m1,m2

��1m1�2m2�LM�Y�1,m1
�r̂1�Y�2,m2

�r̂2� ,

�10�

which couple the two individual angular momenta �1 and �2
in the L-S scheme. Y�,m denotes the spherical harmonic, and
��1m1�2m2 �LM� is the Clebsch-Gordan coefficient. In order
to preserve parity, which is a good quantum number, the
L-S coupled individual angular momenta of the electrons
must satisfy �−1�L= �−1��1+�2 �54�. In order to avoid redun-

dances in expansion �7�, the orbital angular momenta are
restricted to �1��2, and if �1=�2, then n1�n2.

The Coulomb-Sturmian functions �8� are a solution of the
Sturm-Liouville problem

�−
1

2

d2

dr2 +
��� + 1�

2r2 −
�

r
+

k2

2
�Sn,�

k �r� = 0, �11�

with the associated boundary conditions Sn,�
k �0�=0 and

Sn,�
k ���=0. �, equal to kn, is the eigenvalue, and k is fixed

and real. Coulomb-Sturmian functions have interesting fea-
tures that are very suitable for a reliable CI method. �i� They
form a complete and discrete basis set of L2 integrable func-
tions. �ii� They are exact solutions of the stationary
Schrödinger equation for a single electron in the Coulomb
field of a nucleus of charge Z; when k=Z /n, the Coulomb-
Sturmian function Sn,�

k �r� coincides with the hydrogenic
bound state of principal quantum number n and angular mo-
mentum quantum number �. �iii� Their associated nonlinear
parameter k and index n both act like spatial dilatation fac-
tors. Indeed, for n and � fixed, decreasing �increasing� k
increases �decreases� the radial spread of Sn,�

k . Similarly, in-
creasing �decreasing� n with k and � fixed increases �de-
creases� the radial spread of Sn,�

k �r�. Therefore, nonlinear pa-
rameters and radial indices of Sturmian functions could be
adjusted in the basis expansion in order to adequately span
the two distinct regions mentioned earlier in HAES’s. This
requires the basis expansion to be built in such a way that the
nonlinear parameter and the number of Sturmian functions
attributed to one electron could be different from those at-
tributed to the other.

Note that in all previous CI expansions involving
Coulomb-Sturmian functions the same nonlinear parameter k
is used for all Coulomb-Sturmian functions in the basis. This
corresponds to setting k1s=k2s�k and s=1 in our expansion
�7�. Futhermore, for each pair ��1 ,�2�, the same number N of
Coulomb-Sturmian functions Sn1,�1

k �r1� with �1+1�n1��1

+N and Sn2,�2

k �r2� with �2+1�n2��2+N is taken into ac-
count. On the one hand, solving the stationary Schrödinger
equation with such a basis is quite simple because all inte-
grals involving the Coulomb-Sturmian functions can be ob-
tained by means of simple analytical formulas and because
both the overlap and the independent electron Hamiltonian
�given by h=H−1/r12� have a banded structure. On the other
hand, considering the dilatation properties mentioned above
for the nonlinear parameter and the Sturmian index, using
identical parameters for the two electrons means that they are
treated as if their clouds were localized at similar distances
from the nucleus. Intuitively, this means that this approach
must be adequate only for describing the ground state or
symmetrically excited states where the individual quantum
states of the two electrons are almost identical. But for
HAES’s, where the two electron clouds are located in quite
different regions, the approach would be inadequate because
the basis functions fail to properly span the two regions.
Therefore, such a CI approach turns out to be globally lim-
ited. In the case of the ground state, it is the cusp problem
that limits the accuracy of the CI expansion unless a large
number of pairs ��1 ,�2� is taken into account. In the case of
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the HAES’s, it is the use of a single k and N that limits the
accuracy. Note that within such a scheme a good description
of the HAES’s would require N to be very large for both
electrons although a small number of Coulomb-Sturmian
functions is sufficient to describe the inner electron.

We propose a Coulomb-Sturmian basis expansion �7� that
overcomes the limitations mentioned above. It is constructed
in order to allow the nonlinear parameter and number of
Sturmian functions attributed to one electron to be different
from those attributed to the other electron. For an accurate
description of a HAES with such a basis, according to the
dilatation properties of Coulomb-Sturmian functions dis-
cussed earlier, a smaller number of Sturmian functions with a
relatively large nonlinear parameter would be enough for the
inner electron, whereas a larger number of Sturmian func-
tions with a smaller nonlinear parameter would be necessary
to describe the outer electron. It follows that only basis
functions which are really essential and adequate for the
description of a given atomic state or any physical process
may be introduced in the basis, leading to a substantial re-
duction of the basis size. In practice, we introduce a set of
Coulomb-Sturmians functions �SCSF�—i.e., a combination
�k1s ,N1s ,k2s ,N2s� involving the Coulomb-Sturmian functions
Sn1,�1

k1s �r1� with �1+1�n1��1+N1s associated with electron 1
and Sn2,�2

k2s �r2� with �2+1�n2��2+N2s associated with elec-
tron 2. The pairs �k1s ,N1s� and �k2s ,N2s� are to be adjusted
for each electron in order to increase the density of
Coulomb-Sturmian functions in the two characteristic re-
gions of the HAES’s. Good nonlinear parameters for describ-
ing a given atomic state are consistently obtained by exploit-
ing the fact that Sn,�

k �r� describes an electron of energy
�=−k2 /2=−Z2 /2n2 in the field of a nucleus of charge Z.
Consider, for instance, a bound state of He with electron 1 in
the 1s state and electron 2 in an excited state with principal
quantum number n2. These electrons experience effective
charges 2 and Z−�, respectively, where ��0��1� results
from screening by the inner electron. Such a state is accu-
rately described by including in the basis expansion, a SCSF
characterized by nonlinear parameters k1=2 and k2= �Z
−�� /n2. For each pair ��1 ,�2�, one or many SCSF �labeled in
Eq. �7� by the index s� may be selected. The use of many
SCSF’s allows us to span a larger region with the basis and
consequently permits a simultaneous description of many
eigenstates with a single wave function expansion. As the
degree of excitation of the outer electron increases, only N1s
or N2s �not both� has to be increased and the corresponding
nonlinear parameter decreased in the basis. On the other
hand, as this degree of excitation increases, the correlation
between the two electrons decreases and therefore less angu-
lar configurations are necessary in the basis for accurate re-
sults, so that the overall basis size is kept within reasonable
limits.

So far, we have assumed that the nonlinear parameters are
real. However, by making these parameters complex, our
spectral expansion �7� may be used to describe accurately the
doubly excited states. We write

k → ke−i�, �12�

where 0�� /2. Mathematically, expanding the solution
of Eq. �1� in terms of complex Coulomb-Sturmian functions

amounts to transforming the atomic Hamiltonian �2� by a
complex scaling ri→ri exp�i�� and expanding the eigenfunc-
tions of the scaled Hamiltonian on the real Coulomb-
Sturmian functions. In this picture, varying the angle � from
0 to � /2, while leaving the bound states unaffected, rotates
the continuum spectrum into the lower half plane by an angle
2� about each threshold, thereby uncovering the resonances
and making them amenable on a L2 basis. From the physical
point of view, expanding the solution of Eq. �1� in terms of
complex Coulomb-Sturmian functions reinforces the bound-
ary conditions associated with the ionization problem �which
is our ultimate goal�: namely, an outgoing spherical wave.
Note that a basis of complex Coulomb-Sturmian functions
characterized by only one complex nonlinear parameter is
not complete anymore. Furthermore, with our convention for
the angle � �see Eq. �12��, an outgoing spherical wave can be
expanded on this basis, with decreasing coefficients for in-
creasing values of the Sturmian radial index while the expan-
sion of ingoing spherical waves diverges �55�.

Finally, another interest in using Coulomb-Sturmian func-
tions is that obtaining the two-electron wave function in mo-
mentum space is straightforward. This feature is particularly
important in the perspective of a time-dependent study of
two-electron systems in the presence of ultrashort, electro-
magnetic pulses. Indeed, by taking the Fourier transform of
Eq. �7�, one obtains a similar expression for the wave func-
tion in momentum space, but with the radial Coulomb-
Sturmian functions Sn,�

k �r� replaced by their counterpart
�n,�

k �p� in momentum space, which is given by

�n,�
k �p� = Nn,�

k p�

�p2 + k2��+2Cn−�−1
�+1 � p2 − k2

p2 + k2 , �13�

where Cn−�−1
�+1 denotes the Gegenbauer polynomial �56�. The

condition �0
��n,�

k �p��n,�
k �p�p2dp=1 is used to derive the nor-

malization constant

Nn,�
k = 22�+2k�+2�!�2kn

�

�n − � − 1�!
�n + ��!

. �14�

2. Solution of the stationary Schrödinger equation

After substituting ��
L,M in Eq. �4� by its expansion �7� and

setting to zero the scalar products �5�, we obtain the follow-
ing generalized eigenvalue problem:

H� = ES� , �15�

where � is the vector representation of the wave function �.
S is a real symmetric matrix representing the overlap while
H is the matrix associated with the atomic Hamiltonian. H is
either real symmetric for real nonlinear parameters or com-
plex symmetric for complex nonlinear parameters. The cal-
culation of the matrix elements of S and H may be per-
formed analytically; it becomes, however, very cumbersome
as soon as various sets of nonlinear parameters are intro-
duced. Instead, we use a Gauss-Laguerre quadrature which is
particularly appropriate and, in principle, exact in the present
case since all the integrals to calculate involve products of
polynomials and decreasing exponentials. Care, however,
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must be taken in calculating the elements of the matrix as-
sociated with the 1/r12 term. These elements involve the
following double radial integral �see Eq. �6��:

U = 	
0

�

dr1	
0

�

dr2S
n1�,�1�
k1� �r1�S

n2�,�2�
k2� �r2�� r

q

r�
q+1

� Sn1,�1

k1 �r1�Sn2,�2

k2 �r2� . �16�

In order to apply a Gauss-Laguerre quadrature while avoid-
ing severe round-off errors, it is necessary to rewrite this
double integral as follows:

U = 	
0

�

dr2S
n2�,�2�
k2� �r2�Sn2,�2

k2 �r2�r2
q	

r2

�

dr1S
n1�,�1�
k1� �r1�

� Sn1,�1

k1 �r1�
1

r1
q+1

+ 	
0

�

dr1S
n1�,�1�
k1� �r1�Sn1,�1

k1 �r1�r1
q	

r1

�

dr2S
n2�,�2�
k2� �r2�

� Sn2,�2

k2 �r2�
1

r2
q+1 . �17�

The above decomposition is not the conventional one which
consists in writing

U = 	
0

�

dr1S
n1�,�1�
k1� �r1�Sn1,�1

k1 �r1�
1

r1
q+1	

0

r1

dr2S
n2�,�2�
k2� �r2�

� Sn2,�2

k2 �r2�r2
q

+ 	
0

�

dr1S
n1�,�1�
k1� �r1�Sn1,�1

k1 �r1�r1
q	

r1

�

dr2S
n2�,�2�
k2� �r2�

� Sn2,�2

k2 �r2�
1

r2
q+1 . �18�

In order to use a Gauss-Laguerre quadrature, it is still nec-
essary in this latter case to rewrite the first inner integration
over r2 as a difference between an integration from 0 to �
and an integration from r1 to � so that U is now written as a
sum of three terms. It turns out that very often, two of these
three terms cancel out almost exactly, therefore introducing
serious round-off errors. Instead, the decomposition �17� re-
vealed very stable numerically. We have checked that even
for large values of the radial index ��140� and of the angular
quantum numbers �around 15� the calculation of the integrals
�17� is free of round-off errors. For a given total angular
momentum L, the matrix H is completely full because of the
1/r12 term while S has a block-diagonal structure, each di-
agonal block corresponding to a given pair ��1 ,�2�. For each
diagonal block, there may be one or many subblocks, each
one associated with a SCSF selected for the pair ��1 ,�2� in
question. Note that because different SCSF’s may be used,
the size of matrices S and H may vary with L.

The inclusion of many sets of real nonlinear parameters in
our basis makes it numerically “overcomplete.” It means that
some eigenvalues of the overlap matrix �which must be posi-
tive definite� can be zero or even negative. This results from

the loss of numerical linear independence due to the finite
precision with which numbers are stored. Therefore, the in-
version of this overlap matrix gives rise to serious numerical
overflows. In order to solve this problem, we can proceed as
follows. Let H and S be �n�n� matrices, and let us consider
the �n�n� orthogonal matrix T that diagonalizes S. There-
fore, TtST=s where s is the diagonal matrix containing the
eigenvalues of S whose associated eigenvectors are stored in
columns of T. We define a small and positive cutoff � �of the
order of 10−12� and reject all eigenvalues of S that are smaller
than this cutoff. We denote by p the number of overlap ei-
genvalues that are greater or equal to the cutoff. After reject-
ing the n− p overlap eigenvalues and their corresponding
eigenvectors, the sizes of T and s are, respectively, reduced
to �n� p� and �p�1�. Using basic matrix algebra, one can
show that Eq. �15� can be transformed into the simple eigen-
value problem

H̃�̃ = E�̃ , �19�

with

H̃ = VtHV , �20�

�̃ = V−1� . �21�

H̃ is a �p� p� matrix and �̃ is a �p�1� vector. V is a �n
� p� matrix given by

V = Ts−1/2. �22�

The resulting simple eigenvalue problem �19� can be solved
by using standard diagonalization techniques. The above pro-
cedure, however, has a drawback: the number of eigenvalues
that are eliminated can be very large �up to 10% of the total
number of eigenvalues in some cases�. Whether or not the
corresponding eigenvectors that are eliminated play a role is
not clear. Therefore, instead of eliminating eigenvalues of the
overlap matrix and in order to keep this matrix positive defi-
nite, we add to the overlap matrix S a diagonal matrix R
whose diagonal elements are tiny random numbers �of the
order of 10−13 corresponding to the double-precision ma-
chine accuracy�. We then diagonalize the modified overlap
matrix S��S+R and use its eigenvectors to regenerate our
basis. These eigenvectors are orthonormal and barely differ
from those of S. By using the Wielandt-Hoffman theorem
�57�, it has been shown �58� that if max�Rii� is of the order of
10−13, we have

�v�tSv� − vtSv� � 10−13�n , �23�

where v� and v are normalized eigenvectors of S� and S,
respectively. n is the dimension of these vectors. This shows
clearly that the difference between v� and v is indeed very
small.

3. Bound and resonant states of He and H−

In this section, we consider He and H− and analyze the
accuracy obtained within our approach for the ground-state
as well as the singly and doubly excited-state energies. Table
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I illustrates the convergence with respect to ��1 ,�2� of the
ground-state energy for He and H−. Our reference data are
from �59�. In this case, we use only one set of Coulomb-
Sturmian functions �k1 ,N1 ,k2 ,N2�: �2.0,40,2.0,40� for He
and �1.0,40,1.0,40� for H−. Note that, with the inclusion of
more pairs ��1 ,�2�, the number of Sturmian functions �N1

and N2� per electron should increase since higher values of
the angular momenta contribute to the large-distance behav-
ior of the wave function. Nevertheless, even for these fixed
and rather high values of N1 and N2, the convergence is
expected to be slow because, as mentioned before, our CI
approach does not fulfill the Kato cusp condition associated
with the two-electron coalescence. It is worth noticing, how-
ever, that the accuracy we achieve, 5 digits with 9 pairs of
angular momenta, is more than enough for the time propa-
gation which is our ultimate goal. In addition, our results
compare very well with those of Venuti and Decleva �60� for
H−, who used a CI type of approach based on B-spline func-
tions. They obtain 7 digits accuracy with 50 B splines per
electron and 25 pairs of angular momenta.

The convergence as well as the accuracy of the results
increases significantly as the asymmetry of the states in-
creases. This is clearly demonstrated in Table II where we
consider the 4 3F and 8 3K states of He and compare with the
extremely accurate reference data of Drake �51�. With an
expansion of only 144 terms and 7 pairs of angular momenta,
we obtain energies within a relative uncertainty of about 10−8

for the 4 3F state and 10−13 for the 8 3K state. As in the
previous case, the energy of these states has been obtained
by selecting only one set of Coulomb-Sturmian functions
�2.0,2,0.4,12� for the 4 3F state and �2.0,2,0.17,12� for the
8 3K state. It is important to stress that the values of the
nonlinear parameters are now different. In the case of the
4 3F state, for instance, we set k1=2.0 to describe the inner
electron and k2=0.4 for the outer electron. A similar conver-
gence has been obtained for the corresponding singlet states
4 1F and 8 1K �see �36��.

One of the objectives of the present approach is to gener-
ate accurately many singly and doubly excited states from a
single diagonalization while keeping the size of the basis
within reasonable limits. This is achieved by introducing, for
any given total angular momentum L, various sets of
Coulomb-Sturmian functions. For the sake of illustration,
we show in Tables III and IV the 50 lowest singly
excited singlet states in He for L=7. Seven pairs ��1 ,�2� of
angular momenta have been considered, and four sets
of Coulomb-Sturmian functions per pair have been selected:
�2,10,0.2,50�, �2,10,0.09,50�, �2,10,0.04,60�, and
�2,10,0.02,60�. Results in the literature are very scarce.
Drake �51� has obtained extremely accurate data for n=8, 9,
and 10 by means of a Hylleraas-type variational calculation.
As shown in Table III, the agreement between his results and
our data is perfect �all digits coincide�. Above n=10, the
accuracy of our data has been checked by analyzing their
stability as a function of N1 and N2. More than 10 digits are
correct in all data presented in Table IV. Provided that N2 is
sufficiently large �due to the number of nodes required to
describe correctly the wave function of the outer electron�,
our method is able to reproduce accurately the energy of
high-lying singly excited states.

TABLE I. Convergence of the ground-state energy in a.u. of He
and H− as a function of the number of pairs of electron angular
momenta. The size refers to the number of terms in the expansion of
the wave function. Reference data in bold characters are from �51�.

��1 ,�2� Size
He
−E

H−

−E

�0,0� 465 2.87902797 0.51449614

�1,1� 930 2.90051386 0.52658410

�2,2� 1395 2.90276209 0.52743744

�3,3� 1860 2.90331321 0.52762391

�4,4� 2325 2.90350682 0.52768618

�5,5� 2790 2.90358925 0.52771215

�6,6� 3255 2.90362816

�7,7� 6560 2.90366100

2.9037243770 0.5277510165

TABLE II. Convergence of the 4 3F and 8 3K state energy in a.u. of He as a function of the number of
pairs of electron angular momenta. The size refers to the number of terms in the expansion of the wave
function. Reference data in bold characters are from �51�.

4 3F 8 3K

��1 ,�2� Size −E ��1 ,�2� Size −E

�0,3� 24 2.031250032 �0,7� 24 2.00781249999999

�1,2� 48 2.031252292 �1,6� 48 2.00781250587708

�1,4� 72 2.031255100 �1,8� 72 2.00781251256536

�2,3� 96 2.031255117 �2,5� 96 2.00781251256693

�2,5� 120 2.031255143 �2,7� 120 2.00781251256816

�3,4� 144 2.031255144 �2,9� 144 2.00781251257019

�3,6� 168 2.031255145 �3,4� 168 2.00781251257019

−2.03125516840324 −2.00781251257023
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Let us now show that our method applies also to the dou-
bly excited states. However, the size of the basis and, in
particular, the number of pairs of electronic angular momenta
included must be increased significantly in order to generate
accurate energy widths �that may become very small close to
the thresholds�. In Table V, we present results for the energy
and width of triplet S states belonging to a doubly excited
Rydberg series below the N=2 threshold. We use the �N ,K�n

nomenclature: the index N denotes the principal quantum
number of the electron in the remaining He+ ion once the
outer electron is ionized. The index n denotes the principal
quantum number of the outer electron while the index k �k
=−N+1,−N+3, . . . ,N−3,N−1� determines the parabolic
quantum number of the Stark-type state in which the inner
electron resides. k is therefore related to the angle between
the two electron position vectors r�1 and r�2. In order to cal-
culate the width of these states, we used a complex
Coulomb-Sturmian basis or, equivalently, we performed a
complex scaling of the atomic Hamiltonian. The angle � as-
sociated to complex scaling is equal to 0.2 rad. Our results
are compared with the very accurate data of Bürgers et al.
�52�. These data have been obtained through a single diago-
nalization of the atomic Hamiltonian, calculated in an explic-
itly correlated basis. For small n, where the Kato cusp related
to the two-electron coalescence limits convergence for CI
bases, our results �energies and widths� agree with the refer-
ence data within 10−7 a.u. As n increases, the agreement im-
proves, and for n�5, the accuracy of our results is of the
order or better than 10−9. In the case of the corresponding
singlet states �see �36��, the accuracy decreases a little bit
because the influence of the Kato cusp of the wave function
is more important. In Table VI, we give the real and imagi-
nary parts of the energy of various doubly excited singlet S
states belonging to two different Rydberg series that con-
verge towards the N=2 and N=4 threshold, respectively.
These two sets of data have been obtained through a single
diagonalization, the basis size being more than 2 times
smaller than the size of the explicitly correlated basis used to
generate the reference data �52�. We see that the uncertainty
in both the real and imaginary parts of the energy is about
10−5 a.u. Finally, let us mention that we also calculate oscil-
lator strengths in both length and velocity gauges for bound-
bound transitions. They are in very good agreement with all
the data we found in the literature.

B. Continuum wave functions

By solving the generalized eigenvalue problem �15� in a
real basis, we obtain eigenenergies corresponding to bound

states and to continuum states. These continuum states are
not the correct continua associated with the atomic Hamil-
tonian �2� because our L2 basis is finite. These states are
rather �discrete� pseudostates that represent the continuum in
a finite space. When the total energy is below the double-
ionization threshold but above the first single-ionization
threshold, the pseudostates are associated with a single con-
tinuum. Above the double-ionization threshold, however, it is
impossible to associate a given pseudostate with a single
or/and a double continuum. This is because single and
double continua essentially differ by their asymptotic behav-
ior which is not described in our finite basis. This is the
problem we have to face if we want to calculate the prob-
ability of single or double ionization resulting from the in-
teraction of the atomic system with an external field.

In principle, the exact solution of the Hamiltonian �2� in a
given continuum channel is a multichannel scattering wave
function. This means that the coupling between the con-
tinuum channel in question to all the other continuum chan-
nels must be taken into account accurately in the calculation
of this wave function. This coupling results from the 1/r12
interaction. Let us first assume that the total energy of the
system is negative and higher than the energy of the first
single-ionization potential so that the double-ionization
channels are closed. Upon this condition, the scattering wave
function associated with the single-ionization channel be-

TABLE III. Energies in a.u. for the three lowest singly excited
singlet states in He for L=7. Reference data in bold characters are
from Ref. �51�.

n −E n −E

8 2.00781251257020 8 2.0078125125702293

9 2.00617284909629 9 2.0061728490963298

10 2.00500000738827 10 2.0050000073883759

TABLE IV. Energies in a.u. for the next 47 singly excited singlet
states in He for L=7.

n −E n −E

11 2.00413223717662 35 2.00040816347356

12 2.00347222679722 36 2.00038580266060

13 2.00295858355916 37 2.00036523027144

14 2.00255102340278 38 2.00034626055087

15 2.00222222468987 39 2.00032873124877

16 2.00195312705554 40 2.00031250013960

17 2.00173010553539 41 2.00029744212801

18 2.00154321134408 42 2.00028344683247

19 2.00138504280678 43 2.00027041655393

20 2.00125000108211 44 2.00025826456815

21 2.00113378778711 45 2.00024691367864

22 2.00103305867120 46 2.00023629498818

23 2.00094518030416 47 2.00022634684952

24 2.00086805619116 48 2.00021701397005

25 2.00080000056386 49 2.00020824664031

26 2.00073964547280 50 2.00020000007186

27 2.00068587150577 51 2.00019223382341

28 2.00063775550570 52 2.00018491130597

29 2.00059453068501 53 2.00017799934821

30 2.00055555588461 54 2.00017146782063

31 2.00052029166162 55 2.00016528930985

32 2.00048828152192 56 2.00015943882037

33 2.00045913707084 57 2.00015389211468

34 2.00043252617865
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haves asymptotically as a dying exponential in these double-
ionization channels and as an outgoing wave function in the
single-ionization channels. Such a scattering wave function
may be generated accurately with the so-called Jacobi- or
J-matrix method, which exploits the fact that the Hamil-
tonian associated with a pure hydrogenic system can be ana-
lytically diagonalized in a Coulomb-Sturmian basis. This ap-
proach bears close resemblance to the R-matrix theory �61�.
As in this latter case, the configuration space is divided into
two regions. In the inner region, the space is spanned by a
finite Sturmian basis similar to the one used to solve the

time-independent Schrödinger equation. Note that in this
case, this basis is characterized by only one nonlinear param-
eter. In the outer region, it is assumed that the outgoing elec-
tron moves in a screened Coulomb potential. Furthermore, in
order to reproduce the correct asymptotic behavior of the
outgoing electron wave function in each channel, it is neces-
sary, at least implicitly, to complete the L2 basis used in the
inner region. In other words, the outgoing electron wave
function is expanded in the basis of all Coulomb-Sturmian
functions that are not included in the finite basis of the inner
region. Upon these conditions, the multichannel scattering

TABLE V. Energies �E� and widths ��� in a.u. of the �N ,k�n= �2,1�n triplet Rydberg series in He.

n

Bürgers et al. �52� This work

−E −� /2 −E −� /2

3 0.602577505 0.3325�−5� 0.60257748303 0.3296�−5�
4 0.548840858 0.1547�−5� 0.54884085388 0.1533�−5�
5 0.528413972 0.771�−6� 0.52841397047 0.7639�−6�
6 0.518546375 0.428�−6� 0.51854637470 0.4247�−6�
7 0.513046496 0.260�−6� 0.51304649599 0.2578�−6�
8 0.509672798 0.169�−6� 0.50967279751 0.1675�−6�
9 0.507456056 0.116�−6� 0.50745605604 0.1146�−6�
10 0.505922151 0.82�−7� 0.50592215145 0.8153�−7�
11 0.50481701598 0.5991�−7�
12 0.50399459389 0.4564�−7�
13 0.50336609531 0.3547�−7�
14 0.50287502900 0.2804�−7�
15 0.50248406749 0.2252�−7�
16 0.50216774456 0.1834�−7�
17 0.50190820492 0.1513�−7�
18 0.50169262936 0.1262�−7�
19 0.50151162186 0.1063�−7�
20 0.50135816858 0.9033�−8�
21 0.50122694821 0.7735�−8�
22 0.50111386461 0.6670�−8�
23 0.50101572323 0.5788�−8�
24 0.50093000308 0.5052�−8�
25 0.50085469322 0.4432�−8�

TABLE VI. Real and imaginary parts of the energies �E� in a.u. of some doubly excited singlet S states
belonging to the �N ,k�n= �2,1�n and �4,−1�n Rydberg series in He.

N k n

Burgers et al. �52� This work

−Re�E� −Im�E� −Re�E� −Im�E�

2 1 2 0.777867636 0.002270 0.77787 0.002268

2 1 6 0.517641112 0.000057 0.51764 0.000057

2 1 10 0.505759104 0.000010 0.50576 0.000010

4 −1 4 0.168261328 0.001086 0.16826 0.001081

4 −1 10 0.130160039 0.000060 0.13017 0.000067

4 −1 16 0.1269944 0.000017 0.12699 0.000155
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wave function may be written in terms of a close-coupling
expansion. For a given channel � and a given outgoing elec-
tron energy E, we write �62�

���E,r�1,r�2� = �
�

b�
��E���

L,M�r�1,r�2�

+ �
��

�
n2=N2

�

fn2

����E��n2

���r�1,r�2� , �24�

where the channel �= �ñ1 ,�1 ,�2 ;L ,M� designates the target
radial and angular quantum numbers as well as the angular
momentum of the ejected electron, the total two-electron an-
gular momentum, and its projection. The right-hand side
�RHS� of expression �24� contains two terms. The first one is
the representation of the scattering wave function in the inner
region: namely, its expansion in the eigenstates wave func-
tion ��

L,M�r�1 ,r�2� obtained by diagonalizing the atomic
Hamiltonian in our finite basis. These eigenstate wave func-
tions are given by expression �7�, in which only one nonlin-
ear parameter denoted here by k is introduced �62�. The sec-
ond term of the RHS of expression �24� describes the correct
asymptotic behavior of the scattering wave function. It is a
double expansion over all included channels and over n2 the
radial index of the Coulomb-Sturmian functions associated

with the ejected electron. �n2

���r�1 ,r�2� is the two-electron
wave function in the outer region; it is written as follows:

�n2

���r�1,r�2� = A
Uñ1�1

�r1�

r1

Sn2�2

k �r2�

r2
��1�2

LM �r̂1, r̂2� , �25�

where Uñ1�1
�r1� is the wave function associated with the tar-

get bound states and pseudostates which are obtained by di-
agonalizing the target Hamiltonian in our finite Coulomb-
Sturmian basis of radial index n1, which runs from 1 to
�N1−1� like in the inner basis. n2 associated with the ejected
electron runs from N2 to �. In the present case, �1 and �2 are
no longer restricted as in Eq. �7� because the two radial or-
bitals can no longer be identical. In addition, we assume for
the time being that N1=N2. By demanding that ���E ,r�1 ,r�2�
solve the Schrödinger equation for the Hamiltonian in Eq.
�2�, one obtains an algebraic system of equations to solve for

the coefficients b�
��E� and fn2

����E�. The outer region expan-
sion coefficients are written as follows �62�:

fn2

����E� = �n2

�2��E − �
ñ1�
�1������ − �n2

�2��E − �
ñ1�
�1��T���, �26�

where ñ1�, �1�, and �2� refer to the channel ��. �
ñ1�
�1� is the energy

of the target electron. �n2

�2� is the expansion coefficient of a
regular Coulomb wave in Coulomb-Sturmian functions,

while �n2

�2� is the expansion coefficient of either an outgoing
Coulomb wave for open channels or a dying exponential for

closed channels. When E�
ñ1�
�1�, the channel �� is closed, and

only the second term contributes, because channel � is as-
sumed open. The open part of T is then the transition matrix
�to a constant�, while the closed part contains the closed-
channel coefficients. When the total energy E of the system

is negative and therefore lower than the double-ionization
potential, all channels associated with the ejection of the tar-

get electron ��
ñ1�
�1��0� are closed. They do, however, contrib-

ute to the transition matrix and must be included for the
convergence of the calculation. When E becomes positive,
these channels open progressively and contribute signifi-
cantly to the transition matrix. Here, it is important to stress
that the double-continuum channels are described in an ap-
proximate way. Asymptotically, one of the electrons is de-
scribed by a Coulomb wave while the other one �the inner
one� is described by a pseudostate. It is precisely this type of
approximation the CCC approach is based on �17�.

The reliability of the present method to generate accurate
double-ionization probabilities and cross sections rests on
precise knowledge of the multichannel continuum wave
functions. It is therefore important to assess the accuracy of
the J-matrix method in this context. In the following we
consider the photodetachment of H− for photon energies both
below and above the double-ionization threshold. The results
for the cross sections are compared with those obtained with
state-of-the-art methods. The partial cross section for the
photodetachment of H− with the residual atomic hydrogen
left in the �ñ1 ,�1� state is given by

�ñ1l1 =
2

3
�2��

l2

F�
G, �27�

where � is the fine-structure constant and F�
G the oscillator

strength either in the length gauge �G�L� or in the velocity
gauge �G�V�. These oscillator strengths are defined as fol-
lows:

F�
L = 2����1S

0,0��̂ · �r�1 + r�2������2, �28�

F�
V =

2

�
���1S

0,0��̂ · ��� 1 + �� 2������2. �29�

In these expressions, � is the photon frequency and it is
assumed that the electric field is polarized linearly along the
unit vector �̂. �1S

0,0 is the ground state of H− obtained by
diagonalizing the atomic Hamiltonian �2� �with Z=1� in our
finite basis and �� the continuum P state associated with the
channel � and evaluated within the J matrix method. Let us
first consider photon energies below the double-ionization
threshold. In these calculations, the Sturmian nonlinear pa-
rameter k=0.9. For L=0, 7 pairs ��1 ,�2� of electron angular
momenta are included ��0,0�,�1,1�,…,�6,6��; 1�n1�50 and
1�n2�50. In this way, the number of terms, N, in our ex-
pansion of the ground-state wave function of H− is 8925 and
its energy −0.527 73 a.u. to be compared with the best non-
relativistic value of 0.527 751 016 544 306 a.u. by Drake
�51�. For L=1, we include six pairs ��1 ,�2�: namely, �0,1�,
�1,2�,…,�5,6�; 1�n1�50 and 1�n2�50. The dimension of
our finite basis in the inner region is 15 000, and the total
number of channels included is 540. In Fig. 1, we show the
partial cross sections for photodetachment of H− for various
photon energies in the region of the shape resonance just
above the n=2 threshold; the residual hydrogen atom is left
in its ground �1s� or first excited �2s ,2p� states. Below the
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n=2 threshold, the cross section for photodetachment to the
n=1 channel exhibits a Feshbach resonance at a photon en-
ergy of 10.930 20 eV followed by an extremely narrow reso-
nance at 10.958 002 eV and known as a “dipole resonance”
�63�. It is produced by the dipole coupling between the de-
generate 2s and 2p states of atomic hydrogen �64,65�. Above
the n=2 threshold, around the shape resonance at about
10.98 eV, all partial cross sections exhibit a maximum. We
have compared our results with those of Venuti and Decleva
�60�. They build the continuum wave function via a least-
squares solution of the Schrödinger equation and use a very
large basis-set expansion based on B-spline radial functions
within a general CI formulation. Below the n=2 threshold,
there is a perfect agreement between their results and ours.
Above the n=2 threshold, we observe small differences �less
than 1%� in the partial cross sections. In fact, above the n
=2 threshold, the continuum becomes multichannel with de-
generate target states. This degeneracy induces a weak but
long-range 1/r2 potential responsible for the sensitivity of
the partial cross sections to the different channels coupling.
In order to take into account this potential accurately within
the J-matrix approach, we can either increase the size of the
internal basis or introduce an intermediate region �66� be-
tween the internal and the asymptotic one in which we keep
the first two terms of the multipole expansion of the 1/r12
potential. By increasing the size of the internal basis to
19 600 �4 pairs ��1 ,�2� and 70 Coulomb Sturmian functions
per electron�, our results now agree �to 3 significant digits�
with the data of Venuti and Decleva �60�. In Fig. 2, we show
the partial cross sections for photodetachment of H− above
the n=3 threshold. Our results are again in excellent agree-
ment with those of Venuti and Decleva. In particular, we
have checked by expanding the photon energy scale that the
complicated structure of all partial cross sections around the
n=3 threshold �photon energy around 12.85 eV� is correct.
Let us now analyze the partial cross sections of one-photon

SI above the double-ionization threshold. As far as we know,
very few calculations have been performed in this frequency
regime. Extremely accurate results very close to threshold
�0.1 eV above� have been obtained recently by Bouri et al.
�20� in He up to n=50 for the excitation level of the residual
ion. Results for He and H−, far from threshold, have been
also obtained by Kheifets and Bray �16,67�. In both cases,
however, no selection of the angular momentum of the final
excited state of the residual ion has been made. In order to
test the accuracy of our J-matrix approach in the most de-
manding case, H−, we calculated the partial cross sections by
means of a method developed by Proulx and Shakeshaft �68�
which takes into account fully the correlation in the final
state. They show that the amplitude of probability can be
written as follows:

Afi
��1� = �2����1,n1

� � ���2,�
− ���Ef

�0� − H +
1

r12
�F� , �30�

with

�Ei
�0� + � − H��F� = V+��i� . �31�

Ei
�0� and Ef

�0� are the �field-free� unperturbed energies of the

initial and final states while V+= 1
2A0e�z · ��� 1+�� 2� describes

the interaction of the atom with a linearly polarized electric
field written in terms of the potential vector amplitude A0.
Note that Eq. �30� is exact although the final state is repre-
sented by a symmetrized direct product ���1,n1

� � ���2,�
− � of a

given hydrogen bound state of principal quantum number n1
and angular quantum number �1 with a pure Coulomb wave
of energy � that behaves asymptotically as an ingoing wave.
In Fig. 3, we show our results for various partial cross sec-
tions of photodetachment of H− as a function of the photon
energy �above the double-ionization threshold�. In our calcu-
lations, the Sturmian nonlinear parameter k=0.9 and 7 pairs
��1 ,�2� of electron angular momenta are taken into account
with 1�n1 ,n2�50. Our J-matrix results are in very good
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FIG. 1. Partial cross sections for photodetachment of H− in the
region of the shape resonance just above the n=2 threshold; the
residual hydrogen atom is left in its ground �1s� or the first excited
�2s ,2p� states.
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FIG. 2. Partial cross sections for photodetachment of H− around
the n=3 threshold; the residual hydrogen atom is left in its ground
�1s� or the first excited �2s ,2p� states.
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agreement with those obtained by means of Eq. �30�. There
are, however, small differences at 35 eV attributed to the size
of the basis we use in the internal region considered in our
J-matrix approach. This last test shows that above the
double-ionization threshold, the approximate description of
the double-continuum channels improves with the size of the
basis. We have checked that all the results presented here for
photon energies both below and above the double-ionization
threshold are gauge independent.

C. Time propagation

The TDSE for a two-electron system exposed to an oscil-
lating field reads

i
�

�t
��r�1,r�2,t� = �H + DG�t����r�1,r�2,t� , �32�

where H is the atomic Hamiltonian �2�. DG�t� describes the
dipole interaction of the system with the oscillating field ei-
ther in the length gauge �G�L� or in the velocity gauge
�G�V�:

DL�t� = E� �t� · �r�1 + r�2� , �33�

DV�t� = − iA� �t� · ��� 1 + �� 2� . �34�

E� �t� denotes the electric field and A� �t�= ẑA0f�t�sin��t� the
corresponding vector potential which oscillates at the fre-
quency � and which is assumed linearly polarized along the
z axis. f�t� is the pulse envelope given by

f�t� = cos2�t/�� ��t� � ��/2� ,

=0 ��t� � ��/2� . �35�

Note that DV�t� does not contain the A2�t� term since within
the dipole approximation, this term is eliminated from the
interaction Hamiltonian through a contact transformation of
the wave function. The projection of the TDSE onto our
basis �see Eq. �7�� leads to a system of first-order differential
equations

i
�

�t
S��t� = �H + g�t�DG���t� , �36�

where DG is the matrix associated with the dipole operator in
gauge G. g�t� is a scalar function that equals Ez�t� in the
length gauge and −iAz�t� in the velocity gauge. ��t� is the
vector representation of the wave function of the two-
electron system in our basis. Due to the stiffness of the sys-
tem �36� �see, for instance, �43��, it is necessary to switch to
the atomic basis in which the atomic Hamiltonian �2� is di-
agonal. Upon this condition, the system �36� becomes

i
�

�t
��t� = �h + g�t�WG���t� , �37�

where h is a diagonal matrix containing the eigenvalues of
the atomic Hamiltonian �2�. WG=PtVtDGVP and ��t�
=PtV−1��t�. In these expressions, matrix V is given by Eq.
�22� and the matrix P denotes the orthogonal matrix that

diagonalizes H̃ �see Eq. �19��. In order to solve the system of
equations �37�, we use the interaction picture where the rapid
oscillations due to the atomic energies are absorbed in the
wave function by setting

�I�t� = eiht��t� , �38�

where �I�t� is the vector associated with the time-dependent
wave function in the interaction picture. The above transfor-
mation from the Schrödinger to the interaction picture re-
quires some precautions when complex Coulomb-Sturmian
bases are used or, equivalently, when a complex scaling of
the total Hamiltonian is performed. Indeed, the imaginary
part of the atomic energies brings overflows since the expo-
nential in Eq. �38� becomes very large. In order to avoid such
problems, we consider the following transformation:

�I�t� = eihrt��t� , �39�

where hr denotes the real part of the diagonal matrix of
atomic energies �h=hr+ ihi�. Substituting Eq. �39� into Eq.
�37� leads to

�

�t
�I�t� = �hi − ig�t�e+ihrtWGe−ihrt��I�t� . �40�

This equation is solved by means of an explicit method of
Runge-Kutta type. We use an embedded formula �69� that
allows an automatic control of the time step during the
propagation.

In practice, our basis is truncated so that the resulting
wave function represents a restricted region of space—say, a
sphere of radius R0. As long as the system remains in this
sphere during the time the system interacts with the external
field, the basis is adequate. However, if the system breaks up
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FIG. 3. Partial cross sections for photodetachment of H− for
photon energies above the double-ionization threshold. The residual
hydrogen atom is left in its ground state �1s� and various excited
states indicated in the figure. The lines correspond to the results
obtained with the Proulx-Shakeshaft method. The dots, triangles,
and squares at photon energy of 15 eV, 25 eV, and 35 eV are our
J-matrix results.

THEORY OF MULTIPHOTON SINGLE AND DOUBLE … PHYSICAL REVIEW A 74, 063409 �2006�

063409-13



during its evolution, as is the case when ionization occurs,
some fragments may reach the surface of the sphere. If the
basis is real, these fragments must reflect from the surface
and return to the interior of the sphere. In the present case,
this effect is more likely to occur for single ionization, leav-
ing the residual ion �or atom� in its ground state since the
outgoing electron is usually fast. These unphysical reflec-
tions are avoided by complex-scaling the total Hamiltonian
since at large distances—i.e., at large time—the negative
imaginary part of the continuum energies �above the first
single-continuum threshold� induces a rapid damping of the
corresponding components of the ionized wave packet �see,
for instance, �70��, thereby simulating the presence of an
absorber at the boundaries of the sphere. In the present cal-
culations involving the J-matrix method, we use a real basis.

D. Observables

The total wave packet after the end of the time propaga-
tion reads

�total = �
L

�
�

c���
L,M=0, �41�

where � runs over all atomic states of the system that are
described in our Coulomb-Sturmian basis. The extraction of
a quantitative information from this final wave packet con-
stitutes the major problem of all time-dependent approaches.
Since the time propagation is always performed over finite
distances, one way to disentangle single- and double-
ionization contributions is to project the final ionized wave
packet after the interaction with the pulse, on the correspond-
ing �fully correlated� multichannel wave function associated
with the single or double continuum.

In order to calculate the single- and double-ionization
probabilities, we proceed as follows. We first rewrite the total
wave packet of the system after the interaction with the
pulse, as a sum of two terms:

�total = �BS + �C, �42�

where �BS and �C are the bound- and continuum-state com-
ponents, respectively. Since the time propagation is per-
formed in the atomic basis, the calculation of the bound-state
component �BS of the total wave packet is straightforward.
�C given by �total−�BS is actually a linear superposition of
single- and double-continuum multichannel scattering wave
functions. In order to extract the single-continuum compo-
nent �SC from �C, we write

�SC = �
�
	

Ei

�

��C����E�����E�dE , �43�

where ���E� is the scattering state generated by the J-matrix
method �see Eq. �24�� and normalized in the energy space. �
refers to a given channel of single ionization and E is the
total energy of the system. Ei is the first single-ionization
threshold. Therefore, the partial �in a given channel� and to-
tal SI probability densities are given by

�dPSI

dE


�

= ���C����E���2, �44�

�dPSI

dE


total
= �

�

���C����E���2. �45�

In order to calculate the double-continuum component �DC,
we could project �C on the multichannel wave functions
associated to all double-continuum channels. Each double-
continuum channel is characterized by both the �discretized�
energy associated to the pseudostate that describes the inner
electron and to the energy of the outer electron. The calcu-
lation of the double-continuum component requires integra-
tion on all possible values of the energies of both electrons.
Instead of proceeding in this way, it is easier to calculate the
double-continuum component �DC by substracting both �BS
and �SC from the total wave packet �total. The total DI prob-
ability is then obtained as follows:

PDI =	 	 dr�1dr�2���total − �BS − �SC�2� . �46�

The accuracy of this expression relies on the fact that the
scattering states ���E� are orthogonal �by construction� to
the other eigenstates of the atomic Hamiltonian. Note that
the total DI probability PDI is also obtained by writing

PDI = �



�c
�2 − �
�
	

Ei

�

dE�PSI

dE


�

, �47�

where the sum over 
—i.e., over the atomic states described
in our Coulomb-Sturmian basis—is restricted to the states
whose energy is larger or equal to the energy of the first
single-ionization threshold. Both expressions �46� and �47�
are formally equivalent. From the numerical point of view,
however, they differ significantly. In all the calculations that
will be presented in the next sections, we have checked that
the relative difference between the results obtained from
these two expressions is less than 10−4.

The present time-dependent approach can also be used to
calculate generalized cross sections. It is, however, necessary
to define under what conditions this can be done. First, it is
important to remember that generalized cross sections are
defined in terms of a transition amplitude that is calculated at
the lowest nonvanishing order of perturbation theory. This
means that within our time-dependent approach, the peak
intensity of the external field must be sufficiently low to
avoid contributions from higher-order transitions �involving
more photons�. Second, it is possible to define a generalized
cross section only if the transition is direct. In the case of
multiphoton double ionization, however, the transition from
the initial to the final state may be sequential: a single ion-
ization of the atom followed by a single ionization of the
residual ion in a given state. In that case, the transition prob-
ability varies quadratically with the interaction time, prevent-
ing the definition of a time-independent rate. These two pre-
liminary remarks introduce some limitations regarding the
reliability of a time-dependent approach to provide accurate
information on the generalized cross sections. For the sake of
illustration, let us consider two-photon double ionization of
He. If the photon energy is less than 2 a.u. �which corre-
sponds to the minimal energy required to ionize He+ with
one photon from its ground state�, the process is essentially
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direct. However, it is possible to reach the double continuum
via two sequential three-photon transitions

He + h� → �He+�1s� + e−� + 2h� → �He2+ + 2e−� ,

He + 2h� → �He+* + e−� + h� → �He2+ + 2e−� .

Note that depending on the photon energy, the second step of
the first of these two sequential transitions may be resonant.
Within a time-dependent approach, all these direct and se-
quential transitions are taken into account, so in order to
calculate the direct two-photon double ionization, it is impor-
tant to make sure that both sequential transitions are
negligible—i.e., far from saturation—in particular, near reso-
nance. It is therefore necessary to work at sufficiently low
field intensities.

Upon these conditions, the N-photon transition probability
per unit of time—i.e., the N-photon rate �N—reads

�N = �N�N, �48�

where �N is the corresponding generalized cross section and
� the photon flux given �in a.u.� by I /� where I is the
intensity of the field whose amplitude is assumed constant
for the time being. In the case of a pulse, we use the adia-
batic approximation to obtain the following expression for
the N-photon transition probability PN:

PN = 	
−�

�

dt��t� = �N	
−�

�

dt�N�t� . �49�

The generalized cross section �N is deduced from this ex-
pression. Let us consider a cosine square pulse �see expres-
sion �35�� whose total duration is n optical cycles. We denote
the pulse peak intensity in Watt/cm2 by I0 and the photon
energy in eV by Ephoton. If P1 and P2 give the probability of
a given one-photon and two-photon process respectively, the
corresponding generalized cross sections in their appropriate
units are written

�1�cm2� = 1.032 � 10−4Ephoton
2 P1

nI0
, �50�

�2�cm4s� = 2.28 � 10−23Ephoton
3 P2

nI0
2 . �51�

In principle, the generalized cross section should be indepen-
dent of n, the total number of optical cycles within the pulse.
In practice, however, since our real basis is finite, the reflec-
tion problem imposes some limitations on the duration of the
pulse and therefore on the size of our Coulomb-Sturmian
basis. Irrespective of this reflection problem, the choice of
the parameter n is directly related to the validity of the adia-
batic approximation. In general, pulses of a few cycles are
sufficient �71� except when some intermediate or final states
are resonant. In the latter case, long pulses are necessary,
making our time-dependent approach less appropriate.

The previous discussion raises the following question: is
it possible within our time-dependent approach to extrapolate
our results to infinite pulse durations? In order to answer to
that question, let us consider a one-photon transition from a

bound state �bs to a continuum �cont of states. It is shown in
many textbooks on quantum mechanics that the probability
of such a transition as a function of the interaction time T
�i.e., the pulse duration� is written:

P�T� = 	
Ethreshold

�

K�Ef − E,T����bs�D��cont�E���2��E�dE .

�52�

Ethreshold is the lower bound of the continuum energy, and
K�E−Ef ,T� is a kernel that depends on the pulse shape.
��bs �D ��cont�E�� is the dipole matrix element between the
initial bound state and the continuum state of energy E, and
��E�dE is the density of final states within the energy inter-
val �E ,E+dE�. In the case of the cosine square pulse �35�,
the kernel is written:

K�E − Ef,T� =
4�4 sin2��E − Ef�T/2�

�E − Ef�2�T2�E − Ef�2 − 4�2�2 . �53�

For E=Ef ±2� /T this kernel is well defined. For long pulse
durations T, it is strongly peaked around E=Ef, thereby re-
inforcing energy conservation. In fact, since in the limit T
→�,

sin2��E − Ef�T/2�
�E − Ef�2 �

�

2
T��E − Ef� , �54�

we obtain the following expression for the transition rate
�Fermi’s golden rule�:

� =
dP�T�

dT
= ���bs�D��cont��2��Ef� . �55�

Note that in writing the above expression, it is assumed that
all angular integrations have been performed. This result
means that for a given energy E, the cross section we are
looking for is directly proportional to F�E�
= ���bs �D ��cont�E���2��E�. Now, instead of considering very
long pulses, we could calculate P�T� either for various finite
values of T and a fixed value of the photon energy or a fixed
value of T and various values of the photon energy. F�E� is
then an unknown function of E, a solution of the integral
equation �52�. It turns out, however, that this integral equa-
tion is extremely hard to solve, therefore making the extrapo-
lation procedure difficult. As a matter of fact, the technique
we found the most accurate to solve this equation consists
simply in approximating F�E� by F�Ef� so that it can be
factorized out. This is because even for short pulse durations
T, the kernel still exhibits a sharp peak �72� at the conserva-
tion of energy E=Ef. In this way, we obtain a relation be-
tween P�T� and F�E� that leads to expression �50� for the
corresponding cross section. This procedure, however, does
not work in two particular cases: �i� close to threshold where
nonadiabatic effects become important and �ii� when the final
state lies near a resonance because F�E� varies too rapidly
around E=EF. In this latter case, it is necessary to use much
longer pulses, thereby exposing our procedure to the reflec-
tion problem. It is interesting to point out that our results for
the direct double-ionization cross section are much less sen-
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sitive to the duration of the pulse we use to perform the
calculations than in the case of single ionization. In fact,
since the reflection problem occurs essentially in the single-
ionization channels, we “eliminate” its effect by substracting
the singly ionized wave packet from the total wave packet
�single ionization is only described in these two wave pack-
ets�. Finally, we would like to finish this section with two
remarks. First, the present approach does not allow an accu-
rate calculation of the differential cross sections �energy and
angular distributions�. This point will be addressed in a forth-
coming publication. Second, the fact that the J-matrix
method requires the use of only one nonlinear parameter in
our Coulomb-Sturmian basis does not prevent us from con-
sidering various sets of nonlinear parameters in the case of
the time propagation.

III. RESULTS

In the first part of this section, we focalize on one-photon
SI and DI of He and H−. Our objective is to check the accu-
racy of our time-dependent approach by comparing our re-
sults for the total cross section to those obtained by state-of-
the-art methods. We then apply our approach to two-photon
double ionization of He.

A. One-photon double ionization of He and H−

Let us first consider the one-photon double ionization of
He. In our calculations, three values �0, 1, and 2� of the total
angular momentum L are included. For L=0, four pairs
��1 ,�2� of electron angular momenta are taken into account
��0, 0�,…,�3, 3�� while for L=1 and 2, three pairs are in-
cluded ��0, 1�, �1, 2�, �2, 3�� and ��1, 1�, �0, 2�, �1, 3��,
respectively. For all pairs of electron angular momenta
��1 ,�2�, we use the same set �2.0, 60, 2.0, 60� of Coulomb-
Sturmian functions. The peak intensity of the pulse is equal
to 1013 W/cm2. The convergence of the results for the total
SI and DI cross sections has been checked as a function of
the pulse duration. In the present case, we used a pulse
whose total duration varies from 6 to 20 optical cycles. The
gauge invariance �length and velocity� of our results has also
been checked. The total double-ionization cross section as a
function of the excess photon energy is shown in Fig. 4. Our
TDSE results that take into account fully the final-state cor-
relation are in very good agreement with both the experimen-
tal data of Samson et al. �73� and with the results of Proulx
and Shakeshaft �13� who used the so-called flux formula. We
also compare our results with TDSE results in which we
project the final wave packet in the Schrödinger picture on a
direct �uncorrelated� product of Coulomb waves of effective
charge Z=2. These latter data are slightly below the other
curve except at high photon energy where the final-state
electron correlation is not expected to contribute signifi-
cantly. Instead of analyzing the SI cross section we study, in
Fig. 5, the ratio of double-to-single one-photon ionization.
Such a ratio is in general more sensitive to the type of ap-
proach that is used to calculate both SI and DI cross sections.
Our TDSE fully correlated results are again in perfect agree-
ment with both the experimental data of Samson et al. �73�

and the theoretical data of Proulx and Shakeshaft �13�.
Let us now consider H−. In this case, electron-electron

correlations play a crucial role. It is therefore not surprising
that important discrepancies still subsist between the results
of all existing theoretical approaches. In our calculations, we
take into account 3 values of the total angular momentum L
�0, 1, and 2�. For L=0, we considered 4 pairs ��1 ,�2� of
electron angular momenta ��0,0�, �1,1�, �2,2�, and �3,3��. For
L=1 and 2, we used 3 pairs of electron angular momenta
��0,1�,�1,2�,�2,3�� and ��0,2�,�1,1�,�1,3��, respectively. In all
cases, we use the following set �1.0,60,1.0,60� of Coulomb-
Sturmian functions. All calculations have been performed

10 20 30 40 50 60 70 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Excess photon energy (eV)

: Flux formula

: Expt. (Samson 1998)

: TDSE−FC

: TDSE−NC (Schroedinger picture)D
o

u
b

le
 io

n
iz

at
io

n
cr

o
ss

 s
ec

ti
o

n
 (

kb
)

FIG. 4. Total cross section in Kb of one-photon double ioniza-
tion of He as a function of the excess photon energy in eV. The
solid line has been obtained by means of the flux formula �13�. The
solid circles are our TDSE results that take fully into account the
electron correlation in the final state. The squares are the experi-
mental results of Samson et al. �73�. The solid triangles are our
TDSE results obtained by projecting the final wave packet in the
Schrödinger picture on a direct �uncorrelated� product of Coulomb
functions of effective charge Z=2.
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FIG. 5. The ratio of double-to-single one-photon ionization
cross sections in He as a function of the photon energy in eV. The
solid line is a fit of the experimental data of Samson et al. �73�. The
squares are the results of Proulx and Shakeshaft by means of the
flux formula �13�. The dots are our TDSE fully correlated results.
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with a peak intensity of 1011 W/cm2 and pulses whose total
duration varies from 8 to 20 optical cycles. In Fig. 6, we
show the one-photon DI total cross section. Our TDSE fully
correlated and gauge invariant results are in perfect agree-
ment with the CCC results of Kheifets and Bray �16� in the
velocity gauge. Their results in the length gauge are slightly
higher in the vicinity of the maximum. In the J-matrix cal-
culations of Broad and Reinhardt �62�, the double continuum
is described asymptotically by an appropriately symmetrized
product of a plane wave and a set of pseudostates for the
“internal” electron. This description is clearly an approxima-
tion. However, their results obtained with a relatively small
basis and within the velocity gauge are not in too bad dis-
agreement with the CCC or with our TDSE results. The
variational configuration-interaction calculations of Nico-
laides et al. �75� as well as the calculations of Kornberg and
Miraglia �74� based on the BBK function for the description
of the double continuum, differ significantly from all other
results and are strongly gauge dependent. As expected, dis-
crepancies are also important in the case of the ratio of
double-to-single one-photon ionization cross section shown
in Fig. 7. At high photon energy, our TDSE fully correlated
results are in good agreement with the CCC results of Kheif-
ets and Bray �16� in the acceleration gauge. Their results in
the length gauge, however, differ significantly. It is important
to note that Kheifets and Bray used a very good ground state
of H− in their calculations: namely, a Hylleraas wave func-
tion with 20 nonlinear parameters. The results obtained with

the flux formula of Proulx and Shakeshaft �13� are in fair
agreement with ours. Surprisingly, the best agreement with
our results occurs with TDSE results of Pindzola and Ro-
bicheaux in which the final state is uncorrelated. It is inter-
esting at this stage to discuss in detail this approximation,
which consists in projecting the final ionized wave packet on
the direct �uncorrelated� product ���1

− � � ���2

− � appropriately
symmetrized. ���

−� represents an electron of energy ��0
moving in the Coulomb potential −Z /r. The superscript −

refers to the asymptotic ingoing-wave behavior of the corre-
sponding Coulomb wave function ���

− �r��. The fact that this
direct product of Coulomb states does not represent an eigen-
state of the atomic Hamiltonian �2� has important conse-
quences. First, the ionization probability depends on the pic-
ture �Schrödinger or interaction� used to describe the final
ionized wave packet:

����1

− � � ���2

− ��sch��2 � ����1

− � � ���2

− ��I��2, �56�

where ��sch� and ��I� are the final wave packet in the
Schrödinger and interaction pictures respectively. Moreover,
in contrast to the interaction picture, the modulus square of
the projection of ��sch� on the direct product ���1

− � � ���2

− �
keeps varying as the time evolves after the end of the pulse.
This variation with time which is a consequence of the free
evolution of ��sch� is in fact artificial. It manifests only be-
cause the final wave packet ��sch� is projected on a nonsta-
tionary state of the atomic Hamiltonian �2�. Contrary to what
Colgan et al. �26� claim, we think that it does not make sense
to “wait” a few cycles after the end of the pulse that the
system “relaxes” or in other words that the electron electron
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FIG. 6. Total cross section in Mb of one-photon double ioniza-
tion of H− as a function of the photon energy in eV. The solid and
dashed curves are the results of Kheifets and Bray �16� in the ve-
locity and length gauges, respectively. The black dots are our TDSE
fully correlated and gauge-invariant results. The dot-dashed curve is
the result of the J-matrix calculation of Broad and Reinhardt �62� in
the velocity gauge. The open and solid squares are the results of
Kornberg and Miraglia �74� in the length and velocity gauges, re-
spectively. The open and solid triangles are the results of Nicolaides
et al. �75� in the length and velocity gauges, respectively.
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FIG. 7. The ratio of double-to-single one-photon ionization
cross sections in H− as a function of the photon energy in eV. The
solid line is our TDSE fully correlated and gauge-invariant results.
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Bray �16� in the acceleration and the length gauges, respectively.
The open triangles refer to the results obtained by means of the flux
formula of Proulx and Shakeshaft �13�. The solid squares are the
TDSE results of Pindzola and Robicheaux �76� with an uncorrelated
final state.
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correlation dies out before projecting ��sch� on the direct
product of Coulomb states. In addition, it is important to
stress that the final wave packets ��sch� and ��I� contain
single-ionization components. As a result, its projection on
the direct product ���1

− � � ���2

− � necessarily contains a contri-
bution from single ionization because the direct product of
Coulomb states is not orthogonal to actual continuum states
of the atom. This effect is particularly important in the case
of one-photon double ionization of He or H− because the
probability of single ionization is actually two orders of mag-
nitude higher than the double-ionization probability. All
these points are illustrated in Fig. 8 in the case of the one-
photon DI of He and in Fig. 9 for H−. In Fig. 8�a�, we
compare our TDSE fully correlated results for the one-
photon DI of He with those obtained by projecting at the end
of the pulse, the final wave packet in both the Schrödinger
and interaction pictures on an uncorrelated product of Cou-
lomb waves with the effective charge Z=2. At first sight, the
Schrödinger picture seems to give very good results. How-
ever, these results change when the projection is performed
some time after the end of the pulse. This is particularly true
in the vicinity of the maximum of the cross section. We have
checked that in some cases the corresponding maximum may
be above our TDSE fully correlated results. On the other
hand, there is no physical reason to privilege the Schrödinger
picture with respect to the interaction picture. In principle,
the calculation must be picture independent as is the case
when we use a fully correlated final state. Within our ap-
proach, we can isolate both the singly ionized and doubly
ionized wave packets from the total wave packet in a given
picture. By projecting each of these wave packets on the
direct product of Coulomb waves, we actually extract the SI
component of the DI cross section. In Fig. 8�b�, we consider
the interaction picture. It is clear that the contribution from
single ionization is rather significant in particular around the
maximum. Similar results are obtained in the Schrödinger
picture. Far from the maximum—i.e., for higher photon
energies—the single-ionization component becomes quickly
very small. In that case, the two electrons emerge from the
reaction zone with a higher energy so that the product of two
Coulomb waves becomes a better approximation of the ac-
tual double-continuum wave function. In the case of H−, the
role of the final-state correlation is even more important. In
Fig. 9 we show the cross section of one-photon DI of H− and
compare our TDSE fully correlated results with those ob-
tained by projecting the final wave packet both in the
Schrödinger and interaction pictures on a product of Cou-
lomb waves with effective charge Z=1. It is clear that, in the
vicinity of the maximum and irrespective of the picture, the
absence of final-state correlation is not a good approxima-
tion. This is, however, not true any more at higher photon
energy like in the case of He. Note that our TDSE results in
the Schrödinger picture with no correlation in the final state
are in perfect agreement with those of Pindzola and Ro-
bicheaux �76�.

B. Two-photon double ionization of He

Let us now consider the two-photon DI of He in a fre-
quency regime where this process is direct—i.e., for photon

energies less than 2 a.u., that is the energy required to pho-
toionize He+�1s�. In our calculations, we took into account
four values of the total angular momentum L �0–3�. For L
=0, four pairs ��1 ,�2� of electron angular momenta
��0,0�,…,�3,3�� are included, and for each of these pairs, we
use the set �2.0,70,2.0,70� of Coulomb-Sturmian functions.
For L=1, three pairs ��0,1�, �1,2� and �2,3�� of electron an-
gular momenta are included. In each case, we use the set
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FIG. 8. Total cross section in Kb of one-photon double ioniza-
tion of He as a function of the photon energy in eV. In �a�, we
compare our TDSE fully correlated results �solid line� with those
obtained by projecting the final wave packet in the Schrödinger or
in the interaction picture �dashed lines� on an uncorrelated product
of Coulomb waves with the effective charge Z=2. In �b�, the dashed
lines refer to the results obtained by projecting either the final ion-
ized wave packet, the final singly ionized wave packet, or the dou-
bly ionized wave packet on the uncorrelated product of Coulomb
waves. These results are compared to our TDSE fully correlated
results �solid line�.
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�1.6,60,1.2,120� of Coulomb-Sturmian functions. For L=2,
four pairs of electron angular momenta ��0,2�, �1,1�, �1,3�,
and �2,2�� are considered with for each pair, the set
�2.0,70,2.0,70� of Coulomb-Sturmian functions. Finally, for
L=3, we included three pairs ��0,3�,�1,2�, and �1,4�� of elec-
tron angular momenta with the set �2.0,40,2.0,40� of
Coulomb-Sturmian functions. We included the L=3 contri-
bution because we have to make sure that the contribution of
the two sequential channels mentioned before and that lead
to the double-electron ejection is negligible. We considered
two peak intensities 1011 W/cm13 and 1013 W/cm2 and
checked that the results for the generalized cross section are
intensity independent. Most of the calculations have been
performed with pulses of ten optical cycle �total duration�.
We also checked for a few photon energies that the results
are stable as a function of the pulse duration. The generalized
two-photon DI cross section as a function of the photon en-
ergy is presented in Fig. 10 where we compare our data with
the other existing ones. At first sight, it is clear that the
results depend strongly upon the way electron correlation is
treated in the final state. For sufficiently low photon energies,
our TDSE fully correlated results are systematically one or-
der of magnitude higher than the other TDSE results
�28,30,37� in which no correlation is included in the final
state. On the other hand, our TDSE fully correlated results
are of the same order of magnitude as the results of Nikol-
opoulos and Lambropoulos �7� who introduced correlation in
the final state. They however differ significantly from the
R-matrix Floquet results of Feng and van der Hart �22� who
took, at least approximately, electron correlation into account
in their calculations. Our results also differ by two order of
magnitude from the CCC results of Kheifets and Ivanov

�17�. It is worth noting that these CCC results are perturba-
tive �in the external field� and that the sum over the interme-
diate states has been carried out by means of the closure
approximation. This might explain the important difference
in magnitude with our results. However, it is important to
mention the agreement in shape between the CCC and our
results. The convergence of our calculations has been
checked as a function of the size of our radial and angular
basis. It is worth mentioning that when we “switch off” the
electron correlation in our J-matrix calculation of the multi-
channel continuum wave function, we remove both the radial
and angular couplings between these channels. As a result,
the SI probability increases by about 30% leading to a cor-
responding decrease of the DI probability. In that case, our
results for the generalized DI cross section practically coin-
cide with those obtained by projecting the final wave packet
directly on an uncorrelated product of Coulomb waves �with
Z=2�. In fact, it is essentially the radial coupling between
various channels of single ionization that gives rise to the
strong effect observed in the SI generalized cross section.
However, further investigations and, in particular, differential
cross sections are needed to get a clear physical picture of
the two-photon DI process. Finally, let us mention that there
is one experimental data �77� for He at a photon energy of
41.8 eV. However, the uncertainty in particular on the field
intensity and the fact that at this photon energy the various
three-photon sequential transitions we mentioned before may
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FIG. 9. Total cross section in Mb of one-photon double ioniza-
tion of H− as a function of the photon energy in eV. We compare our
TDSE fully correlated results �solid line� with those �dashed lines�
obtained by projecting the final wave packet in the Schrödinger
�solid circles� or in the interaction picture �solid triangles� on an
uncorrelated product of Coulomb waves with the effective charge
Z=1. The solid squares refer to TDSE results of Pindzola et Ro-
bicheaux �76� who used an uncorrelated final state.
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contribute prevents us from drawing conclusions regarding
the validity of our results.

IV. CONCLUSION

In this contribution, we presented a numerical approach
aimed at solving in its full dimensionality, the time-
dependent Schrödinger equation that governs the interaction
of a short, high-frequency electric field with a two-active-
electron atomic system. Our objective is the study of the
electron correlation in the multiphoton single ionization
�with or without excitation of the residual ion� as well as
double ionization of atoms.

Our approach is made up of three distinct steps. We first
use a spectral method of configuration interaction type to
build up the eigenstates of the atomic Hamiltonian. Second,
we time propagate the total wave packet of the atom. Finally,
we use the so-called J-matrix method to generate the con-
tinuum states on which we project the final wave packet to
extract reliable information regarding single and double ion-
ization. The spectral method consists in expanding the
atomic eigenfunctions in a basis of symmetrized products of
complex Coulomb-Sturmian functions of the electron radial
coordinates and bipolar harmonics of the angular coordi-
nates. We have shown that a single diagonalization of the
atomic Hamiltonian in this basis provides a very accurate
value of the energy of many singly and doubly excited states,
the accuracy increasing while approaching the various
single-ionization thresholds. The only relative weakness of
this approach concerns the accuracy of the atomic ground-
state energy, which is limited because the Kato cusp condi-
tion at a point where both electrons are “localized” is not
satisfied. It is, however, important to stress that the accuracy
we obtain for the ground-state energy �five digits� suffices
for our purpose. The time propagation is performed in the
atomic basis and within the interaction picture by means of
an explicit Runge-Kutta embedded formula that allows an
automatic control of the time step. The J-matrix method is
used to generate the multichannel continuum �scattering�
wave function. By projecting the final atomic wave packet
on these functions, we obtain the singly ionized wave packet
and, by substraction, the doubly ionized wave packet. This
leads to the probability of single �with or without excitation
of the residual ion� as well as double ionization of the atom.
This substraction procedure relies on the fact that the single-
continuum component of the continuum wave function cal-
culated by the J-matrix method is sufficiently accurate. This
accuracy of the J-matrix approach has been tested success-
fully in the case of one-photon ionization of H−. Besides, we

have also shown that our approach can be used to calculate
single- and double-ionization cross sections. This is only
true, however, in the following conditions: the ionization
process is dominantly direct and the final continuum state is
not too close to a resonance. At the present stage, however,
our time-dependent approach does not provide reliable infor-
mation on the electron angular and energy distributions.

The whole approach has been tested in the case of the
one-photon single and double ionization of He and H− where
other sophisticated methods have provided very accurate
data. We have shown that our results are in very good agree-
ment with these data. Besides, we have tried to analyze the
role of the electron correlation in the final state. Within our
approach, however, the answer to this question is somehow
ambiguous. Indeed, we show that projecting the final wave
packet on an uncorrelated double-continuum wave function
represents a serious approximation due to the fact that the
uncorrelated final state is not an eigenstate of the atomic
Hamiltonian. On the one hand, the result is strongly picture
dependent and, on the other hand, irrespective of the picture,
the projection of the final wave packet on this uncorrelated
double-continuum wave function necessarily contains a
single-ionization component that can be significant at low
photon energy.

Our approach has been used to calculate the direct two-
photon double-ionization cross section in He. Our results
clearly demonstrate the importance of the electron-electron
correlation in the final state. Further investigations, in par-
ticular an accurate calculation of the differential cross sec-
tions, are needed in order to elucidate the actual role of the
electron-electron correlation in this direct two-photon pro-
cess.
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