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Slow collisions of electrons with Rydberg sodium atoms have been quantum mechanically investigated by
using the time-dependent close-coupling �TDCC� method. To make such large-scale calculations possible, it is
essential to implement the TDCC method with the powerful finite-element discrete variable representation
�FEDVR�. Besides visualizing the slow collision dynamics, our quantum calculations show interesting features
in the slow electron impact ionization of Rydberg atoms. The energy sharing between two continuum electrons
changes dramatically as the incoming electron energy decreases. Predominant equal-energy sharing is observed
in such a cold �e ,2e� process, even though the impact electron energy is still twice the binding energy of the
Rydberg electron.

DOI: 10.1103/PhysRevA.74.062716 PACS number�s�: 34.80.Dp, 34.60.�z

The accurate calculation of electron impact ionization of
atoms as simple as hydrogen has been a long-standing diffi-
cult problem, even though quantum mechanics was founded
more than 80 years ago. It was not completely solved until
both time-independent and time-dependent numerical meth-
ods were developed in the past decade �1–4� with the aid of
supercomputers. The difficulty lies in how well the electron
correlation can be handled in such a three-body Coulomb
system �5�. One direct way to fully account for three-body
interactions is to nonperturbatively solve the time-dependent
Schrödinger equation �TDSE�. Time-dependent close cou-
pling �TDCC� is such a method that uses partial wave expan-
sions to effectively solve the TDSE for few-body systems
�4�. It has been proven that TDCC calculations give the same
results for three-body breakups as those from the time-
independent methods �6�. However, the normal implementa-
tion of TDCC based on finite difference �FD� has limited its
power to handle spatially extended problems such as electron
impact ionization of highly excited atoms, although efforts
using variable-mesh FD have been devoted to extending its
capability �7�. It also turns out to be difficult for other meth-
ods to solve this problem of slow electron interactions with
Rydberg atoms.

Slow collisions of electrons with Rydberg atoms is essen-
tially important to better understand many physical processes
that occur in astrophysics �8�, frozen Rydberg gases �9�, and
ultracold plasmas �10�, just to name a few. Although classical
trajectory Monte Carlo methods have been applied to study
electron collisions with Rydberg atoms for more than 30 yrs
�11,12�, fully quantal calculations are always sought not only
to verify classical calculations or to justify the validity of
semiclassical extrapolation from low-n data to high-n predic-
tions, but also to reveal any potential quantum effects, espe-
cially in very low energy regimes. As the incoming electron
energy decreases �longer de Broglie wavelength�, one would
expect that quantum effects such as Rydberg-state polariza-
tion and exchange interaction may become more important.
In experiment, direct measurements of slow electron impact
ionization of Rydberg atoms are now possible with advanced
techniques. For example, a recent experiment �13� showed a
large discrepancy with a previous theoretical prediction �14�
and with a more recent semiclassical extrapolation �15�.
These have motivated our efforts to extend the TDCC capa-

bility for quantum calculations of slow electron collisions
with Rydberg atoms.

We have shown that the TDCC method can be perfectly
implemented by using the finite-element discrete variable
representation �FEDVR� �16�. The FEDVR-based TDCC
method, which is easily parallelized on state-of-the-art super-
computers, has proven to be advantageous in accurately and
efficiently solving spatially extended problems, such as the
attosecond pump probe of electron wave packets within He
atoms �17� and strong-field interactions with molecules �18�.
In this paper, we further demonstrate its power by applying it
to solve the hard computational problem in atomic physics:
slow electron collisions with Rydberg atoms.

We consider slow collisions of Rydberg Na, which is ini-
tially in its 36s state, by free electrons having low energies of
0.05 eV or 0.025 eV �just a few times above the ionization
threshold�. To simulate the Coulomb interaction between a
single electron with the Na+ core, we have adopted an exten-
sively used model potential �19�

V�r� = −
1

r
�Zc + �Z − Zc�e−a1r + a2re−a3r� −

�c

2r4 �1 − e−�r/rc�3
�2,

�1�

with the empirical parameters: a1=3.324 424 5, a2
=0.713 727 9, a3=1.832 818 2, �c=0.9457, and rc
=0.52 4506 3, while the nuclear and core charges are Z=11
and Zc=1, respectively. Diagonalizing the single electron
Hamiltonian with this model potential in our FEDVR grid
�discussed below�, we obtain the eigenstates �nl of the Na
atom. It gives a binding energy of Eb=−0.0112 eV for the
36s state �n0=36�, which agrees well with the accurate value
of −0.0113 eV �20�. The incoming free electron is assumed
to initially sit at a far distance �r0�3200 bohr� away from
the atomic core. It is described by a Gaussian wave pact �21�

Gkl�r� =
�i�l

��w2�1/4e−�r − r0�2/2w2
e−ikr, �2�

where w=400 bohr is the width of the electron wave pact
with a momentum k and l is its angular momentum quantum
number. Thus, we can approximately express the total initial
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state for such a collision system �LS symmetry� in a symme-
trized product form of �nl and Gkl

�l1l2
LS �r1,r2,t = 0� =

1
�2

��nl1
�r1�Gkl2

�r2�

+ �− 1�S�nl1
�r2�Gkl2

�r1�� . �3�

The collision dynamics is governed by the fully six-
dimensional �6D� TDSE, which has the following form
�atomic units are used throughout�:

i
�

�t
��r1,r2,t� = �−

1

2
��r1

+ �r2
� + V�r1� + V�r2�

+
1

�r1 + r2�	��r1,r2,t� , �4�

where r1 and r2 are the position vectors of each electron,
with respect to the Na+ core. We obtain a more tractable
solution by following the time-dependent close-coupling
�TDCC� recipe �4�: expanding the 6D wave function
��r1 ,r2 � t� in terms of bipolar spherical harmonics
Yl1l2

L,S��1 ,�2�

��r1,r2�t� = 

LS



l1l2

�l1l2
�LS��r1,r2�t�

r1r2
Yl1l2

L,S��1,�2� , �5�

for a specific symmetry �LS�. Also, we can expand the Cou-
lomb repulsion term 1/ �r1−r2� in terms of spherical harmon-
ics. Substituting these expansions into the above Schrödinger
Eq. �4� and integrating over angles �1 and �2 yields a set of
coupled partial differential equations with only two radial
variables, r1 and r2, left

i
�

�t
� j�r1,r2�t� = �T̂1 + T̂2 + V̂c�� j�r1,r2�t�

+ 

k

V̂j,k
I �r1,r2�t��k�r1,r2�t� , �6�

where the partial wave index j runs from 1 to the total num-
ber N of partial waves used for expansion. In Eq. �6�, the

diagonal operators T̂1, T̂2, and V̂c give the kinetic energies
and the Coulomb attractions between each electron and the

Na+ core, while the off-diagonal potential term V̂j,k
I �r1 ,r2 � t�

consists of the Coulomb repulsion between the incident elec-
tron and the Rydberg electron.

Based on the FEDVR, we have generated an efficient time
propagator with employing the real space product �RSP� al-
gorithm. This sophisticated code �RSP-FEDVR� is parallel-
ized in the scheme of message-passing interface �MPI�,
which has shown linear scaling up to �500 CPU’s on super-
computers �see details and its advantages in Ref. �16��. In
calculations presented here, we have typically used 480 finite
elements for each of the two radial dimension �r1 and r2�,
with a four-point basis within each element. The size of each
finite element varies from the smallest value of
0.65 bohr to �43.35 bohr outward, with an exponential fac-
tor of 4.2. With such an FEDVR setting, our grid spans a
large space of �4900 bohr in both r1 and r2 dimensions. The

system is propagated in time until the collision process ends
at tf. To obtain the deexcitation and ionization probabilities,
Pe�nl ,k2� and Pi�kl ,k2�, we need to perform the projection of
the time-dependent wave packets onto bound or continuum
states �22�

Pe�nl,k2� = 2

LS

�2L + 1��2S + 1�

l2

�� � dr1dr2

	 �nl
* �r1��k2l2

* �r2��ll2
LS�r1,r2,tf��2

, �7�

and

Pi�k1,k2� = 2

LS

�2L + 1��2S + 1�

l1l2

�Ai�k1l1,k2l2,tf��2

= 2

LS

�2L + 1��2S + 1�

l1l2

�� � dr1dr2

	 �k1l1
* �r1��k2l2

* �r2��l1l2
LS �r1,r2,tf��2

, �8�

where �nl and �kl are the bound and continuum states, re-
spectively. The continuum states �kl are obtained by diago-
nalizing the model potential �Eq. �1�� in our FEDVR grid.
Integrating Pe�nl ,k2� over k2, we can obtain the probability
of excitation or deexcitation to a specific state nl, that is,
Pe�nl�=
Pe�nl ,k2�dk2. To see the energy-sharing informa-
tion between the continuum electrons, we can define a en-
ergy differential probability as

dPi

dE1
= 2


LS

�2L + 1��2S + 1� � � dk1dk2
1

k1k2

	
�� − tan−1� k2

k1
�	


l1,l2

�Ai�k1l1,k2l2,tf��2, �9�

where the hyperspherical angle � defined in the k1-k2 plane
describes the partition of excess energy, Eexc= k2

2 − �Eb�, be-
tween two continuum electrons.

Although our FEDVR-based TDCC method has been suc-
cessfully applied to �pump probe� photoionization of He �17�
and strong-field interactions with molecules �18�, we would
verify its capability and accuracy to handle electron impact
ionization problems before conducting the full-scale calcula-
tion of slow electron collisions with Rydberg atoms. For this
purpose, we have applied our RSP-FEDVR code to calculate
electron impact ionization of a ground-state hydrogen atom
with an incident energy of 54.4 eV as used in Ref. �22�. We
obtained excellent agreement between our calculation and
those from both the FD-based TDCC computation and the
time-independent ECS method �22�. We now turn to our
large-scale calculations for the slow collisions of electrons
with Rydberg Na �36s� atoms. Since we are considering very
low incident electron energies of Ei=0.05 eV and Ei
=0.025 eV, it is expected that the S-wave contribution would
be dominant. Furthermore, as we can handle the collision by
each total angular momentum configuration �LS� separately,
we believe that calculations for high angular-momentum
waves can be performed in the same fashion. Thus, we
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present here our computations only for the S-wave case, i.e.,
L=0�S=0� and l1= l2=0−45, in which a total of 46 partial
waves are used for expansion. We have checked the conver-
gence of our calculations and found little changes to our
S-wave results by adding more partial waves.

To visualize the slow electron �Ei=0.05 eV� collision pro-
cess, we have plotted in Fig. 1 the snapshots of electron
probabilities �
 j�� j�r1 ,r2 , t��2� in the r1r2 plane for different
times. We see that as the collision goes on, the two branches
of electron probability �symmetric relative to the r1=r2 line�
approach the Na+ core �at the origin�. It was illustrated that
the Rydberg wave is gradually distorted during the slow col-
lision �Figs. 1�c�–1�e��. They reach to a minimum distance at
t=1200 fs, as is shown in Fig. 1�d�. Afterward, they
“bounce” back to large r1 and r2 regions indicated in Figs.
1�e� and 1�f�. The collision process tends to end at t
=2400 fs. We therefore plot the electron probability in ln-
scale in Fig. 1�f�, to see clearly the deexcitation probabilities
�the portion close to either r1 or r2 axis�. We have also cal-
culated the expectation values of �pr1

� and �r1� �same as �pr2
�

and �r2� because the two electrons are indistinguishable�,
which are drawn as a function of the collision time in Fig. 2.
We find that �r1� reaches to a smaller minimum value in the
case of Ei=0.05 eV when compared to that of the Ei
=0.025 eV case �not shown here�. This is reasonable because
fast incident electrons can penetrate deeper into the Rydberg
electron clouds.

At the end of collision tf =2400 fs for Ei=0.05 eV �tf

=2900 fs for Ei=0.025 eV�, we estimated the probabilities
for both deexcitation and ionization processes. The results
are shown in Figs. 3 and 4. In Fig. 3�a�, we plotted both the
deexcitation �n�n0� and excitation �n�n0� probabilities
�Pe�n�� as a function of the quantum level n, by summing
over all l sublevels. Unlike the case of fast electron collision,
deexcitation and excitation of the Rydberg electron are much
less significant than ionization in such slow collisions. We
found that the total deexcitation probability is one order of
magnitude less than that of ionization. The maximum n level
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FIG. 1. �Color online� The snapshots of electron probability
distribution on the plane spanned by the radial coordinates r1 and
r2, for different times: �a� t=0.0 fs, �b� t=200 fs, �c� t=800 fs, �d�
t=1200 fs, �e� t=1600 fs, and �f� t=2400 fs. The incident electron
with an energy Ei=0.05 eV impacts on the Rydberg �36s� Na atom.
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FIG. 2. �Color online� The calculated expectation values �pr1
�

and �r1� as a function of the collision time, for the case shown in
Fig. 1.
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FIG. 3. �Color online� �a� The deexcitation and excitation prob-
ability Pe�n� as a function of energy level n �summing over all l
sublevels�; �b� the deexcitation probability Pe�20s ,k2� drawn
against the outgoing electron momentum k2. The dashed vertical
line in �b� indicates the incident electron momentum.
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is limited to n=46 for the box size we used. Generally, the
excitation probability drops with n increasing, while the de-
excitation ones exhibit oscillations against n. The similar de-
excitation features are found for both incident electron ener-
gies. To further explore the three-body interaction dynamics,
we draw the probability Pe�nl ,k2� versus the outgoing elec-
tron momentum k2 in Fig. 3�b� for the nl=20s state. As we
discussed above, Pe�nl ,k2� is just the probability of one elec-
tron being deexcited or excited to nl level and the other
electron being in the continuum with a momentum k2. The
dashed vertical line in Fig. 3�b� indicates the incident elec-
tron momentum. Figure 3�b� shows that when the Rydberg
electron is deexcited from 36s to 20s state, the outgoing
electron takes the excess energy ��E=Eb�36s�−Eb�20s�� so
as to be speeded up in the continuum, which indicates the
total energy conservation.

In Fig. 4, we plotted the energy-differential probability
�dPi /dE1� for the electron impact ionization of the Rydberg
Na �36s� atom in cases �a� Ei=0.05 eV and �b� Ei

=0.025 eV, respectively. Integrating over E1, we obtained a
total ionization probability of 0.148 and 0.0729 for these two
cases, respectively. The distinct feature of these figures is the
oscillations of dPi /dE1, which is different from the smooth
U shape in the case of fast electron impact ionization of
ground-state atoms. Refining the grid setting in our FEDVR

and increasing the number of partial waves in the expansion,
we essentially found the same oscillations in the energy-
differential ionization probability. This may be attributed to
some intrinsic quantum effects: First of all, since the incom-
ing electron is slowly approaching the target during the col-
lision, the Rydberg atom can be easily polarized by the slow-
impacting electron. Certain configuration of the polarized
Rydberg electron clouds may favor or unfavor electron ejec-
tions for some specific energy sharing. Second, from the
quantum-mechanics point of view, the slowly outgoing elec-
tron waves may continuously interfere with each other dur-
ing the ionization process. Such interference can also result
in the energy-sharing oscillations. Nevertheless, Fig. 4�a�
still shows an overall U shape, although oscillations super-
pose on it. But when the incident electron energy further
decreases to Ei=0.025 eV, a dramatic change is clearly seen
in Fig. 4�b�, where predominant equal-energy sharing occurs.
It is noted that the incident electron energy Ei=0.025 eV is
still twice the bind energy ��Eb�=0.0113 eV� of the Rydberg
36s electron, even though it looks very small. For the same
condition �Ei�2�Eb��, the fast electron impact ionization of
ground-state atoms has given a totally different result: asym-
metric energy sharing is most probable �22�. The dominant
equal-energy sharing observed here is, therefore, unique for
slow electron collision with Rydberg atoms.

In summary, we have quantum mechanically investigated
the slow collisions of electrons with Rydberg atoms, using
the time-dependent close-coupling method. To make such
large-scale calculations possible, the FEDVR implementa-
tion of the TDCC method is essential, which enables the
variable gridding but remains highly accurate. Our S-wave
calculations show interesting oscillations in the energy-
differential ionization probability of Rydberg atoms. Also,
equal energy sharing was found to be predominant in such a
slow �e ,2e� process, even though the incident electron en-
ergy is still twice the Rydberg binding energy. We expect that
these predictions will motivate future experiments in this im-
portant field.
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