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The high-energy electron impact excitation cross sections are directly proportional to the generalized oscil-
lator strengths �GOSs� of the target �an atom or molecule�. In the present work, the GOSs of helium from the
ground state to n 1S, n 1P, n 1D �n→�� and adjacent continuum excited states are calculated by a modified
R-matrix code within the first Born approximation. In order to treat the bound-bound and bound-continuum
transitions in a unified manner, the GOS density �GOSD� is defined based on the quantum defect theory. The
GOSD surfaces of 1S, 1P, and 1D channels are calculated and tested stringently by the recent experiments.
With the recommended GOSD surfaces with sufficient accuracy, the GOSDs �i.e., GOSs� from the ground state
into all n 1S, n 1P, and n 1D excited states of helium can be obtained by interpolation. Thus, the high-energy
electron impact excitation cross sections of all these excited states can be readily obtained. In addition to the
high-energy electron impact excitation cross sections, a scheme to calculate the cross sections in the entire
incident energy range is discussed.
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I. INTRODUCTION

Electron impact excitation processes are important in di-
verse fields such as radiation physics, plasma physics, atmo-
spheric physics, and astrophysics. With ever-increasing
needs, such cross-section data are indispensable physical pa-
rameters in the above-mentioned fields. In an electron impact
excitation process, the target �an atom or molecule� can be
excited into all sorts of excited states, e.g., an infinite number
of Rydberg, autoionization, and continuum states, as long as
the process satisfies the energy and momentum conserva-
tions. The differential scattering cross section is a function of
the incident energy Ei, the energy transfer �E, and the scat-
tering angle � of the impact electron. Since the scattering

angle is equivalent to the momentum transfer K� in describing
the collision process, the scattering angle is substituted by
the momentum transfer for convenience. If the incident en-
ergy of the impact electron is high enough but still nonrela-
tivistic, the first Born approximation �FBA� is applicable and
the incident and scattered electrons can be treated as plane
waves. Within the FBA, the expression of the differential
cross section �DCS� consists of two distinct parts: one only
deals with the incident electron, which is a trivial factor; the
other deals with the target, which is the generalized oscillator
strength �GOS� and is independent of the incident energy
�1–6�. Therefore, the DCS is proportional to the GOS, which
is a function of the momentum transfers K and the energy
transfers �E. In the limit of zero momentum transfer, the
GOS becomes equal to the optical oscillator strength. This
connects the high-energy electron impact excitation process
with the photoabsorption or photoionization processes.

In the framework of the quantum defect theory �QDT�
�7–10�, all the infinite excited states, including Rydberg and

adjacent continuum states, can be classified as channels; e.g.,
for helium, in the 1P channel, there are infinite n 1P �2�n
��� and adjacent � 1P continuum states. The physical pa-
rameters of such channels �e.g., the quantum defects �	 and
the transformation matrix Ui	� are smooth functions of the
excitation energies �7–10�. In the R-matrix method �11–17�,
the initial- and final-state wave functions are expanded on
equal footing. Using a modified R-matrix code, the GOSs of
the target can be calculated by evaluating the transition ma-
trix elements between the initial and final states. In order to
treat the bound-bound and bound-continuum transitions in a
unified manner, the GOS density �GOSD� is defined �2–6�,
which is a smooth function of the excitation energies in a
channel. The GOSD curves of the excited states in a channel
form a surface, which is a smooth function of the momentum
transfers and the excitation energies. In our previous work
�5�, we reported the preliminary calculation results of helium
by the modified R-matrix code, which were only compared
with the previous experimental results �18�. In this work, we
will present more detailed descriptions of the method and
make a detailed comparison with the recent experimental re-
sults �19�, which will give a more stringent test of the theo-
retical method by this simple and nontrivial prototype sys-
tem. Recently, Liu et al. �19� measured the absolute GOSs of
the excited states 2 1S, 3 1S, 4 1S, 2 1P, 3 1P+3 1D, 4 1P
+4 1D, 5 1S+ 1P+5 1D, and 6 1S+ 1P+6 1D for helium at the
incident energy 2500 eV with the energy resolution 80 meV
�full width at half-maximum �FWHM�� in the momentum
transfer range 0.07�K2�3.6 a.u. The absolute measure-
ments with such high resolutions provide the benchmark ex-
periments to test the theoretical method and the modified
code stringently.

Using the modified R-matrix code, the GOSs of helium
from the ground state to n 1S, n 1P, and n 1D �n→�� and
adjacent continuum excited states are calculated within the
FBA. For n 1S �n=2,3 ,4� and 2 1P, excited states, our cal-
culated GOSs agree with the recent high-energy experimen-
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tal results �19�. For the excited states with high principal
quantum numbers, e.g., n1P+n 1D �n=3,4� and n 1S+n 1P
+n 1D �n=5,6�, the GOSs are measured as a whole and
cannot be resolved experimentally because of the energy
resolution limit. For these states, our calculated total GOSs
agree with the unresolved experimental results within the
experimental uncertainties. Although there are no resolved
experimental GOSs of n 1D excited states, which are smaller
than those of the corresponding n 1S states but with the same
order of magnitude, our calculated GOSs of n 1D states are
anticipated to have the same accuracy as those of n 1S states
since all the excited-state wave functions are expanded on
equal footing in the R-matrix method. More specifically,
since the GOSs of n 1P states are larger than the GOSs of
corresponding n 1D and n 1S states by about one or two or-
ders, the experimental GOSs of n 1P �n=3,4 ,5 ,6� states can
be separated from the unresolved experimental total GOSs
by subtracting the corresponding theoretical GOSs of n 1D
and n 1S states. The available experimental GOSs of n 1P
�n=2,3 ,4 ,5 ,6� states can be used to examine the GOSD
surface of the 1P channel. Note that the GOSD surface can
be calculated based on a few GOSD curves of the bound and
adjacent continuum states in an efficient way. In this work,
the GOSD surfaces of 1S, 1P, and 1D channels are calculated
and examined by the available experimental values. With the
recommended GOSD surfaces of sufficient accuracy, the
GOSDs �i.e., GOSs� of all n 1S, n 1P, and n 1D excited states
can be obtained by interpolation instead of laborious ab ini-
tio calculations. Since the high-energy electron impact exci-
tation differential cross sections �DCSs� are proportional to
the GOSs, the DCSs of these excited states can be readily
obtained. This can satisfy the ever-increasing needs of vari-
ous relevant fields. In addition to the high-energy electron
impact excitation process, a scheme to deal with the cross
sections in the entire energy range, including low and inter-
mediate energy, is discussed in Sec. III. Similarly to the
GOS, the apparent GOS �AGOS� for the low- and
intermediate-energy impact processes can be defined, which
is a function of the incident energies Ei in addition to the
energy transfers �E and the momentum transfers K. The cor-
responding apparent GOSD �AGOSD� can also be defined.
The AGOSD for the intermediate-energy electron impact
process is anticipated to be a smooth function of the excita-
tion energies and the momentum transfers at various given
incident energies, e.g., forming sets of smooth surfaces in �E
and K spaces. However, at low incident energies, the as-
sumption that the AGOSD is a smooth function of �E and K
is not valid because of the involvement of only a few partial
amplitudes and the existence of resonances.

II. THEORETICAL METHODS AND RESULTS

In an electron impact excitation process, the differential

cross section d
 /d� is equal to k�
k �f�k̂���2 �in atomic units�.

Here f�k̂�� is the scattering amplitude, which can be calcu-
lated by the following formula �20�:

f�k̂�� = −
1

2�
�eik��·r���,T��L̃�S̃��̃���V�r�1 ¯ r�N,r����+�

= −
1

2�
�eik��·r���,T��L̃�S̃��̃���T�eik�·r��,T�L̃S̃�̃��

= �
LS�

fLS��k̂�� , �1�

where T is the transition matrix. k� �k��� and � ���� are,
respectively, the wave vector and spin wave function of

the initial �final� state of the impact electron. T�L̃S̃�̃�
and T��L̃�S̃��̃�� are the initial- and final-state wave func-

tions of the target with the definite angular momentum L̃

�L̃��, spin S̃ �S̃�� and parity �̃ ��̃��. The wave function

�eik�·r�� ,T�L̃S̃�̃�� for the �N+1�-electron system including the
impact electron and the target has the following normaliza-

tion condition: �eik�·r�� ,T�L̃S̃�̃��eik��·r��� ,T��L̃�S̃��̃���
= �2��3�TT���k� −k���= �2��3�TT�

1
k ��k̂− k̂�����−���; here �

=k2 /2. V�r�1¯r�N ,r�� is the interaction operator between the
impact electron and the target, which is equal to �	=1

N −1
�r�−r�	�

+ Z
r� �Z is the charge of the atomic nucleus� if the interaction

is Coulombic. N is the number of the electrons in the target.
r� and r�	 are, respectively, the coordinates of the impact elec-
tron and the 	th electron in the target relative to the centroid
of the target. The wave function �+�r�1¯r�N ,r�� characterizes
the asymptotic behavior of the initial state for the
�N+1�-electron system. The partial scattering amplitude

fLS��k̂�� is

fLS��k̂�� = −
�

	k�k
�
ij

�
mlj

msj

�
msi

�
M̃L̃M̃S̃

�
M̃�

L̃�
M̃�

S̃�

	4��2li + 1�

�Yljmlj
�k̂��Tji

LS� � �L̃�M̃�
L̃�

,ljmlj
�LML�

��S̃�M̃�
S̃�

,sjmsj
�SMS��LML�L̃M̃L̃,li0�

��SMS�S̃M̃S̃,simsi
� . �2�

For convenience, the direction of k� is defined as the ẑ axis. i

and j are the channel labels, i.e., i�li ; L̃S̃�̃� and j�lj ; L̃�S̃��̃��;
li �lj� and si �sj� are the angular momentum and spin of the
impact �scattered� electron. The total angular momentum L,
spin S, and parity � of the �N+1�-electron system are good
quantum numbers in an electron impact process. Tji

LS� are the
reduced transition matrix elements in LS� representation,
which only connect the initial and final states with the same
LS� because of the conservation of the good quantum num-
bers. Moreover, Tji

LS� are independent of the magnetic quan-
tum numbers because of the rotational invariance of the scat-
tering interaction. According to Bethe theory �1,21�, if the
incident energy of the impact electron is high enough, �+ is

equal to �eik�·r�� ,T�L̃S̃�̃�� within the FBA �1,2�, and the am-
plitude is
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fB�k̂�� = −
1

2�
�eik��·r���,T��L̃�S̃��̃���V�eik�·r��,T�L̃S̃�̃��

= −
2

K2 �T��L̃�S̃��̃����
	=1

N

eiK� ·r�	�T�L̃S̃�̃��

= �
LS�

fLS�
B �k̂�� , �3�

where fB�k̂�� is the Born scattering amplitude. In the second
line of Eq. �3�, the coordinate r� of the impact electron is

integrated as a whole �1,2�. K� =k� −k�� is the momentum trans-
fer of the impact electron. The Born partial scattering ampli-

tude fLS�
B �k̂�� can be calculated by Eq. �2�, where the reduced

transition matrix should be the Born reduced transition ma-
trix Tji

LS��B� calculated within the FBA. Note that the above
expression for the Born scattering amplitude consists of two
parts: one only deals with the impact electron, which is
nearly a trivial number factor; the other part deals with the
target, which is defined as the GOS of the target �1–6�,

F��E,K� =
2�E

K2 
�T��L̃�S̃��̃����
	=1

N

eiK� ·r�	�T�L̃S̃�̃��
2

=
K2�E

2
�fB�k̂���2, �4�

where �E is the energy transfer. Therefore, the DCS at high
incident energy is proportional to the GOS within the FBA,

d


d�
=

k�

k
�fB�k̂���2 =

2

�E

k�

k

F��E,K�
K2 . �5�

In the limit of zero momentum transfer, the GOS becomes
equal to the optical oscillator strength �1–6�. This connects
the high-energy electron impact excitation process with the
photoabsorption or photoionization processes.

The GOS can be calculated by the R-matrix method ac-
cording to Eq. �4�. Since the detailed descriptions of the
R-matrix method have been presented in the previous works
�11–17�, here only a brief outline will be given. In the
R-matrix method, the initial- and final-state wave functions
�T and T�� are expanded on equal footing. This method
begins by partitioning the subconfiguration space of the ex-
cited electron into two regions by a sphere of radius a cen-
tered on the nucleus. In the external region �r�a�, where r is
the distance of the excited electron relative to the centroid of
the core, the exchange interactions between the excited elec-
tron and the core electrons are negligible if the radius a is
chosen to be large enough so that the charge distribution of
the core is restricted in the sphere. In the external region, the
excited electron mainly “feels” the Coulomb potential as
well as the long-range static polarization potential. Thus the
outer region wave functions of the excited electron can be
expanded by regular and irregular Coulomb wave functions
analytically, which satisfy the boundary conditions at infinity
�22�.

Within the reaction zone �r�a�, the interactions between
the excited electron and the core electrons involve electron
exchange and correlation interactions. This is a many-body
problem and solved variationally as a whole to obtain the
logarithmic derivative boundary matrix R�E� on the
R-matrix box surface �i.e., r=a�. Therefore, within the reac-
tion zone the electron correlations for the N-electron system
including the core and the excited electron are calculated
adequately by the variational method �22,23�. Within this
region, the wave functions � of eigenenergy E for the
N-electron system are expanded as

� = �
k

AEk�k. �6�

Here �k are a set of energy-independent configuration bases,
which are expanded as

�k = A�
ij

aijk�̃i�r�1 ¯ r�	 ¯ r�N−1; r̂N,
N�
1

rN
uij�rN�

+ �
j

bjk� j�r�1 ¯ r�	 ¯ r�N� , �7�

where A is the antisymmetrization operator which accounts
for the electron exchanges between the core electrons and the
excited electron; r�	 is the coordinate of the 	th electron in
the core; uij is the continuum orbital bases; � j is completely
formed by the bound orbitals to ensure the completeness of
the wave functions for the N-electron system and takes ac-
count of the electron correlations within the reaction zone;

and �̃i, which has definite total angular momentum and par-
ity, is the ith channel wave function obtained by coupling the
core wave functions with the angular and spin wave func-
tions of the Nth electron. More specifically, the core wave
functions are usually written as the linear superpositions of a
set of basis configurations to take into account the electron
correlations by a self-consistent multiconfiguration interac-
tion method. These basis configurations are constructed as
antisymmetrized product-type wave functions by a set of
bound orbital bases with appropriate angular momentum
couplings. The radial wave functions of these bound orbital
bases are the linear superpositions of the Slater-type-orbital
bases �24�. In the present work, we use the following set of

orbital bases: 1s ,2s ,2p ,3s ,3p ,3d , 4̄s , 4̄p , 4̄d, which are ob-
tained by the variational method with the CIVPOL code

�25–27�. Here 4̄s , 4̄p , 4̄d are polarized pseudo-orbitals
�25–27�, which take account of the static polarization effects
sufficiently. All the other orbitals 1s−3d are spectroscopic
orbitals with n− l−1 nodes. Based on this set of orbital bases
and carefully chosen nine target states arising from the con-
figurations �1snl ;n�4, l�2�, the lowest ionization energy
for the ground state of helium converges to 1.7911 Ry,
which agrees well with the experimental value 1.8074 Ry
�28� by about 0.9%.

For an atom or molecule, there exist infinite excited states
including Rydberg and adjacent continuum states near the
threshold. In the framework of the quantum defect theory
�QDT� �7–10�, the infinite excited states are classified as
channels; e.g., for helium, in the 1S channel, there are infinite
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n 1S �1�n��� and adjacent � 1S continuum states. The en-
ergy of the bound state can be written as �in a.u. units�

E = I	 −
1

2�2 = I	 −
1

2�n − �	�2 . �8�

n is the principal quantum number. �	 is the quantum defect
of the eigenchannel 	. I	 is the ionization threshold of the
eigenchannel. The physical wave function of total eigenen-
ergy E for the whole system is the superpositions of eigen-
channel wave functions,

� = �
	

�	 · A	r → �
→�

	
�A�

i

�i · Ui	�f i�r,E�cos���	�

− gi�r,E�sin���	���A	. �9�

Here, �	 are the eigenchannel wave functions. A	 are the
mixing coefficients. A is the antisymmetrization operator.
The wave function �i consists of the core state wave func-
tion combined with the angular and spin wave functions of
the excited electron in the ith ionization channel. Ui	 is the
orthogonal transformation matrix. f i�r ,E� and gi�r ,E� are
regular and irregular Coulombic wave functions, respec-
tively. The physical parameters of eigenchannels, e.g., �	,
Ui	 and transition matrix elements �i.e., the scattering ampli-
tudes�, are smooth functions of the excitation energies. Ref-
erence �29� has elucidated how to calculate the eigenchannel
wave functions and eigenchannel parameters of the multi-
channel problem by the R-matrix method in detail. Here, for
helium, it is a single-channel problem and its physical chan-
nel is the eigenchannel �29� �i.e., 	=1, A	=1, and Ui	 is a
unit matrix of one dimension�. Therefore, its scattering am-
plitude in a channel �e.g., the 1P channel� is a smooth func-
tion of the excitation energy. In order to treat the bound-
bound and bound-continuum transitions in a unified manner,
the GOS density �GOSD� is defined as dF��E ,K� /dE �i.e.,
the generalized oscillator strengths per unit excitation en-
ergy� �2–6�. The GOS and GOSD have the following rela-
tion:

dFn��E,K�
dE

�
	

= Fn��E,K�
dn

dE
, �10�

where dn /dE stands for the density of state n. According to
Eq. �8�, dn /dE=�3+d�	 /dE. Since �	 is a smooth function
of E, d�	 /dE is nearly zero.

Using the modified R-matrix code, we calculate the GOSs
of helium from the ground state �1s2�1S to n 1S, n 1P, and
n 1D �n→�� and adjacent continuum excited states. As
shown in Figs. 1–4, our calculated GOSs of 2 1P and
n 1S �n=2,3 ,4� excited states generally agree with the high-
energy experimental results �18,19� by about 5%. However,
for the 4 1S state, there are two experimental GOS points at
K2=0.14 and 0.23 deviating from our calculated smooth
curve. Note that the GOS should be a smooth function of the
momentum transfers and our calculated GOSs of the 4 1S
state at smaller and larger K2 agree with the experimental
results, therefore the differences may result from the experi-

mental uncertainties, which deserve further experimental
studies. Our calculated GOSs for these four excited states are
larger than other experimental results �31–35� at lower inci-
dent energies, which will be discussed later. Our calculated
GOSs agree well with the previous theoretical results of
Cann et al. �30�, which were calculated from the explicitly
correlated wave functions within the FBA.

As shown in Figs. 1–4, the experimental GOSs at lower
incident energies are close to and slightly lower than the
GOSs at 2500 eV incident energy and the discrepancies re-
duce as the incident energies increase. This indicates the con-
vergence of the FBA with the increasing incident energies.
More specifically, as shown in Fig. 2, at small K2 �nearly

FIG. 1. The GOSs for the 2 1P excited state. ��� The present
R-matrix calculation results; �—� the previous theoretical results of
Ref. �30�; ���: the recent experimental results of Ref. �19� at
2500 eV incident energy; ��, �, �, �, �, �, �� the previous
experimental results �18,31,32� at lower incident energies:
100–1500 eV.

FIG. 2. The GOSs for the 2 1S excited state. ��� The present
R-matrix calculation results; �—� the previous theoretical results of
Ref. �30�; ��� the recent experimental results of Ref. �19� at
2500 eV incident energy; ��, �, �, �, �� the previous experimen-
tal results �18,31� at lower incident energies: 200–1500 eV.
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equal to zero�, the GOSs of Dillon at 200–700 eV incident
energies agree with the GOSs of Liu at 2500 eV incident
energy, and with increasing K2 Dillon’s results are smaller
than Liu’s results. This feature can be understood as follows.
It is known that in the limit of zero momentum transfers the
GOSs are equal to the optical oscillator strengths �OOSs�.
Therefore, at small K2 the GOSs measured at different inci-
dent energies should converge to the same value �i.e., the
OOSs�. At larger K2, from a point of view of partial wave
expansions, more and more partial wave contributions
should be considered with increasing incident energies, until
converging to the Born scattering amplitude. Therefore, the
GOSs of Liu are greater than other measurements at larger
K2.

Because of the energy resolution limit, the GOSs of the
excited states with high principal quantum numbers, e.g.,
n 1P+n 1D �n=3,4� and n 1S+n 1P+n 1D �n=5,6�, are
measured as a whole and cannot be resolved experimentally.
As shown in Figs. 5–8, our calculated total GOSs of n 1P
+n 1D �n=3,4� and n 1S+n 1P+n 1D �n=5,6� states agree
with the unresolved high-energy experimental results �19� by
about 5%, which is within the experimental uncertainties. It

FIG. 3. The GOSs for the 3 1S excited state. ��� The present
R-matrix calculation results; �—� the previous theoretical results of
Ref. �30�; ��� the recent experimental results of Ref. �19� at
2500 eV incident energy; ��, �, �� the previous experimental re-
sults �33,34� at lower incident energies: 300–1500 eV.

FIG. 4. The GOSs for the 4 1S excited state. ��� The present
R-matrix calculation results; �—� the previous theoretical results of
Ref. �30�; ��� the recent experimental results of Ref. �19� at
2500 eV incident energy; ��� the previous experimental results �35�
at 200 eV incident energy.

FIG. 5. The GOSs for 3 1P+3 1D excited states. ��� Experi-
mental results of Ref. �19� at 2500 eV incident energy; ��� experi-
mental results of Ref. �33� at 1500 eV incident energy; ��� experi-
mental results of Ref. �32� at 100 eV incident energy; �–� theoretical
results of Ref. �30� for 3 1P+3 1D states; �–� theoretical results of
Ref. �30� for the 3 1D state; ��� present calculated total GOSs for
3 1P+3 1D states; ��� present calculated GOSs for the 3 1D state.
Note that the experimental values ��� are obtained by subtracting
the theoretical values ��� from the experimental values ���.

FIG. 6. The GOSs for 4 1P+4 1D excited states. ��� Experi-
mental results of Ref. �19� at 2500 eV incident energy; ��� experi-
mental results of Ref. �33� at 1500 eV incident energy; �–� theoret-
ical results of Ref. �30� for 4 1P+4 1D states; �–� theoretical results
of Ref. �30� for the 4 1D state; ��� present calculated total GOSs
for 4 1P+4 1D states; ��� present calculated GOSs for the 4 1D
state. The experimental values ��� are obtained by subtracting the
theoretical values ��� from the experimental values ���.
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is noted that there are also two points of the experimental
GOSs with n=6 at large K2 deviating from our calculated
smooth curve. The differences may also result from the ex-
perimental uncertainties with the same reason as that for the

4 1S state. Our separated and total GOSs of n 1S, n 1P, and
n 1D �n=3,4 ,5 ,6� states agree well with the previous theo-
retical results of Cann et al. �30�. Although there are no
resolved experimental GOSs of n 1D excited states, which
are smaller than those of the corresponding n 1S excited
states but with the same order of magnitude, our calculated
GOSs of n 1D states are anticipated to have the same accu-
racy as those of n 1S states since all the excited state wave
functions are expanded on equal footing in the R-matrix
method.

It can be found that the GOSs of n 1P states are larger
than those of corresponding n 1D and n 1S states by about
one or two orders. Therefore, the experimental GOSs of n 1P
�n=3,4 ,5 ,6� states can be separated from the unresolved
experimental GOSs �19� by subtracting the corresponding
theoretical GOSs of n 1D �n=3,4 ,5 ,6� and n 1S �n=5,6�
states. Our calculated GOSs of n 1P �n=3,4 ,5 ,6� states
agree with the separated experimental data by about 5% as
shown in Figs. 5–8. The available experimental GOSs of
n 1P �n=2,3 ,4 ,5 ,6� states can be used to examine the cal-
culated GOSD surface of the 1P channel as following.

As shown in Fig. 9, based on a few GOSD curves of n 1P
and � 1P states, the GOSD surface of the 1P channel is plot-
ted, which is a smooth function of the excitation energies and
ln K2. The available experimental GOSs of n 1P �n
=2,3 ,4 ,5 ,6� states are transformed into GOSDs by Eq.
�10�. Our calculated GOSDs of n 1P �n=2,3 ,4 ,5 ,6� states
agree with the available experimental results by about 5%.
Therefore, the accuracy of this surface is examined since all
the wave functions of the 1P channel are calculated in a
unified manner in the R-matrix method. Similarly, as shown
in Fig. 10, the GOSD surface of the 1S channel is tested by
the experimental GOSDs of n 1S �n=2,3 ,4� states, which
are obtained by the corresponding GOSs �19�. Our calculated
GOSDs of n 1S �n=2,3 ,4� states agree with the experimen-
tal results by about 5% except two points of the 4 1S state.
The differences may result from the experimental uncertain-
ties. Our calculated GOSD surface of the 1D channel is
shown in Fig. 11. Although there are no available resolved

FIG. 7. The GOSs for 5 1S+5 1P+5 1D excited states. ��� Ex-
perimental results of Ref. �19� at 2500 eV incident energy; ���
experimental results of Ref. �33� at 1500 eV incident energy; �–�
theoretical results of Ref. �30� for 5 1S+5 1P+5 1D states; �¯� the-
oretical results of Ref. �30� for the 5 1S state; �–� theoretical results
of Ref. �30� for the 5 1D state; ��� present calculated total GOSs
for 5 1S+5 1P+5 1D states; ��� present calculated GOSs for the
5 1S state; ��� present calculated GOSs for the 5 1D state. The
experimental values ��� are obtained by subtracting the theoretical
values ��� and ��� from the experimental values ���.

FIG. 8. The GOSs for 6 1S+6 1P+6 1D excited states. ��� Ex-
perimental results of Ref. �19� at 2500 eV incident energy; ���
experimental results of Ref. �33� at 1500 eV incident energy; �–�
theoretical results of Ref. �30� for 6 1S+6 1P+6 1D states; �¯� the-
oretical results of Ref. �30� for the 6 1S state; �–� theoretical results
of Ref. �30� for the 6 1D state; ��� present calculated total GOSs
for 6 1S+6 1P+6 1D states; ��� present calculated GOSs for the
6 1S state; ��� present calculated GOSs for the 6 1D state. The
experimental values ��� are obtained by subtracting the theoretical
values ��� and ��� from the experimental values ���.

FIG. 9. The GOSD surface of the 1P channel. The experimental
GOSDs of n 1P �n=2,3 ,4 ,5 ,6� states are obtained from the experi-
mental values ��� in Figs. 1 and 5–8 by Eq. �10�.
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experimental results of the 1D channel, it is anticipated that
the surface of the 1D channel has the same accuracy as those
of 1P and 1S channels. With the examined GOSD surfaces of
1S, 1P, and 1D channels with sufficient accuracy, the GOSDs
�i.e., GOSs� of all n 1S, n 1P, and n 1D excited states can be
obtained by surface spline interpolation �36� based on the
benchmark points in the surfaces. Since the high-energy
electron impact excitation differential cross sections �DCSs�
are proportional to the GOSs as shown in Eq. �5�, the DCSs
of all the excited states can be readily obtained. This paper
demonstrates the physical feature and feasibility to obtain the
above infinite high-energy cross-section data. The detailed
data, which should be useful in the relevant application
fields, are too lengthy and beyond the scope of this paper,
and will be reported elsewhere �37�. Therefore, the combina-
tion of the R-matrix method and QDT is an effective and
accurate method to deal with the enormous high-energy elec-
tron impact excitation cross sections.

III. CONCLUSION AND DISCUSSIONS

Using the modified R-matrix code, we calculate the GOSs
of helium from the ground state to n 1S, n 1P, and n 1D �n
→�� and adjacent continuum excited states. In order to treat
the bound-bound and bound-continuum transitions in a uni-
fied manner, the GOS density �GOSD� is defined based on
the QDT. Our calculated GOSs of n 1S �n=2,3 ,4� and 2 1P
states agree with the recent high-energy experimental results
�19� by about 5% and agree well with the previous theoreti-
cal results �30� as shown in Figs. 1–4. Our calculated total
GOSs of n 1P+n 1D �n=3,4� and n 1S+n 1P+n 1D �n
=5,6� states agree with the unresolved experimental results
�19� by about 5% and agree well with the previous theoreti-
cal results �30� as shown in Figs. 5–8. Although there are no
resolved experimental GOSs of n 1D excited states, our cal-
culated GOSs of n 1D states are anticipated to have the same
accuracy as those of n 1S states since all the excited-state
wave functions are expanded on equal footing in the
R-matrix method. Since the GOSs of n 1P states are larger
than the GOSs of corresponding n 1D and n 1S states by
about one or two orders, the experimental GOSs of n 1P �n
=3,4 ,5 ,6� states can be separated from the unresolved ex-
perimental results �19� by subtracting the corresponding the-
oretical GOSs of n 1D and n 1S states. The available experi-
mental GOSs of n 1P �n=2,3 ,4 ,5 ,6� and n 1S �n=2,3 ,4�
states are used to test the accuracy of the GOSD surfaces. As
shown in Figs. 9–11, the GOSD surfaces of 1S, 1P, and 1D
channels are calculated and examined by the available ex-
perimental values. With the recommended GOSD surfaces
with sufficient accuracy, the GOSDs �i.e., GOSs� of all n 1S,
n 1P, and n 1D excited states can be obtained by surface
spline interpolation �36,37�. Since the high-energy electron
impact excitation differential cross sections �DCSs� are pro-
portional to the GOSs, the DCSs of all these excited states
can be readily obtained. Therefore, the combination of the
R-matrix method and QDT is an effective and accurate way
to deal with the enormous high-energy electron impact exci-
tation cross sections for the ever-increasing needs in diverse
relative fields.

Heretofore, we demonstrate how to deal with the high-
energy electron impact excitation processes. The accuracy of
the theoretical method and the modified code is tested strin-
gently by the recent experiments �19�. Note that, from a
point of view of partial wave expansions, the Born scattering
amplitude fB is the summation of infinite partial wave con-
tributions as shown in Eq. �3�, i.e., fB=�LS�fLS�

B .
In practice, the incident energy of the impact electron can

prevail over a wide range. In general, in the different energy
regions, the different theoretical methods are applied. In the
following, a scheme to deal with the intermediate- and low-
energy collisions will be discussed. At low incident energies,
the scattering amplitude f l �i.e., the cross section� can be
calculated by the R-matrix method with the same precision
as that of fB. More specifically, the target �e.g., the helium
atom� and the impact electron should be treated as a collision
complex, i.e., the �N+1�-electron system, and the electron
correlations can be considered by coupling the target wave
functions with the impact electron wave functions. The scat-

FIG. 10. The GOSD surface of the 1S channel. The experimental
GOSDs of n 1S �n=2,3 ,4� states are obtained from the GOSs of
Ref. �19� by Eq. �10�.

FIG. 11. The GOSD surface of the 1D channel.
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tering amplitude f l is a function of the incident energy Ei in
addition to the momentum and energy transfers. With in-
creasing incident energy Ei, the scattering amplitude con-
verges to the Born scattering amplitude and becomes inde-
pendent of Ei. The scattering amplitude f l is also the
summation of infinite partial wave contributions as shown by
Eq. �1�. However, at low incident energies, it is only neces-
sary to calculate a few low partial wave contributions for the
scattering amplitude f l.

At intermediate incident energies, from a point of view of
partial wave expansions, a large number of partial wave con-
tributions should be calculated. Fortunately, as the angular
momentum L increases, the exact partial scattering amplitude
converges to the corresponding Born partial scattering am-
plitude �38�. The difference fLS�

C between the exact partial
scattering amplitude and the Born partial scattering ampli-
tude is

fLS�
C = fLS��k̂�� − fLS�

B �k̂��

= −
�

	kk�
�
ij

�
mlj

msj

�
msi

�
M̃L̃M̃S̃

�
M̃�

L̃�
M̃�

S̃�

	4��2li + 1�Yljmlj
�k̂��

��Tji
LS� − Tji

LS��B�� � �L̃�M̃�
L̃�

,ljmlj
�LML�

��S̃�M̃�
S̃�

,sjmsj
�SMS��LML�L̃M̃L̃,li0��SMS�S̃M̃S̃,simsi

� .

�11�

Therefore, we can define an Lmax, beyond which all fLS�
C with

L�Lmax satisfy the relation �fLS�
C ���; � is an appropriate

convergence criterion. According to Lmax, all the partial wave
contributions can be classified into two parts: one consists of
infinite high partial scattering amplitudes with angular mo-
mentum L�Lmax, which are equal to the Born partial scat-
tering amplitudes and can be calculated by the R-matrix
method within the FBA; the other part consists of finite low
partial scattering amplitudes with L�Lmax, which can also

be calculated by the R-matrix method. Therefore, at interme-
diate incident energies, the scattering amplitude f I can be
calculated by the R-matrix method within the FBA plus a
correction term, i.e., f I= fB+ fC. Here the correction term fC

is the summation of fLS�
C , i.e., fC=�S�,L=0

S�,L=LmaxfLS�
C . Therefore,

for the entire energy range the scattering amplitudes can be
calculated by a unified formula: f = fB+ fC; at high incident
energies fC is equal to zero, at intermediate incident energies
fC is the summation of fLS�

C with L�Lmax, and at low inci-
dent energies f is equal to f l.

Similarly to the GOS, the apparent GOS �AGOS�, i.e.,
FAG�Ei ,�E ,K�, for the low- and intermediate-energy impact
processes can be defined, which is a function of the incident
energies Ei, the energy transfers �E, and the momentum
transfers K of the impact electron. With the increasing Ei,
FAG�Ei ,�E ,K� converges to the GOS, i.e., F��E ,K�, and is
independent of Ei. Similarly to the GOSD, the apparent
GOSD �AGOSD�, i.e., dFAG�Ei ,�E ,K� /dE, can be defined
in the same way as that for the GOSD. According to the
channel characters, the AGOSD for the intermediate-energy
impact process is anticipated to be a smooth function of the
excitation energies and the momentum transfers at a given
incident energy. However, at low incident energies, the AG-
OSD is not a smooth function of �E and K because of the
involvement of only a few partial wave amplitudes and the
existence of resonances.
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