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Time double-slit interferences in strong-field tunneling ionization
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Oscillations in the electron emission spectrum of atoms ionized by few-cycle laser pulses were recently
identified as a time double-slit interference [F. Lindner et al., Phys. Rev. Lett. 95, 040401 (2005)]. We extend
this analysis to three-dimensional momentum images. We show that different portions of the wave packet
released at different times interfere, forming interference fringes in the momentum distributions. The complex
interference pattern observable in momentum space maps out information on the scattering potential.
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I. INTRODUCTION

The generation of few-cycle optical pulses with duration 7
of less than 10 fs corresponding to fewer than four cycles has
become routine in several laser laboratories [ 1-4]. Ultrashort
pulses for which 7 becomes comparable to the optical period
associated with the carrier frequency lead to novel features
of laser-matter interactions; among them are the strong
carrier-envelope (CE) phase dependence of excitation and
ionization processes [5,6]. Another consequence is that elec-
tron emission, which in the tunnel ionization regime occurs
near the maxima of the electric field, is temporally confined
to a few adjacent field maxima. The interference between
such ionization bursts gives rise to features in the electron
emission spectrum dP/dE markedly different from the typi-
cal above-threshold ionization (ATI) spectrum for longer
pulses with well-defined ponderomotive energy [7-12].
Lindner et al. [13] have recently demonstrated that an ul-
trashort pulse with a sinelike shape gives rise to a double-slit
interference in time. Two electron bursts ejected at times of
different field maxima and detected along the polarization
axis generate interference fringes in the emitted electron en-
ergy spectra. The fringe pattern was shown to be strongly
dependent on the carrier-envelope phase when switching
from a sinelike to a cosinelike pulse shape. The latter effec-
tively closes one of the two slits. Thus, the variation of the
carrier-envelope phase allows one to tune the degree of
“which-way” information available. Moreover, a strong di-
rectional dependence of the fringe pattern was observed.

In the present communication we extend this study of the
time double-slit interference emission pattern to the two-
dimensional (2D) momentum distribution of the outgoing
electron along the direction of the laser polarization, k,, and
the perpendicular polar coordinate k,. The two-dimensional
distribution reveals a complex diffraction pattern which can
provide information on both the laser-driven emission pro-
cess and the scattering potential. We point out that the inter-
ference of two electron microbursts emitted from an atomic
“point” source allows one, in principle, to holographically
image the effective atomic potential the receding electron
experiences. We present both full numerical solutions of the
time-dependent Schrédinger equation (TDSE) as well as a
simple analytic semiclassical model closely following the
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“simple man’s model” [14—16] for ultrashort pulses subtend-
ing one to two pulses. Atomic units are used throughout.

II. METHODS
We consider a hydrogen atom interacting with a linearly
polarized laser field. The Hamiltonian of the system is

)
=%+V(r)+zF(t), (1)

where V(r)=—1/r is the Coulomb potential energy, p and 7
are the momentum and position of the electron, respectively,
and F (¢) is the time-dependent external field linearly polar-
ized along the Z direction. The laser pulse is chosen to be of
the form

F(f) = f(1)cos(wt + dcp)?, (2)

where o is the laser carrier frequency, f(z) is the envelope
function, and ¢ the relative carrier-envelope phase. For
f(¢) we use the following two forms:

f(£) = Fy cos*(art/ 1) 6(7/2 — |t

), (3a)
), (3b)

where 7 is the total pulse duration and =0 corresponds to
the middle of the pulse. ¢-z=0 in Eq. (2) corresponds to a
cosinelike pulse while ¢-p=+m/2 corresponds to a + sine
pulse. While the form, Eq. (3a), can be considered a realistic
approximation to the envelope of an ultrashort few-cycle
pulse produced in a laboratory, Eq. (3b) is a convenient
choice, allowing for analytic approximations, and facilitates
insights into the buildup of interference patterns.

ft)=Fo0(7/2 - |t

A. TDSE calculations

The time-dependent Schrodinger equation is solved by
means of the generalized pseudospectral method [17]. The
method combines a discretization of the radial coordinate
optimized for the Coulomb singularity with quadrature meth-
ods to achieve stable long-time evolution using a split-
operator method. It allows for an accurate description of both
the unbound as well as the bound parts of the wave function
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|4At)). The process of detecting an electron of momentum &
can then be viewed as a projection of the wave function after
the laser pulse is turned off onto Coulomb waves [18-20].
Therefore, the asymptotic momentum distributions are ob-
tained:

P 1 ‘
e S ei0\21 £ 1P(cos Gk, [ H(D)| 7, (4)
1

where &(k) is the momentum-dependent Coulomb phase

shift, 6, is the angle between k and the polarization direction
Z of the laser field, P; is the Legendre polynomial of degree
[, and |k,I) is the eigenstate of the free atomic Hamiltonian
with positive eigenenergy E=k?/2 and orbital quantum num-
ber [. The Coulomb projection is required for observables
that are not constants of motion of the free evolution once
the external field is turned off. Unlike the case of the photo-
electron spectrum studied previously where the energy is a
constant of motion of the free evolution, the asymptotic vec-
torial linear momentum discussed in the present paper re-
quires the projection onto Coulomb waves. Cylindrical sym-
metry makes the dynamics a two-dimensional problem. The
projection of the angular momentum on the polarization di-
rection of the laser is a constant of motion (the magnetic
quantum number m is unaffected during the time evolution).
As the initial state of the system we consider the ground state
of the hydrogen atom—i.e., m=0.

B. Semiclassical model

We analyze the interference pattern to be discussed below
in terms of a “which-way” description with the help of a
semiclassical model for the field shown in Fig. 1(a). We
closely follow the Lewenstein [15] model to arrive to the
“simple man’s model.” Briefly, in order to approximately
solve the Schrodinger equation with the Hamiltonian given
by Eq. (1) we use the following ansatz:

() = ei’ﬂ{a(tﬂo) + J dvb(v, t)l@} ; (5)

where |0) is an eigenstate of the continuous spectrum with
velocity v and 1, is the atomic ionization potential (/,=0.5
for the hydrogen case). Inserting Eq. (5) into the Schrédinger
equation we arrive at the following expression for the ampli-

tude of the continuum states:

2 (19
ME0=—§lﬂ225$ﬁ
[+ A()

1/2
s> T (i ar (D)
1 d'Tk+A(§))1eS0sP, (6)
i=1

where, according to the strong-field approximation (SFA), S
accounts for the Volkov action,

t A2
S(t’,t)=—J dt”l—[“é(t )] +1p], (7)

’

d"(v)=(0|z|0) is the dipole element of the bound-continuum
transition, fi(t):— I f)dt’ﬁ (¢") is the vector potential of the la-
ser field divided by the speed of light, and k is the canonical
momentum, k=v() —g(t). To arrive at Eq. (6) one employs
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FIG. 1. (Color online) (a) Electric field of frequency w=0.05,
duration 7=27/w=126 a.u., and amplitude F,=0.075 a.u. as a
function of time (one cycle corresponding to a square envelope
function). (b) Momentum for different classical trajectories: elec-
tron detached at time r=—7/w, —7/2w, 0, /2w, and 7/ w, as
indicated. The momenta of the trajectories of electrons released at
t=* m/2w coincide in the time interval = 7/2® and give rise to
interferences.

(0|v"y=8-0v") and the following approximations: (i) the
depletion of the ground state is neglected [a(r)=1], (ii)
continuum-continuum transitions are of the form (v|z|v")
=iV,8(0-v’), and (iii) the saddle-point approximation [21].
t(sil), (i=1,2) are the complex solutions of the equation for the

. . aS(t'=tgp.t)
stationary phase action ————=0:
1 [ T
t(SIP) =—cos!|1-(k.F iN21,+ B¥)—|-—, (8a)
» PFol o
9 =155, (8b)

The photoelectron spectrum can be written as 4z

o0 o dE
=2m[" d cos O\2E|b(k,t=/ w)|?, since the energy is a con-
stant of motion of the free evolution after the electric pulse is
turned off. Thus, the energy distribution is invariant when
taking the asymptotic limit. The same does not hold true, in
general, for the final linear momentum. However, in the
strong-field approximation in which the atomic core potential
is neglected in the continuum state of the receding electron,
the momentum distribution remains unchanged as well. Con-
sequently, the momentum distribution “2=|b(k,r=m/w)|?

dk
can be written as

|b(k,t = 7l w)|* = B(k)cos}[AS(k)], 9)

where the phase AS(K)=S (tgz ,H=S§ (tglP) ,1) controls the inter-

ference and the factor B(Kk) is the ionization probability at a
time t(slf),. By making use of the simplified version of the
saddle point method, where the ionization times of Eq. (8)
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are considered real—i.e., té’L:Re(t(Si;, —the ionization prob-
ability can be written as [16]

-

B(k)

2020, + kﬁ)”]

= 5 > expl >
220, + k) [F((k))|? 3|F(1(k))|

(10)

Using t(slz)w instead of tg';, together with the assumption that the
electron is detached from the nucleus at times t(slz)w with zero
velocity leads to the simple man’s model [22]. The two emis-
sion times tggl and t(Si)l correspond to two different classical
trajectories that interfere when reaching the same final mo-
mentum. From the classical equations of motion, it follows
that the detached electron acquires the longitudinal momen-
tum

F .
p(t) = ~L(cos wt(s’j/l —Cos wt). (11)
®

Here, the effect of the atomic potential on the detached elec-
tron is neglected (SFA). The momentum p(f) converges to
the longitudinal momentum k, in the limit #— o since in Eq.
(11), k=p(t—*)=p(m/w).

The atom is predominantly ionized at the extremes of the
one-cycle electric field—i.e., wt(S';f + /2. For these trajec-
tories, Eq. (11) leads to p(f)=—(F,/w)cos wr (see Fig. 1).
After one half-cycle pulse (7=7/w) the momentum of the
electron is p(0)=—F,/w, and after a complete-cycle pulse
(r=27/w), p(m/ w)=Fy/ w [see Fig. 1(b)]. Thus the maxi-
mum intensity of ejected electrons is reached at |p|=Fy/w.
The limiting cases for the smallest momenta are trajectories
of the electron released right at the beginning (or end) of the
pulse near r=—7/2w (or +7/ ) leading to k,=0. The highest
momentum k,=2F,/w is reached for emission near =0
which is the point of coalescence between the “long” trajec-
tory emitted in the first half-cycle and the “short” trajectory
emitted in the second half of the cycle. These trajectories are
well known from high-harmonic generation and play also a
crucial role in the buildup of interference patterns in the elec-
tron momentum image.

Figure 1(b) displays an example of two different trajecto-
ries released at times t=—7/2w and /2w having the same
final momentum. It is straightforward from Eq. (11) to find
pairs of trajectories with the same final momentum. They
obey the relation (8b), which is exactly the condition for
interference of two classical trajectories in the Lewenstein
model. The two emission times t(slM’z) therefore characterize
the classical trajectories that are allowed to semiclassically
interfere. From Fig. 1(b) it can be directly seen that the range
of momenta for which classical trajectories are available for
interference is constrained to values 0 <p <2F,/ w.

In the following section we compare and contrast the re-
sults of this simple semiclassical model and the full TDSE
for the 2D momentum distribution created by an ultrashort
one- and two-cycle pulse.

III. RESULTS AND DISCUSSION

At first, we consider pulses with the envelope function
[Eq. (3a)], which corresponds to a realistic ultrashort pulse
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FIG. 2. (Color online) (a) Ab initio photoelectron spectra for a
two-cycle electric field of frequency w=0.05 a.u., peak field F,
=0.075 a.u., and duration r=47/w=251 (with a cos? envelope
function). Inset: electric field as a function of time. The shaded
areas correspond to the two temporal slits. (b) Doubly differential
electron momentum distribution in cylindrical coordinates (k,,k,) in
logarithmic scale for the same laser pulse.

containing about two optical cycles and different CE phases.
The inset of Fig. 2(a) displays the pulse with carrier fre-
quency w=0.05, peak field F,=0.075, which corresponds to
an intensity of /=2 X 10'* W/cm? with duration 7=251 a.u.
and ¢cp=m/2 (a sine-shaped pulse). For this pulse shape,
only two paths effectively contribute to the ionization spec-
trum. The shaded areas show the two temporal slits where
the ionization predominately occurs.

The photoelectron spectrum, shown in Fig. 2(a), has a
nonequally spaced peak distribution and the separation be-
tween two consecutive peaks increases with energy. The
peaks correspond to the time double-slit interference fringes
observed by Lindner et al. [13]. Recent simulations [16]
have also shown the existence of these peaks in the density
probabilities at different angles of ejection but for a much
stronger field (10'® W cm™2) applied to He* atoms.

We extend the analysis of the fringe pattern to the doubly-
differential momentum distribution ﬁ, which is plotted in
Fig. 2(b) as a function of the final lonpgitlldinal, k., and trans-
versal momentum of the electron, kp= \e"k§+k%. Several char-
acteristics of the two-dimensional distribution are notewor-
thy: (i) about 95% of the distribution lies in the region of
positive longitudinal momentum (k,>0), (ii) the distribution
is constrained to the region —0.5=<k,=<2.5 and kp50.6, and
(iii) the distribution features an intricate nodal pattern that
changes from a radial-circular nodal pattern near threshold to
an almost vertical striplike pattern at larger k,, slightly bent
outward with increasing k, at larger momenta. The near-
threshold pattern has been recently analyzed for a multicycle
pulse in terms of generalized Ramsauer-Townsend diffrac-
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FIG. 3. (Color online) Same as Fig. 2 but for a cosine-envelope
pulse, all other parameters unchanged.

tion oscillations [8], where Coulomb scattering effects have
been shown to be important.

One key feature of the diffraction pattern for the sinelike
shape pulse is the strong momentum asymmetry which un-
derlies the “stereo ATIT” technique to determine the carrier
envelope phase [5]. Switching to a cosinelike pulse (¢cg
=0) the asymmetry is much reduced [Fig. 3(b)]. Moreover,
the oscillatory pattern in the photoelectron spectrum has dis-
appeared [Fig. 3(a)]. This, however, does not imply that all
the interference fringes are absent. On the contrary, they are
well pronounced with radial atomic lines emanating from the
origin. In other words, the doubly differential distribution is
a smooth, almost structureless, function of the energy but an
oscillatory function of the ejection angle. The latter corre-
sponds to Ramsauer-Townsend diffraction fringes in the an-
gular distributions [8]. The fringes are more pronounced in
the forward hemisphere (k,>0), indicating the importance of
the positive half-cycle and the second negative half-cycle of
the pulse [Fig. 3(a), inset] for creating the phase difference
between interfering trajectories.

In order to simplify the analysis and to allow for an ana-
lytic treatment we choose now the rectangular envelope
function subtending one optical-cycle function and consider
the spectrum after one half cycle and a full cycle (Fig. 4).
The distribution after a full cycle [Fig. 4(c)] can be compared
with Fig. 2(b). The structural similarity reflects the fact that
the two additional weak half-cycles of the driving field
present in the inset of Fig. 2(a) but not in Fig. 1(a) lead only
to a minor change of the 2D distribution. The total ionization
probability, which can be calculated as the integral over the
energy distribution [Fig. 4(a)], is higher for a full-cycle pulse
than for a half-cycle pulse, as expected. After half a cycle the
ionization probability is 0.06, while after a full-cycle pulse it
is 0.12. This shows that the system is in the linear ionization
regime very far away from the saturation limit. The depletion
of the ground state is not yet important. The latter is one
ingredient of the semiclassical formula, Eq. (9). The energy
and 2D momentum distribution after a half-cycle is com-
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FIG. 4. (Color online) (a) Ab initio photoelectron spectra for the
case of the electric field in Fig. 1(a): after a half-cycle pulse (7
=7/ w) and one-cycle pulse (7=27/w). (b) Ab initio doubly differ-
ential electron momentum distribution after the half-cycle pulse
(one slit). (c) Ab initio doubly differential electron momentum dis-
tribution after the one-cycle pulse (two slits).

pletely smooth [Figs. 4(a) and 4(b)] and the wave packet
propagates in the negative z momentum direction [Fig. 4(b)].
In turn, when a second half-cycle acts on the electron, the
wave packet moves towards the positive direction and a clear
fringe pattern appears since a second slit has opened. Obvi-
ously, the two half-cycles (or portions thereof) act as the two
slits of a time double-slit experiment. The wave packet is
spread about 3 a.u. in the positive longitudinal momentum
direction, about only 0.5 a.u. (17%) in the transverse mo-
mentum. A pulse subtending only one half-cycle [Fig. 4(b)]
obviously does not correspond to a propagating wave of the
electromagnetic fields. Pulse shapes that resemble half-cycle
pulses have been created in the subpicosecond [23] and sub-
nanosecond [24] regimes, the latter of which by conventional
electronic pulse generators. Recently, a method to produce
half-cycle pulses in the subfemtosecond regime has been
proposed [25]. On a (sub)attosecond scale those pulses accu-
rately represent the transverse electric fields in fast ion-atom
collisions. Indeed, a momentum distribution closely resem-
bling Fig. 4(b) has been observed in fast U°** on He colli-
sions [26].

We present in Fig. 5 the corresponding 2D momentum
image for the one-cycle pulse calculated from the semiclas-
sical model [Eq. (9)] and [Eq. (10)]. We observe a qualitative
agreement with the ab initio results of Fig. 4. The photoelec-
tron spectrum calculated with the semiclassical model in Fig.
5(a) reproduces the oscillating structure of the ab initio cal-
culations in Fig. 4(a). Similarly, the 2D momentum distribu-
tion [Fig. 5(b)] qualitatively resembles the one extracted
from the ab initio calculation [Fig. 4(c)]. For a more quanti-
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FIG. 5. (Color online) (a) Semiclassical photoelectron spectrum
corresponding to the field in Fig. 1(a). (b) Semiclassical doubly
differential electron momentum distribution after the pulse. (c)
Schematic diagram of the interference process.

tative comparison we show in Fig. 6 the results of both ab
initio and semiclassical calculations as a function of energy
[Fig. 6(a)] and longitudinal momentum [Figs. 6(b) and 6(c)].
In order to highlight the interferences in the final continuum
states due to the two slits, we have removed in the ab initio
calculations of Fig. 6 the contributions from intermediate
excited states that are absent in the semiclassical calculation.
We eliminate the contribution from excited states by setting
their probability amplitudes to be zero at each time step in
the propagation of the wave packet when solving the TDSE.
The obvious drawback is the loss of unitarity of the time
evolution. The interference peaks in the photoelectron spec-
trum and the momentum distribution are now more enhanced
since they are not masked by the ionization coming from
other bound states. Nevertheless, the distributions of Fig. 6
are very similar to the one with the full spectrum (Fig. 4),
thereby ruling out the dominance of so-called Freeman reso-
nances in causing the nonequidistant peaks in the energy
spectrum over the range of energies considered. The agree-
ment in the position of the peaks of the semiclassical energy
spectrum and the TDSE one is reasonable, and the agreement
in the separation of consecutive peaks in the longitudinal
momentum distribution, shown in Fig. 6(d), proves the inter-
ference nature of the pattern.

The differences of the semiclassical model to the ab initio
calculation are, however, significant and provide key insights
into the emission process and its semiclassical description.
The semiclassical model fails near threshold and at high
energies. Classically, trajectories with final energies above

E=2(f

w

)>=4.5 are not allowed [see also Fig. 6(a)]. Since the
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FIG. 6. (Color online) (a) Photoelectron spectra by solving the
TDSE removing the excited states and by using the semiclassical
(sc) model corresponding to the field in Fig. 1(a). (b) Longitudinal
momentum distributions by the two methods. (c) Close-up of (a)
showing the phase shift between two consecutive peaks. (d) Dis-
tance between two consecutive peaks of the longitudinal momen-
tum distribution of (c).

semiclassical approximation requires classical trajectories as
input [Egs. (9) and (11)], it must fail near the classical
boundary of allowed trajectories and when the quantum
mechanical emission probability extends into the classically
forbidden region. There are also significant discrepancies at
very low energies and negative longitudinal momenta &k,
< 0. The latter is due to the fact that classical trajectories do

not reach this region. The classical longitudinal momentum
T . 2F,
distribution is strictly restricted to 0 <k,<-"=3.

At low energies the discrepancy is, however, not primarily
due the failure of classical dynamics but is the result of the
additional approximation entering the present semiclassical
model: namely, the neglect of the atomic core (i.e., Cou-
lomb) potential in the SFA. This observation suggests the
following interpretation of the diffraction images seen in
Figs. 4(c) and 5(b): The diffraction image [Fig. 5(b)] is the
result of the superposition of the direct emission from the
point source, the atom, into the half-space of positive k, and
the indirect beam that is emitted from the point source in
opposite direction, turned around by the field and also emit-
ted in the positive half space [see Fig. 5(c) for a schematic
diagram of the process]. The interference pattern is therefore
controlled by the phase acquired by the redirected trajectory
during the propagation in the (strong) field relative to that of
the directly emitted wave packet. By contrast, the interfer-
ence pattern of the full numerical solution [Fig. 4(c)] con-
tains the additional phase acquired by the (re)scattering at the
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atomic core potential, in the present case the Coulomb po-
tential. In other words, while the semiclassical interference
pattern is a holographic momentum image of the strong field
acting on the rescattered wave packet, the full solution can
be viewed as a holographic image of the combined atomic
core potential and the strong field. In turn, the difference
between the two images should provide direct information
on the atomic scattering potential. This is illustrated in Fig.
6(c) where the phase shift along the k, direction is displayed.
This shift is due to the effect of the Coulomb potential on the
ejected electron which is present in the ab initio calculations
but is neglected in the semiclassical model (SFA).

IV. CONCLUSIONS

In this article we have presented theoretical studies on the
interference effect observed in the electron distributions of
ionized hydrogen atoms subject to a linearly polarized ul-
trashort one- and two-cycle laser pulse. We have extended
the previous analysis in the energy domain to the full two-
dimensional momentum space distribution. The two-
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dimensional electron momentum distribution after a full-
cycle pulse evidences interference fringes. We have
identified the peak structure in the photoelectron spectrum
and the longitudinal momentum distribution as the interfer-
ence phenomenon between the wave packets released at the
first and second half-cycles, each half-cycle operating as an
independent slit. In the understanding of the interference
phenomenon we have made use of a simplified semiclassical
model which has the advantage of being analytical. The
semiclassical model partially reproduces the interference pat-
terns in the spectra of ejected electrons. The differences in
the pattern between semiclassical and ab initio calculations
are mainly due to the Coulombic core. The present results
suggest the feasibility of holographic imaging of the poten-
tial at which the laser driven wave packet rescatters.
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