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Within the framework of the asymptotic theory the matrices for the exchange interaction potentials of the
nitrogen ion, with electron shell p2, and nitrogen atom, with electron shell p3, are constructed. The hierarchy
of interactions in the nitrogen molecular ion at large internuclear distances is constructed for different elec-
tronic states. On the basis of these interaction potentials, the cross sections of resonant charge exchange in slow
collisions are evaluated for different values of electron momentum projections and then averaged over these
momentum projections. The mobilities of nitrogen ions in atomic nitrogen are also derived.
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I. INTRODUCTION

Transport coefficients of equilibrium and nonequilibrium
plasmas have been widely studied in these years due to their
importance in determining the properties of high enthalpy
flows. The relevant properties �thermal and electrical con-
ductivity, viscosity� are usually determined by using higher
order approximations of the Chapman-Enskog method ap-
plied to the mixture of electrons, ions, and neutral species. To
apply the method one must insert in the relevant equations
the composition of the plasma which can be calculated by
using the Saha equation for thermal plasmas and kinetic
methods for nonequilibrium conditions. In both cases elec-
tronically excited states determine the plasma composition
through the partition function in the equilibrium case and
through the collisional radiative models in the nonequilib-
rium conditions. On the other hand electronically excited
states disappear in the equations for the transport coefficients
of plasmas essentially for two reasons. The first one is their
low concentration and the second one is the poor knowledge
of the transport cross sections of electronically excited states.
These two assumptions are a little contradictory considering
that the transport cross sections of electronically excited
states should present values strongly exceeding the corre-
sponding ones for the ground state so that small concentra-
tions of electronically excited states with their enormous
cross sections can play an important role in affecting the
transport coefficients of plasmas. These considerations
pushed us to consider the role of electronically excited states
characterized by principal quantum numbers different from
the ground state in affecting the transport coefficients of par-
tially ionized hydrogen mixture �1,2�. Extension of these
ideas to air plasmas generates a complication due to the pres-
ence in these media of metastable states for both O and N
atoms and ions belonging to the same principal quantum
number of the ground states. Metastable states are in any
case strongly populated under equilibrium and nonequilib-
rium conditions so that an effort has been made in the past to
calculate their transport cross sections. In particular, diffu-
sion cross sections, those controlled by charge transfer cross
sections, were calculated for both N and O systems by one of
us �3,4� by using the Firsov approximation in combination
with the gerade-ungerade splitting of the relevant potential

curves �5�. The accuracy of these potentials, obtained by a
quantum mechanical configuration interaction method, can
be considered unsatisfactory taking into account that these
calculations were performed at small internuclear distances.
Recently the charge transfer cross sections involving N and
O atoms and ions �6–8� were evaluated in the framework of
the asymptotic theory by using various models. In particular
the calculations in Ref. �6� do consider the s-s electron trans-
fer without taking into account the coupling of angular and
spin momenta. Resonant charge exchange cross sections in-
volving nitrogen atoms and ions, in the ground and first ex-
cited states, are calculated in the present work �9–11�, allow-
ing the fine structure of nitrogen atoms. The asymptotic
theory uses a small parameter according to which electron
transitions have a tunnel character and proceed at large im-
pact parameters. Therefore for the cross-section calculation it
is necessary first to determine the behavior of the electron
terms of an interacting ion and atom going beyond the stan-
dard Hund method �12,13�, as is done for the halogen �14,15�
and oxygen �7� molecular ions.

II. PARAMETERS OF VALENCE ELECTRONS FOR
NITROGEN ATOM

We represent the wave function of valence electrons
within the framework of the parentage scheme �16–18�, di-
viding the atom into one valence electron and an atomic
core. The valence electron is described by the quantum num-

TABLE I. The parentage coefficients for the nitrogen atom.

Ion state

Atom state

4S 2D 2P

3P 1 1
�2

−
1
�2

1D 0
−

1
�2

−� 5

18
1S 0 0 �2

3
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bers le=1,� ,1 /2 ,�, the orbital momentum, its projection on
a given axis, the electron spin, and its projection on the quan-
tization axis; the corresponding quantum numbers are
l ,ml ,s ,ms for the atomic core and L ,ML ,S ,MS for the atom.
We can write the atom wave function as �16–18�

�LSMLMS
�1,2,…,n� =

1
�n

P̂ �
lmlsms��

Gls
LS�le,n��le l L

� ml ML
�

�	1

2
s S

� ms MS



��le1/2���1��lsmlms
�2, . . . ,n� , �1�

where �, �, and � are the wave functions of the atom, ion,
and valence electron with indicated quantum numbers, re-

spectively, the operator P̂ permutes n valence electrons of the
atom, and the parentage coefficient Gls

LS�le ,n� is responsible
for the addition of a valence electron to an ion for construc-
tion of an atom for given quantum numbers of these atomic
particles. This representation of the atom wave function cor-
responds to the LS-coupling scheme and is valid for light
atoms. Corresponding parentage coefficients for the nitrogen
atom are given in Table I �19�.

In analyzing the asymptotic properties of the atom, we
remove one electron from the p2 core taking into account the
fine structure. The asymptotic form of the radial electron
wave function has the standard form �20,21�

��r� = Ar1/�−1e−r�, r� 	 1, �2�

where r is the distance of the jumping electron from the
nucleus, A is the asymptotic coefficient, and −�2 /2 is the
binding energy of the valence electron. Tables II and III give
the parameters of this formula for the valence electron of the

nitrogen atom depending on the state of core valence elec-
trons. The values of the asymptotic coefficient A are evalu-
ated by the standard method �9,10�, matching the asymptotic
wave functions �2� with the numerical evaluations of the
wave functions �22� in the range of large distances between
nuclei, where the asymptotic expressions �2� are valid.

The asymptotic wave function allows us to find the ex-
change interaction potential that is determined by transition
of one electron. The one-electron exchange interaction po-
tential, the difference of the gerade and ungerade energies of
this electron, is given by �10,23�


�R� = 2��1�Ĥ��2
 − 2��1�Ĥ��1
��1�1��2
 . �3�

Here �1 is the wave function of the valence electron located
near the first core, and �2 corresponds to electron location

near the second nucleus, Ĥ is the one-electron Hamiltonian.
An accurate evaluation of this interaction requires the accu-
rate wave functions of this electron when its interaction with
both cores is comparable �20�. Accounting for this fact, we
obtain the following expression for one-electron exchange
interaction potential �10,23–25�:


le��R� = A2R2/�−1−���e−R�−1/� �2le + 1��le + ����!
�le − ����!���!������ . �4�

Here R is the distance between nuclei. In the case under
consideration, if one p-electron is located in the field of
structureless cores, this exchange interaction potential de-

TABLE II. The values of the parameter � for the nitrogen atom
with the electron shell p3 depending on the atom and core states.

Ion state

Atom state

4S 2D 2P

3P 1.034 0.945 0.897
1D 1.016 0.972
1S 1.050

TABLE III. The values of the asymptotic coefficients A for the
nitrogen atom with the electron shell p3 depending on the atom and
core states.

Ion states

Atom states

4S 2D 2P

3P 2 1.4 1.1
1D 1.9 1.7
1S 2.3

TABLE IV. Diagonal matrix elements of the quadrupole mo-
ment, expressed in ea0

2r2 units, for a nitrogen atom core with the
electron shell 2p2 �r2 is the average square for the electron orbit of
a valence electron�.

State of
atom rest

3P
m=0

3P
m= ±1
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m=0

1D
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FIG. 1. Electronic terms of N2
+ correlating with N�2P�

+N+�3P� at large distances, which determine the resonant charge
exchange cross section for these species.
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pends on the electron momentum projection onto the mo-
lecular axis �10,23–25�, and can be written


10�R� = 3A2R2/�−1e−R�−1/�; 
1,±1�R� =
2

R�

10�R� . �5�

III. QUADRUPOLE MOMENT OF NITROGEN ATOM

The main part of ion-atom interaction in the case of the
molecular nitrogen ion at large distances between nuclei re-
lates to the interaction of the ion charge and atom quadrupole
moment, so that one should determine the quadrupole mo-
ment of the nitrogen atom in lowest excited states. The op-

erator of atom quadrupole momentum Q̂ can be expressed as
the sum of quadrupole momenta operators of individual elec-
trons q̂i

Q̂ = �
i=1

n

q̂i. �6�

Hence on the basis of the wave function of valence electrons
�1� of the nitrogen atom, we obtain for its quadrupole mo-
mentum

QLML
= �LML��

i

q̂i�LML
 = �LML��
i=1

n−1

q̂i + q̂n�LML
 , �7�

where the atom quadrupole momentum is divided into two
parts, for an atom core and a valence electron. Using the
wave function �1� and the normalization condition for spin
wave functions, we obtain

QLML
= �

ls

�Gls
LS�2 �

ml,�
�le l L

� ml ML
�2

���lml��
i=1

n−1

q̂i�lml
 + �le��q̂n�le�
� . �8�

Table IV gives the quadrupole moments of a nitrogen
atom core with the electron shell p2. We consider the quad-
rupole interaction between an ion and a nitrogen atom ac-
cording to the second expansion term of ion charge-valence
electron interaction e2 /R− �e2 / �R−r�
 over a small parameter
r /R, where r is a valence electron coordinate in its atom, and
R is a distance between an ion of charge e and atom nucleus,
an average is made over the wave function of a valence
electron. We have for the quadrupole moment of an indi-
vidual electron �26�

q = 2�r2P2 cos �
 = 2
le�le + 1� − 3�2

�2le − 1��2le + 3�
r2, �9�

where r ,� are spherical coordinates of a valence electron,
and le ,� are the orbital momentum of this electron and its
projection onto the molecular axis.

Therefore for one valence p-electron the quadrupole mo-
ment is �26�

�10�q̂�10
 =
4

5
ea0

2r2, �11�q̂�11
 = �1,− 1�q̂�1,− 1
 = −
2

5
ea0

2r2,

�10�

where an average over a distance r of a valence electron
from the atom nucleus is made with the wave function of the
valence electron. Thus the quadrupole moment of the nitro-
gen atom with the electron valence shell p3 is given by the
formula

QLML
= �

ls

�Gls
LS�2�

ml

� le l L

ML − ml m ML
�2

qlml

�2�

+ �
ls

�Gls
LS�2�

�
�le l L

� ML − � ML
�2

q1�, �11�

where we extract in formula �11� the quadrupole moment of
a two-electron system qlsml

�2� and one electron q1�, so that val-
ues of quadrupole momenta for the two-electron system are
given in Table IV, and for one valence electron they are
given in formula �9�.

IV. HIERARCHY OF INTERACTIONS BETWEEN
NITROGEN ATOMIC IONS AND NITROGEN ATOMS AT

LARGE SEPARATIONS

The experience for halogen �14,15� and oxygen �7� mo-
lecular ions shows that after exchange interaction, that
chooses the quantum numbers L ,S , l ,s, the main interactions
are the quadrupole interaction of the ion charge with the
quadrupole atom moment and the spin-orbit interaction. The
latter interactions mix the fine states or states with the orbital

TABLE V. Diagonal matrix elements of the quadrupole moment QMM, expressed in ea0
2 units, for a

nitrogen atom core with the electron shell 2p3.

State 2D, M =0 2D, M = ±1 2D, M = ±2 2P, M =0 2P, M = ±1 4S

QMM 0 0 0 −0.53 1.066 0

TABLE VI. Character of the hierarchy of interactions between
the nitrogen atom with the electron shell p3 and nitrogen ion p2 at
large separations.

Ion state

Atom state

4S 2D 2P

3P “c”-Hund case “c”-Hund case Quadrupole
and spin-orbit

1D “a”-Hund case “a”-Hund case
1S “a”-Hund case
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momentum projection onto the molecular axis, and this case
becomes more complicated than standard Hund cases. How-
ever, the quadrupole momentum is zero for many states of
the nitrogen atom with the electron shell p3 �see Table V� so
that the hierarchy of interactions becomes more simple.

Table VI gives the character of interactions inside the mo-
lecular nitrogen ion, at large distances between nuclei, for

states when one-electron transition from the field of one core
to another one is considered. In the N+�3P�−N�2P� case the
interaction between the ion charge and atom quadrupole mo-
ment is comparable to the fine splitting of ion levels. There-
fore the quantum numbers of the molecular ion are LSMLlsj,
where the quantum number j, the total angular momentum of
the ion, accounts for the spin-orbit interaction. For N+�3P�

TABLE VII. Exchange interaction potential for the ground state of the quasimolecule N+�3P�+N�4S� at given quantum numbers J, MJ

of the atom and j, mj of the ion.

jmj

JMJ

2,2 2,1 2,0 1,1 1,0 0,0

3

2
,

3

2

11 1

2

10

�2

3

10

1

2

10

1

2

11

1

3

11

3

2
,

1

2 �1

3
+

1
�3 �
11 �1

6
+

�2

3 �
10 �4

9
+

�2

3

3 �
10

1

6

10 �1

6
+

1

3�2
+

1
�6 �
11

2

9

10

3

2
, −

1

2 �1

3
+

1

3�2 �
11 ��2

3

3
+

1

2�3 �
10 �4

9
+

�2

3

3 �
10

−1

2�3

10 �1

6
+

1

3�2
+

1
�6 �
11

2

9

10

3

2
, −

3

2

1

3�2

11

1

2�3

10

�2

3

10

−1

2�3

10

1

2

11

1

3

11

TABLE VIII. Exchange interaction potential for the quasimolecule N+�3P�+N�2D� at given quantum numbers J, MJ of the atom and j,
mj of the ion.

jmj

JMJ

2,2 2,1 2,0 1,1 1,0 0,0

5

2
,
5

2

11 3

2 �1

6
+

1
�5 �
11

3+�2

2�30

11

1

4

11

1

2�10

11

0

5

2
,
3

2

2

5

10

3

2 � 1

15
+

�2

5 �
10
3�3

10

10

1

10

10

1

10

10

0

5

2
,
1

2

3

5�2

10

3

2 � 3

10
+

1

5�3 �
10
3��6+3�

10�6

10

3

20

10

�2+1

10�2

10

0

5

2
,−

1

2

3

5�3

10

3

2
·
�3+1

�2

10

3��6+3�

10�6

10

�2

10

10

�2+1

10�2

10

0

5

2
,−

3

2

1

5

10

3+2�2

10�2

10

3�3

10

10

1

10�2

10

1

10

10

0

5

2
,−

5

2

1

2�10

11

�5

4�2

11

3+�2

2�30

11

1

4�10

11

1

2�10

11

0

3

2
,
3

2

1

10

10

�3+2

40�3

10 � 1

20�2
+

�2

30 �
10

1

40

10

−3

20�6

10

1

3

11

3

2
,
1

2

1

20�3

10

2+�2

120�2

10

�6−3

180�6

10 � 49

120
−

3

20�6 �
10 �7�2+6

40 �
10

5

18

10

3

2
,−

1

2 � 3

10�2
−

�2

15 �
10
−3�2−10

120�6

10

�6−3

180�6

10

14�3−7�2

40�6

10 �7�2+6

40 �
10

5

18

10

3

2
,−

3

2

−1

20

10

−2�3−1

40�3

10 � 1

20�2
+

�2

30 �
10

−7

40�3

10

−3

20�6

10

1

3

11
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−N�4S� and N+�3P�−N�2D� interactions the same quantum
numbers apply in the whole range of internuclear distances,
but a splitting over the quantum number ML is determined by
the ion-atom exchange interaction. In the case of interactions
N+�1D�−N�2D�, N+�1D�−N�2P�, and N+�1S�−N�2P� the se-

lected quantum numbers in the asymptotic region are
LSMLls.

Thus, neglecting ion-atom exchange interaction, N2
+ elec-

tronic terms at large separations are determined by ion and
atom fine states only when the quadrupole atom moment is

TABLE IX. Exchange interaction potential for the quasimolecule N+�1D�+N�2D� at given quantum
numbers JMJ of the atom and jmj of the ion.

jmj

JMJ
2,2 2,1 2,0

5

2
,
5

2

10 1

�5

10

3�2

2�15

11

5

2
,
3

2 �1

5
+

1
�5 �
10 �1

5
+

�2

10 �
10
3�2+�3�

10

11

5

2
,
1

2

�2

10

10

1

10

10

3

2 �1

5
+

1

5
�3

2
+

2

5�3
+

�3

5 �
11

5

2
,−

1

2
−

1

2
�2

5

10

−�2

10

10

3

2 �1

5
+

1

5
�3

2
+

2

5�3
+

�3

5 �
11

5

2
,−

3

2 �−1

5
−

1
�5 �
10

−�2−2

10

10

3�2+�3�

10

11

5

2
,−

5

2
−

1
�5


10 −
1

2
�2

5

10

3�2

2�15
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3

2
,
3

2

4

5
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3
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+

2

5�3 �
10
3
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10
+

1
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+

�2
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3

2
,
1

2

�3

5

10

3
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3
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+

1

5
�3
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+

�2
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3
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,−

1
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+

3
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1

5
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+
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TABLE X. Exchange interaction potential for the quasimolecule N+�3P�+N�2P� at given quantum numbers JMJ of the atom and jmj of
the ion.

jmj

JMJ
2,2 2,1 2,0 1,1 1,0 0,0
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1
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1
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1
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10 �1
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1
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1
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1

2

1
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1
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1
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zero. In the case of the N�2P�+N+�3P� system, the atom
quadrupole moment is not zero, but spin-orbit interaction for
the atom can be neglected, being comparable with the ion-
atom exchange interaction potential �
�10 cm−1�. Hence
the energy levels ��R� can be expressed as

��R� = 
i +
QMM

R3 , �12�

where 
i is a given fine level of the ion. The second term
represents the ion-quadrupole interaction, being QMM the
quadrupole moment of the atom for a given projection M of
the electron orbital momentum �see Table V�. In Fig. 1 the
corresponding electronic terms are reported. It should be
noted that quantum numbers of the molecular nitrogen ion at
large distances between nuclei differ from those at interme-
diate distance �27�, due to a different hierarchy of interac-
tions.

V. EXCHANGE INTERACTION POTENTIAL INVOLVING
NITROGEN ATOMS AND ATOMIC IONS

In constructing the ion-atom exchange interaction poten-
tial, we start from “a” Hund case when quantum numbers of
atom and ions are, respectively, LSMLMS and lsmlms. In this
basis the ion-atom exchange interaction potential �3� presents
the following form �10,28–30�:


LSMLMSlsmlms
�R� = n�Gls

LS�2 �
�,�,��

�le l L

� ML − � ML
�

�	1

2
s S

� MS − � MS

 � �le l L

� ml ml + �
�

�	 1

2
s S

�� ms ms + ��


le��R� . �13�

It is more convenient to rewrite this exchange interaction
potential in the basis LSJMJlsjmj, where JMJ are the total
atom momentum and its projection onto molecular axis, and
jmj are the corresponding ion quantum numbers. Using the
connection between the wave functions in these bases, we
obtain the ion-atom exchange interaction potential at large
separations in the basis LSJMJlsjmj in the form


JMJjmj
�R� = n�Gls

LS�2 �
�,�,

�
ML,MS

�
ml,ms

�le l L

� ML − � ML
�

��le l L

� ml ml + �
�	1

2
s S

� MS − � MS



� 	1

2
s S

� ms ms + �

� l s j

ml ms mj
�

�� l s j

ML − � MS − � ML − � + MS − �
�

� � L S J

ML MS MJ
�

�� L S J

ml + � ms + � ml + � + ms + �
�
le�.

�14�

TABLE XI. Exchange interaction potential for the quasimole-
cule N+�1D�+N�2P� and N+�1S�+N�2P� at given quantum numbers
JMJ of the atom and jmj of the ion.

jmj

JMJ

1D 2,2 1D 2,1 1D 2,0 1S 0,0

3

2
,
3

2

1

2

11

1

4

10

1

3�2

10


11

3

2
,
1

2 �1

6
+

1

2�3 �
11 � 1

12
+

1

3�2 �
10 �2

9
+

1

3�6 �
10
2

3

10

3

2
,−

1

2 �1

6
+

1

6�2 �
11 � 1

3�6
+

1

4�3 �
10 �2

9
+

1

3�6 �
10
2

3

10

3

2
,−

3

2

1

6�2

11

1

4�3

10

1

3�2

10


11

1

2
,
1

2

1

3

11

1

6

10 �1

9
+

1

3�6 �
10
1

3

10

1

2
,−

1

2

1

6

11

1

3�6

10 �1

9
+

1

3�6 �
10
1

3

10

TABLE XII. Resonant charge exchange cross section
�ex�10−16cm2� for the process N+�3P�+N�4S�→N�4S�+N+�3P� at
collision energies of 0.1 and 1 eV in the laboratory frame of
reference.

jmj

JMJ
2,2 2,1 2,0 1,1 1,0 0,0

3

2
,
3

2
62�50� 75�61� 74�61� 76�62� 55�45� 51�41�

3

2
,
1

2
61�49� 78�64� 80�66� 63�50� 60�49� 66�53�

3

2
,−

1

2
56�45� 77�63� 80�66� 69�66� 60�49� 66�53�

3

2
,−

3

2
48�38� 68�55� 74�61� 69�66� 55�45� 51�41�
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Tables VII–XI give the values of the matrix elements for
these interaction potentials �since 
11�R��
10�R� at large
separations, we neglect 
11�R� when possible�. These values
are used below for the evaluation of electron transfer cross
sections.

VI. CROSS SECTIONS OF RESONANT CHARGE
EXCHANGE FOR NITROGEN

The process of resonant charge exchange is accompanied
by processes of transition between states with different val-
ues of orbital momenta and spins of the atom and ion, and
these processes are entangled with resonant charge exchange.
In reality, the situation is simplified because of a sharp
change of the exchange interaction potential with the dis-
tance between nuclei. This leads to a small rotation of the
molecular axis during electron transition, resonant charge
that allows us to neglect transition and to consider electron
transition at certain values of angular and spin momenta of
the atom and ion. Therefore we use the two-state approxima-
tion for electron transition from one core to another one, and
the cross section of resonant charge exchange is given by the
formula �5�

TABLE XIII. Resonant charge exchange cross section
�ex�10−16cm2� for the process N+�3P�+N�2D�→N�2D�+N+�3P� at
collision energies of 0.1 and 1 eV in the laboratory frame of
reference.

jmj

JMJ
2,2 2,1 2,0 1,1 1,0 0,0

5

2
,
5

2
71�58� 70�57� 60�48� 55�43� 50�38� 0

5

2
,
3

2
84�68� 88�71� 88�71� 64�50� 64�50� 0

5

2
,
1

2
85�68� 90�74� 91�75� 70�55� 51�57� 0

5

2
,−

1

2
82�66� 110�96� 91�75� 69�54� 51�57� 0

5

2
,−

3

2
74�59� 84�68� 88�71� 60�46� 64�50� 0

5

2
,−

5

2
50�38� 60�47� 60�48� 43�32� 50�38� 0

3

2
,
3

2
64�50� 64�50� 62�48� 47�35� 58�44� 58�46�

3

2
,
1

2
49�36� 45�33� 18�9.3� 82�66� 84�67� 78�63�

3

2
,−

1

2
67�52� 55�42� 18�9.3� 69�55� 84�67� 78�63�

3

2
,−

3

2
56�42� 59�45� 62�48� 65�50� 58�44� 58�46�

TABLE XIV. Resonant charge exchange cross section
�ex�10−16cm2� for the process N+�1D�+N�2D�→N�2D�+N+�1D� at
collision energies of 0.1 and 1 eV in the laboratory frame of
reference.

jmj

JMJ
2,2 2,1 2,0

5

2
,
5

2
110�90� 95�78� 72�58�

5

2
,
3

2
100�84� 98�80� 81�67�

5

2
,
1

2
78�63� 73�58� 86�71�

5

2
,−

1

2
90�73� 78�63� 86�71�

5

2
,−

3

2
100�84� 91�75� 81�67�

5

2
,−

5

2
95�78� 90�73� 72�58�

3

2
,
3

2
100�87� 96�79� 77�62�

3

2
,
1

2
92�75� 79�63� 83�68�

3

2
,−

1

2
71�58� 71�56� 83�68�

3

2
,−

3

2
83�67� 89�72� 77�62�

TABLE XV. Resonant charge exchange cross section
�ex�10−16 cm2� for the process N+�3P�+N�2P�→N�2P�+N+�3P� at
collision energies of 0.1 and 1 eV in the laboratory frame of
reference.

jmj

JMJ
2,2 2,1 2,0 1,1 1,0 0,0

3

2
,
3

2
95�77� 85�68� 62�47� 73�57� 70�54� 0

3

2
,
1

2
75�59� 70�54� 34�23� 75�59� 75�59� 62�47�

3

2
,−

1

2
72�56� 71�55� 34�23� 74�58� 75�59� 62�47�

3

2
,−

3

2
84�67� 86�69� 62�47� 65�50� 70�54� 0

1

2
,
1

2
47�35� 67�52� 73�57� 67�52� 86�68� 72�55�

1

2
,−

1

2
47�35� 64�49� 73�57� 72�56� 86�68� 72�55�
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�ex = �
0

�

2��d� sin2 �
−�

� 
i

2
dt , �15�

where the index i refers to fine states of the ion and atom. An
average over degenerated states allows us to determine the
resonant cross sections for a given fine atom and ion states,
and these values are given in Tables XII–XVI. Note that
neglecting the rotation of the molecular axis during the elec-
tron transfer is justified by a small parameter of the
asymptotic theory that is �9� 1/ �Ro�� �the cross section of
this process is �ex=�Ro

2 /2�. For the considered collision en-
ergies we have Ro��10. The rotational angle � of the mo-
lecular axis during electron transfer is ������−1/2, where �
is the impact parameter of collision, so that separation of the
electron transfer process and rotation of the molecular axis
can be open to some criticism. Therefore we also determine
the cross sections of electron transfer under the assumption
of total mixing of momentum projections during electron
transitions. In this case the average exchange interaction po-
tential 
�R� over momentum projections of given fine states
is used, and the cross sections of electron transfer for this
assumption are given in Table XVII in parentheses. The new

results, obtained by average 
�R�, are within 1% compared
with the present calculations.

A comparison of the present results at 10 eV with existing
data is reported in Table XVIII. Despite the different meth-
ods the present calculations do not differ too much from the
previous experimental and theoretical values, the only excep-
tion being represented by the old values calculated by one of
us �3�. In this last case only exchange forces were taken into
account and the corresponding gerade-ungerade splittings
were obtained by the behavior of molecular states at dis-
tances not too much important for the exchange process. It
should be also noted: the strong increase up to a factor of 2
in the exchange cross-section excited�atom�-excited�ion�
processes as compared with the excited�atom�-ground�ion�
process. On the other hand the differences of the present
N+�3P�−N�4S�, N+�3P�−N�2D�, N+�3P�−N�2P� charge ex-
change cross sections with corresponding results of Ref. �8�
are due to a different choice of the A value and a different
adopted coupling scheme. It should be also noted that the
differences of 16% between the present results and those of
Ref. �6� can be ascribed to the neglect of fine structure in the
latter calculations.

On the basis of the resonant charge exchange cross sec-
tions one can find the mobilities of nitrogen ions in a gas that
contains atomic nitrogen. The mobility, ignoring elastic ion-
atom scattering, can be calculated according to �31�

K =
131

�Tm�ex

, �16�

where the ion mobility is given in cm2/ �V s� and is reduced
to the atom number density 2.69�1019 cm−3, the gas tem-
perature T is given in Kelvin, the atom mass, m, is given in
atomic mass units, and the cross section �ex is expressed in

TABLE XVI. Resonant charge exchange cross section
�ex�10−16 cm2� for the process N+�1D�+N�2P�→N�2P�+N+�1D�
and N+�1S�+N�2P�→N�2P�+N+�1S� at collision energies of 0.1
and 1 eV in the laboratory frame of reference.

jmj

JMJ

1D 2,2 1D 2,1 1D 2,0 1S 0,0

3

2
,
3

2
80�65� 98�80� 97�79� 99�82�

3

2
,
1

2
79�64� 100�83� 76�61� 130�110�

3

2
,−

1

2
72�58� 100�81� 76�61� 130�110�

3

2
,−

3

2
61�48� 89�71� 97�79� 99�82�

1

2
,−

1

2
75�60� 91�73� 71�56� 110�94�

1

2
,−

1

2
65�51� 88�70� 71�56� 110�94�

TABLE XVII. Average resonant charge exchange cross section
�10−16 cm2� at collision energies of 0.1, 1, 5, and 10 eV in the
laboratory frame of reference. Data in parentheses have been calcu-
lated averaging the interaction potential 
�R�.

4S 2D 2P

3P , j=2 68�68�,55,47,44 69,55,46,42 69,53,44,40
3P , j=1 66�64�,53,45,42 63,50,41,35 73,57,47,42
3P , j=0 59�58�,47,40,37 27,22,18,17 44,34,27,25
1D 87,71,61,57 83,67,56,52
1S 113,94,81,76

TABLE XVIII. Comparison of average resonant charge exchange cross section �ex�10−16 cm2� at colli-
sion energy of 10 eV in the laboratory frame of reference with data in the literature: Eletskii et al. �8�
�asterisk�, Capitelli �3� �in parentheses�, Stallcop et al. �34,35� �square brackets�, beam masurements �double
asterisk� �36�, and Copeland and Crothers �double square brackets� �6�.

4S 2D 2P

3P , j 41, �21.6�, 39*, �34.0�, 34.4**, ��42�� 31.3, �18.2�, 27.2* 35.6, �23.3�, 29*

1D 57 52
1S 76
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10−14 cm2. The values of the ion mobility in atomic nitrogen
in different states are given in Table XIX. In the case when
atomic nitrogen is one of the components of a gaseous mix-
ture, the ion mobility is determined by the Blanck formula
�32,33�

K = ��
i

ci

Ki
�−1

, �17�

where the ith component is molecular nitrogen, oxygen, or
atomic oxygen, ci is the concentration of this component, and
Ki is the mobility of ions in a gas consisting of ith compo-
nent only.

VII. CONCLUSION

We have reported in the present paper detailed calcula-
tions of charge transport cross sections involving excited ni-
trogen atoms and ions. These calculations fully take into ac-
count the hierarchy of interactions in the nitrogen molecular
ion at large distances. Charge transfer cross sections involv-
ing excited atom-excited ion have been calculated in this
paper. Their values are up to a factor of 2 higher than the
corresponding ones involving excited nitrogen atoms and the
ion in the ground state �i.e., 3P�. Comparison of the present
fine structure results with other theoretical and experimental
values, when existing, shows a satisfactory agreement. The
results, also used in deriving the mobility diffusion coeffi-
cients, represent a further advancement in the understanding
of the role of excited states in affecting the transport proper-
ties of thermal plasmas.
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