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We formulate an effective-range theory for the near-threshold behavior of the amplitudes describing quan-
tum reflection in attractive potential tails by adapting the effective-range theory of ordinary elastic scattering to
the case of incoming boundary conditions at small distances. For homogeneous attractive potentials propor-
tional to −1/r� with ��5, the effective range turns out to be a real multiple �with known coefficient� of the
complex scattering length which defines the leading, linear momentum dependence of phase and modulus of
the quantum reflection amplitude. Analytical expressions are also given for the leading and next-to-leading
terms in the near-threshold behavior of the quantum reflection amplitudes for homogeneous attractive poten-
tials proportional to −1/r3, −1/r4, and −1/r5.
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I. INTRODUCTION

The term “quantum reflection” describes classically for-
bidden reflection of a particle in a classically allowed region
without classical turning points. It is generated in nonclassi-
cal regions of coordinate space, e.g., above potential barriers
or purely attractive potential tails, as occur in the interaction
of atoms and molecules with surfaces and with each other
�1,2�. Quantum reflection has been observed in recent experi-
ments involving ultracold atoms �3–9� and is always impor-
tant at very low energies, because the quantum reflection
probability tends to unity as the energy E=�2k2 / �2M� goes
to zero.

For a particle of mass M approaching a long-ranged at-
tractive potential U�r� from large distances, the near-
threshold behavior of the quantum reflection amplitude R up
to and including terms linear in the asymptotic wave number
k=�2ME /� is given by �1,10,11�

�R� �
k→0

1 − 2bk, arg R �
k→0

� − 2āk . �1�

It is determined by two real parameters, the “threshold
length” b �10�, which is well defined as long as the potential
falls off faster than −1/r2 asymptotically �1�, and the mean
scattering length ā, which is well defined as long as U falls
off faster than −1/r3 �12�.

Both b and ā are “tail parameters,” i.e., they depend only
on the properties of the potential tail beyond a semiclassical
region of comparatively “small” distances, where WKB
wave functions with an unambiguously defined direction of
motion are accurate solutions of the Schrödinger equation.
These “small” distances are still beyond the close regime,
corresponding typically to a few atomic units, where details
of the structure of the interacting atoms, molecules, or sur-
faces become important. The interaction in the close regime
is quite complicated and generally leads to inelastic reactions
or absorption, so the yield of elastically reflected particles is
essentially due to quantum reflection in the nonclassical re-
gion, which lies between the semiclassical region of “small”
distances and the asymptotic regime �r→�� of free-particle
motion.

Quantum reflection is described by the same one-
dimensional Schrödinger equation as ordinary, particle flux
conserving elastic scattering �13�, except that the solutions
are defined via leftward-traveling �incoming� boundary con-
ditions for the transmitted part of the wave at “small” dis-
tances, whereas the wave function for ordinary elastic scat-
tering is generally taken as the regular wave function which
vanishes at r=0. The observables of ordinary elastic scatter-
ing, such as the scattering phase shift, thus depend sensi-
tively on the properties of the potential in the close regime,
in particular on whether or not the whole potential supports a
bound state close to threshold. The scattering length a0,
which describes the leading k dependence of the s-wave scat-
tering phase shift �0�k� near threshold, becomes infinite
when the potential supports an s-wave bound state at thresh-
old. In contrast, the quantum reflection amplitude is insensi-
tive to details of the interaction in the close region, where the
incoming boundary conditions account for the loss of all
particles which are transmitted through the quantum region
of the potential tail.

In ordinary elastic scattering theory for potentials falling
off faster than 1/r5 asymptotically, the next-to-leading term
in the k dependence of the s-wave scattering phase shift is
proportional to k3, and it is determined by the effective range
reff defined by �13�

k

tan �0
�

k→0

−
1

a0
+

1

2
reff k2. �2�

This “effective-range expansion” has the misleading feature,
that a vanishing value of reff does not coincide with the van-
ishing of the term proportional to k3 in the low-energy be-
havior of the scattering phase shift. Inserting the right-hand
side of Eq. �2� into a Taylor expansion of the tan �0 yields

�0 �
k→0

− a0k + �a0
3 −

3

2
a0

2reff	 k3

3
. �3�

For example, a hard-core potential of radius L has scattering
length a0=L and effective range reff=

2
3L so that �0=−kL to

order k3—and in fact to all higher orders as well. Equation
�3� suggests an alternative notation for the low-energy be-
havior of the s-wave scattering phase shift
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�0 �
k→0

− a0k +
1

3
��k�3, with � = a0�1 −

3

2

reff

a0
	1/3

. �4�

The effective-range expansion does not lead to a finite value
of reff when the potential falls off as 1 /r5 or slower asymp-
totically.

The aim of the present paper is to adapt the effective-
range theory of ordinary elastic scattering to the case of
quantum reflection and to derive appropriate parameters
which describe the next-to-leading k dependence of quantum
reflection amplitudes for attractive potential tails. Section II
contains a general description of effective-range theory for
quantum reflection amplitudes and Sec. III presents analyti-
cal results for homogeneous potential tails

U��r� = −
C�

r� = −
�2

2M

�	���−2

r� , �5�

with ��5. Homogeneous potentials �5� with �
5 are
treated in Sec. IV.

II. EFFECTIVE-RANGE EXPANSION FOR QUANTUM
REFLECTION

The Schrödinger equation for a particle of mass M mov-
ing with energy E=�2k2 / �2M� under the influence of the
potential U�r� is

� d2

dr2 + k2 −
2M

�2 U�r�	u�r� = 0. �6�

We assume that the potential vanishes asymptotically
�r→��, and that it is attractive and more singular than −1/r2

for “small” values of r. The wave functions can then be
described by WKB waves for small r, which allows an un-
ambiguous identification of leftward �inward� and rightward
�outward� traveling waves in this semiclassical region. The
quantum reflection amplitude R for particles approaching
from large distances is obtained by solving the Schrödinger
equation �6� with the following boundary conditions:

u�r� �
r→0 A

�pk�r�
exp
−

i

�
�

r0

r

pk�r��dr�� ,

u�r� �
r→�

B�e−ikr + R�k�e+ikr� , �7�

where pk�r�=�2M�E−U�r�� is the local classical momentum
labeled by the asymptotic wave number k=�2ME /�. The
WKB wave in the upper line of Eq. �7� is defined with a
fixed and finite point of reference r0 and describes an inward
traveling wave at small distances r.

In order to adapt the theory described, e.g., in Chap. 6 of
Ref. �13� to the present situation, we choose the �arbitrary�
parameter B in Eq. �7� to be 1/ �1+R�k�� and obtain wave
functions with the following behavior at large distances:

u�r� �
r→�
e+ikr −

2i sin�kr�
1 + R�k� � ,

du

dr
�

r→�

ik
e+ikr −
2 cos�kr�
1 + R�k� � . �8�

At small distances, the derivative of the inward traveling
wave is

du

dr
�

r→0

− u�r�
 pk��r�
2pk�r�

+
i

�
pk�r�� . �9�

We call u1�r� the solution of the Schrödinger equation �6�
for wave number k1 and u2�r� the solution for wave
number k2. It then follows that u1�r�u2��r�−u2�r�u1��r�
= �k1

2−k2
2�u1�r�u2�r� and

�
rl

ru 
u1�r�
d2u2

dr2 − u2�r�
d2u1

dr2 �dr

= 
u1�r�
du2

dr
− u2�r�

du1

dr
�

rl

ru

= �k1
2 − k2

2��
rl

ru

u1�r�u2�r�dr .

�10�

At the lower integration limit rl we have

u1�rl�u2��rl� − u2�rl�u1��rl�

= u1�rl�u2�rl�
 pk1
� �rl�

2pk1
�rl�

−
pk2
� �rl�

2pk2
�rl�

+
i

�
�pk1

�rl� − pk2
�rl��� .

�11�

For potentials behaving as Eq. �5� with ��2 for small r, we
have pk�rl�= �� /	���	� /rl��/2�1+k2rl

� / �	���−2 and the ex-
pression �11� vanishes for rl→0.

We use the letter v to denote solutions of the Schrödinger
equation without the potential U�r�. Let v1�r� be the solution
at wave number k1 which has the same asymptotic �r→��
behavior as u1�r�; then v1�r� and v1��r� are given by the right-
hand sides of Eq. �8�, with k1 in place of k, not only asymp-
totically but for all values of r. Let v2 be the solution of the
free-wave equation at wave number k2 which has the same
asymptotic behavior as u2�r�. Then

�
rl

ru 
v1�r�
d2v2

dr2 − v2�r�
d2v1

dr2 �dr

= 
v1�r�
dv2

dr
− v2�r�

dv1

dr
�

rl

ru

= �k1
2 − k2

2��
rl

ru

v1�r�v2�r�dr .

�12�

Subtracting Eq. �10� from Eq. �12� gives


v1�r�
dv2

dr
− v2�r�

dv1

dr
�

rl

ru

− 
u1�r�
du2

dr
− u2�r�

du1

dr
�

rl

ru

= �k1
2 − k2

2��
rl

ru

�v1�r�v2�r� − u1�r�u2�r��dr . �13�

The contributions at the upper limit ru on the left-hand side
of Eq. �13� cancel as ru→�, because ui and vi �i=1,2� be-
come equal asymptotically. At the lower limit rl, the contri-
butions of the u�s on the left-hand side vanish for rl→0 as
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discussed above. The contribution of the v�s is

− v1�rl�dv2

dr


rl

+ v2�rl�dv1

dr


rl

�
rl→0

i�k1 − k2� + 2i� k2

1 + R�k2�
−

k1

1 + R�k1�	 , �14�

so, in the limits rl→0, ru→�, Eq. �13� becomes

i�k1 − k2� + 2i� k2

1 + R�k2�
−

k1

1 + R�k1�	
= �k1

2 − k2
2��

0

�

�v1�r�v2�r� − u1�r�u2�r��dr . �15�

Equation �15� is valid for any pair �k1 ,k2� of wave
numbers. We can take the limit k2→0 for which
1+R�k2�→2�b+ iā�k2 according to �1�, so the quotient
2ik2 / �1+R�k2�� approaches the constant value 1/ �ā− ib�.
Dropping the index 1 on k1, u1 and v1, Eq. �15� thus becomes

−
2ik

1 + R�k�
+ ik = − ik

1 − R�k�
1 + R�k�

= −
1

ā − ib
+ k2�

0

�

�v�r�v0�r� − u�r�u0�r��dr , �16�

where u0 and v0 now stand for the solutions of the
Schrödinger equation, with and without potential respec-
tively, at threshold, k=0.

Except for a minus sign, the reflection amplitude R corre-
sponds to the S matrix of s-wave scattering, which is usually
written in terms of the s-wave scattering phase shift �0 as
e2i�0, R�−e2i�0. In terms of �0, Eq. �16� has the form of the
ordinary effective-range expansion �2�. In the present case,
the modulus �R� of the reflection amplitude can be less than
unity, so the corresponding “scattering phase shift” is in gen-
eral complex,

�0 � �r + i�i, R = − e−2�ie2i�r. �17�

Also, the scattering length a0 of ordinary scattering theory is
now replaced by a complex scattering length ā− ib, where ā
and b are the tail parameters of the potential as defined in Eq.
�1�. Adopting the nomenclature of the effective-range expan-
sion in ordinary scattering theory we write the near-threshold
expansion of Eq. �16� as

− ik
1 − R�k�
1 + R�k�

=
k

tan��r + i�i�
�

k→0

−
1

ā − ib
+

1

2
Reff k2,

�18�

and the complex effective range Reff is defined via the value
of the integral on the right-hand side of Eq. �16� at threshold

Reff = 2�
0

�

�v0�r�2 − u0�r�2�dr . �19�

The functions v0 and u0 are defined via the asymptotic
boundary conditions �8� in the limit k→0

v0�r� = 1 −
r

ā − ib
, u0�r� �

r→�

1 −
r

ā − ib
, �20�

and the only difference to effective-range theory for ordinary
elastic scattering is the appearance of the complex scattering
length ā− ib instead of the real s-wave scattering length a0.

For convenience we introduce

A=
def

ā − ib �21�

as the complex scattering length whose imaginary and real
parts determine the leading near-threshold k dependence of
modulus and phase of the quantum reflection amplitude �17�
according to Eq. �1�. The leading near-threshold behavior of
the complex phase shift can then be written as

�r + i�i �
k→0

− kA +
1

3
�k��3, � = �1 −

3

2

Reff

A 	1/3

A ,

�22�

in analogy to Eq. �4�. This is the desired expression for the
leading and next-to-leading behavior of modulus and phase
of the quantum reflection amplitude �17�.

The function u0�r� is the zero energy solution of the
Schrödinger equation �6� defined by its asymptotic behavior
�20�. If the potential behaves as Eq. �5� asymptotically, then
the asymptotic behavior of u0 is given �1,11� via Bessel func-
tions J±��z�, whose order and argument are defined by

� =
1

� − 2
, z = 2��	�

r
	1/�2��

. �23�

Explicitly we have �11�

u0�r� �
r→��1 + ��

��
� r

	�

J��z� −
	�

ā − ib
�1 − ����� r

	�

J−��z� .

�24�

Inserting the asymptotic �r→� ,z→0� behavior of the
Bessel functions �14� yields

u0�r� �
r→�

1 −
�z/2�2

1 + �
+ O�z4� −

r

ā − ib
�1 −

�z/2�2

1 − �
+ O�z4�	

= 1 −
r

ā − ib
+ O�r3−�� . �25�

The leading asymptotic terms of v0�r�2−u0�r�2 are propor-
tional to r4−�, so the integral in the definition �19� of the
effective range converges to a well-defined value when
��5.

Remember that the quantum reflection amplitude depends
not only on the leading asymptotic behavior of the potential,
but on the potential tail in the whole nonclassical region
beyond semiclassical regime at “small” distances. Deviations
from the homogeneous form �5� are important, if they are not
negligible beyond the semiclassical region.

A simple example for the effective-range expansion �18�
and �22� is provided by the finite sharp-step potential,
which vanishes beyond r=L and has the constant value
Ustep=−�2K0

2 / �2M� for 0�r�L. Here the nonclassical re-
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gion is restricted to a single point, namely, r=L, and the
quantum reflection amplitude is given by

Rstep = −
1 − k/�K0

2 + k2

1 + k/�K0
2 + k2

e−2ikL,

�r + i�i = − kL −
i

2
ln
1 − k/�K0

2 + k2

1 + k/�K0
2 + k2�

�
k→0

− k�L −
i

K0
	 −

i

6
� k

K0
	3

. �26�

This corresponds to the complex scattering length
A=L− i /K0 and the effective range

Reff =
2

3
A +

i

3K0
3A2 ⇒ � =

i

21/3K0
. �27�

III. HOMOGENEOUS POTENTIALS

For the calculation of quantum reflection amplitudes, a
potential with the asymptotic behavior �5� can be assumed to
be of this homogeneous form, if deviations from Eq. �5� are
restricted to the semiclassical regime at “small” distances. In
this case, the zero-energy solution u0�r� of the Schrödinger
equation can be taken as given by Eq. �24� in the whole
range of r values and not only asymptotically, and the defi-
nition of the effective range via Eq. �19� gives a well defined
result as long as ��5. For homogeneous potentials �5�, the
properties of the Schrödinger equation �6� depend not on
energy E=�2k2 / �2M� and potential strength independently,
but only on the dimensionless parameter k	�. This also holds
for all lengths when expressed in units of 	�.

The mean scattering length ā� and the threshold length b�

are well known �11� for homogeneous potential tails �5�,

ā�

	�

= �2��1 − ��
�1 + ��

cos����,
b�

	�

= �2��1 − ��
�1 + ��

sin����

�28�

�remember, �=1/ ��−2��, so the complex scattering length
A� is given by

A� = ā� − ib� = 	��2��1 − ��
�1 + ��

e−i��. �29�

The effective-range expansion for ordinary elastic scatter-
ing by potentials with inverse-power tails �5� was studied by
Flambaum et al. in Ref. �15�. They calculate the effective
range by evaluating an integral as in Eq. �19� with wave
functions v0 and u0 defined as in Eqs. �20� and �24�, and the
only difference is the use of the real scattering length a0
instead of the complex scattering length ā− ib�A�. The rel-
evant equation �24� of Ref. �15� can be directly transferred to
the present case of quantum reflection by writing A� in place
of the real scattering length of ordinary elastic scattering

Reff

	�

= f� − g�

	�

A�

+ h�� 	�

A�
	2

. �30�

We have referred all lengths to the strength parameter 	� of
the potential �5� so that the coefficients in Eq. �30� become
dimensionless,

f� =
2

3

��2�

sin����
����4��

�2��2�3��
,

g� =
4

3

��4�

sin����
�1 − 2���4��

�����2���3��
,

h� =
2

3

��6�

sin����
�1 − 3���1 − ���4��

�2���2�2��2 . �31�

Inserting Eq. �29� into Eq. �30� and exploiting some proper-
ties �14� of the gamma function, in particular the identity
�1+x��1−x�=�x / sin��x�, leads to the following explicit
expression for the complex effective range of the quantum
reflection amplitude for a homogeneous potential tail �5�:

Reff =
2

3
A�

�1 − 2��2�1 − 3���1 + ��
�1 − 4���1 − ��2 . �32�

An alternative method of obtaining the same result is to
study ordinary elastic scattering by the repulsive homoge-
neous potential

U�
�rep��r� = − U��r� =

�2

2M

�	���−2

r� . �33�

Del Giudice and Galzenati �16� studied the near-threshold
behavior of the s-wave scattering phase shift �0

�rep� in the
potential �33�, and this involved studying the asymptotic
�r→�� behavior of the regular solutions �reg�r�, which are
correctly given by the WKB expression near the origin as
long as ��2 �11�,

�reg�r� �
r→0 1

�pk
�rep��r�

exp
−
1

�
�

r

r0

pk
�rep��r��dr�� . �34�

Here pk
�rep��r�= ���k2− �	���−2 /r�� is the absolute value of the

local classical momentum in the classically forbidden region
near r=0. Matching the regular solution �34� to the
asymptotic form

�reg�r� �
r→�

sin�kr� + tan �0
�rep� cos�kr� � e−ikr − e2i�0

�rep�
e+ikr

�35�

leads to the following near-threshold behavior of tan �0
�rep�:

tan �0
�rep� �

k→0�− ��
���

�2�k	�

+
�− ���− 2��2�− 3��

���2�− 4��
�1+6��k	��3. �36�

For ��5, Eq. �36� represents a standard effective-range ex-
pansion
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k

tan �0
�rep� �

k→0

−
1

a�
�rep� +

1

2
Reffk

2, �37�

where

a�
�rep� = �2��1 − ��

�1 + ��
	� �38�

is the scattering length, and the effective range Reff is given
by

Reff = 2a�
�rep��− 2��2�− 3���2�1 + ��

�− 4���1 − ��2 . �39�

The repulsive homogeneous potential �33� becomes the
attractive homogeneous potential �5� if we replace �17�
�	���−2 by −�	���−2,

�	���−2 → − �	���−2 = e−i��	���−2, 	� → 	�e−i��.

�40�

The regular wave function �reg then becomes a complex
wave function �in, whose behavior near the origin corre-
sponds to an inward traveling WKB wave

�reg�r� → �in�r� �
r→0 1

�pk�r�
exp
 i

�
�

r

r0

pk�r��dr�� , �41�

where pk�r�=��k2+ �	���−2 /r� is the local classical momen-
tum in the attractive homogeneous potential �5�. Equation
�41� is just the small-r behavior of the wave function used to
define the quantum reflection amplitude according to Eq. �7�,
so the correct quantum reflection amplitude is obtained via
Eq. �17� if we replace the s-wave scattering phase shift �0

�rep�

by the complex phase shift obtained for the attractive homo-
geneous potential via the replacement 	�→	�e−i��. Accord-
ing to Eq. �36�, the near-threshold behavior of the tangent of
this complex phase shift is

tan��r + i�i� �
k→0�− ��

���
�2�k	�e−i��

+
�− ���− 2��2�− 3��

���2�− 4��
�1+6��k	�e−i���3.

�42�

While Eqs. �37� and �39� follow from Eq. �36� for the repul-

sive homogeneous potential, the corresponding equations
following from Eq. �42� in the attractive case are obtained by
simply writing 	�e−i�� instead of 	�,

k

tan��r + i�i�
�

k→0

−
1

a�
�rep�e−i��

+
1

2
Reff k2, �43�

Reff = 2a�
�rep�e−i���− 2��2�− 3���2�1 + ��

�− 4���1 − ��2 . �44�

From Eqs. �29� and �38� it follows that

a�
�rep�e−i�� = A� = ā� − ib�, �45�

and some elementary transcriptions of the gamma functions
show that Eq. �44� is indeed the same equation as Eq. �32�.

Interestingly, Reff is a real multiple of the complex scat-
tering length A�. This cannot be a general property of quan-
tum reflection amplitudes, however, because it does not hold
for the sharp step potential, see Eq. �27�. The ratio Reff /A�

tends to the value 2/3 as �→� ��→0�, so the correction of
order O�k3� in Eq. �22� or, equivalently, in the expression

R�k� = − e−2b�ke−2iā�k�1 + O��k	��3�� , �46�

becomes smaller and smaller for increasing powers �. The
increasing accuracy of the exponential representation �46�
with increasing � has been noticed in previous studies of
quantum reflection probabilities �18�.

For the homogeneous potentials �5�, the parameter ��,
which defines the strength of the next-to-leading term in the
k dependence of the complex phase shift as in Eq. �22� is
also a real multiple of the complex scattering length A�,

��

A�

= 
1 −
�1 − 2��2�1 − 3���1 + ��

�1 − 4���1 − ��2 �1/3

. �47�

Numerical values of the mean scattering length ā�, the
threshold length b�, the ratio Reff /A� and the ratio �� /A�

are listed in Table I. The constant c� in the last row and
column follows from the low-� expansion of the gamma
functions in Eq. �47�, where the leading nonvanishing con-
tribution to the expression in the square bracket turns out to
be �c���3 with

c� = �8�3 − 12���1� − 4��1��1/3 = 2.12653077 ¯ .

�48�

TABLE I. Mean scattering length ā� and threshold length b� defining the real and imaginary parts of the
scattering length A�= ā�− ib� for quantum reflection by homogeneous potential tails �5�. Also shown is the
ratio of the effective range Reff to A� and the quotient �� /A�, where �� is the parameter determining the
next-to-leading momentum dependence in the near-threshold behavior of the complex phase shift according
to Eq. �22�. The constant c� in the last row and column is as given by Eq. �48�

� 6 7 8 9 10 �→�

ā /	� 0.4779888 0.5388722 0.5798855 0.6108042 0.6356215 1

b /	� 0.4779888 0.3915136 0.3347971 0.2941478 0.2632830 � / ��−2�
Reff /A� 0 0.4839001 0.5888796 0.6259995 0.6426344 2

3
�� /A� 1 0.6496249 0.4886519 0.3936512 0.3303405 c� / ��−2�
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IV. POTENTIALS FALLING OFF AS −1/r3, −1/r4,
AND −1/r5

As mentioned after Eq. �25� in Sec. II, the integral on the
right-hand side of Eq. �19� diverges when the potential falls
off as 1 /r5 or slower asymptotically and the wave function
v0 is exactly given by Eq. �20�. For homogeneous repulsive
potentials �33� with �=3, 4, and 5, Del Giudice and
Galzenati �16� gave the following expressions for the near-
threshold behavior of the s-wave scattering phase shift �0

�rep�:

tan �0
�rep� �

k→0

k	3 ln�k	3� + �ln 2 + 3� −
3

2
	k	3

+ O„�k	3�2
…, � = 3, �49�

tan �0
�rep� �

k→0

− k	4 +
�

3
�k	4�2 +

4

3
�k	4�3 ln�k	4�

+ �8

3
�� + ln 2� −

28

9
	�k	4�3 + O„�k	4�4

…, � = 4,

�50�

tan �0
�rep� �

k→0

− �1

3
	2/3�2

3
	

�4

3
	 k	5 −

1

3
�k	5�3 ln�k	5�

+ �13

36
+

ln 3

18
−

ln 2

3
−

5

9
� −

�

6�3
	�k	5�3

+ O„�k	5�4
…, � = 5. �51�

Here �=−��1�=0.57721566¯ is Euler’s constant. We can
transfer the results of Ref. �16� to the case of quantum re-
flection by attractive potentials in the same way as already
discussed in Sec. III, i.e., we replace the parameter 	� de-
scribing the strength of the repulsive potential by 	�e−i��,
with �=1/ ��−2�.

A. �=3

For �=3 we have �=1, so Eq. �49� becomes

tan��r + i�i� � �r + i�i �
k→0

− k	3 ln�k	3�

− �ln 2 + 3� −
3

2
− i�	k	3 + O„�k	3�2

… .

�52�

The term −k	3 ln�k	3� remains the leading contribution,
even if the potential contains shorter ranged deviations from
proportionality to −1/r3, see, e.g., Ref. �19�, but the coeffi-
cient in front of k	3 in the next term only has the given form
if the potential can be regarded as homogeneous in the non-
classical region important for quantum reflection. Note that
the leading contribution to the imaginary part �i of the phase
shift is �k	3 in Eq. �52�, in accordance with the fact that the
threshold length b3 is equal to �	3 for the homogeneous
attractive −1/r3 potential �1�. The threshold length b, which

is minus the imaginary part of the scattering length, is well
defined for potentials falling off as 1 /r3 asymptotically, even
though a real part of the complex scattering length cannot be
defined �11�.

B. �=4

For �=4 we have �=1/2, so 	4 is replaced by −i	4 in Eq.
�50�,

tan��r + i�i� �
k→0

ik	4 −
�

3
�k	4�2 +

4

3
i�k	4�3 ln�k	4�

+
2�

3
�k	4�3 + �8

3
�� + ln 2� −

28

9
	i�k	4�3

�53�

or, equivalently,

�r + i�i �
k→0

ik	4 −
�

3
�k	4�2 +

4

3
i�k	4�3 ln�k	4� +

2�

3
�k	4�3

+ �8

3
�� + ln 2� −

25

9
	i�k	4�3. �54�

In a classic article in 1961 �20�, O’Malley, Spruch and
Rosenberg studied potentials with attractive tails asymptoti-
cally proportional to 1/r4. They modified the standard
effective-range theory by replacing the free-wave solution v0
by an appropriate solution of a Schrödinger equation which
includes the homogeneous potential

U4�r� = −
C4

r4 = −
�2

2M

	4
2

r4 . �55�

This leads to the “modified effective-range expansion”

k

tan �0
�

k→0

−
1

a0
+

�	4
2

3a0
2 k +

4	4
2

3a0
k2 ln� k	4

4
	 + 
1

2
r̃eff +

�	4

3

+
20	4

2

9a0
−

8	4
2

3a0
��3

2
	 −

�	4
3

3a0
2 −

�2	4
4

9a0
3 �k2, �56�

where � is the digamma function �� 3
2

�=0.036489974¯. The
contribution 1

2 r̃effk
2 on the right-hand side of Eq. �56� con-

tains a modified effective range r̃eff, which is defined as in
Eq. �19�, but with v0 standing for a zero-energy solution of
the Schrödinger equation including the potential �55�.

Adapting the procedure of Ref. �20� to quantum reflection
by the homogeneous potential tail �55� means that the wave
functions u0 and v0 in Eq. �19� are identical, and the contri-
bution containing r̃eff vanishes. All other terms on the right-
hand side of Eq. �56� are derived from near-threshold solu-
tions of the Schrödinger equation with the potential �55�,
which can be expressed analytically in terms of Mathieu
functions �14,20�. The correct expression for the case of
quantum reflection is obtained by replacing the ordinary
scattering length a0 by the complex scattering length, which
is A4=−i	4 for �=4. Remembering that �� 3

2
�=2−�−2 ln 2,

it is easy to show that Eq. �56� is equivalent to Eqs. �53� and
�54� when �0 and a0 are replaced by �r+ i�i and −i	4, respec-
tively, and r̃eff is set equal to zero.

ARNECKE, FRIEDRICH, AND MADROÑERO PHYSICAL REVIEW A 74, 062702 �2006�

062702-6



C. �=5

For �=5 we have �=1/3, so 	5 is replaced by 	5e−i�/3 in
Eq. �51�,

tan��r + i�i� �
k→0

− �1

3
	2/3�2

3
	

�4

3
	 k	5�cos

�

3
− i sin

�

3
	

+
1

3
�k	5�3 ln�k	5� − �13

36
+

ln 3

18
−

ln 2

3
−

5

9
�

−
�

6�3
+ i

�

9 	�k	5�3 �57�

or, equivalently,

�r + i�i �
k→0

− �1

3
	2/3�2

3
	

�4

3
	 k	5�cos

�

3
− i sin

�

3
	

+
1

3
�k	5�3 ln�k	5� − �13

36
+

ln 3

18
−

ln 2

3
−

5

9
�

−
�

6�3
+

1

27��2

3
	

�4

3
	�

3

+ i
�

9 ��k	5�3. �58�

For the homogeneous potential �5� with �=5, analytical so-
lutions of the Schrödinger equation are not available at finite
energies E=�2k2 / �2M��0, and we are not aware of a modi-
fied effective-range expansion analogous to Eq. �56� for this
case. A numerical verification of the near-threshold expan-
sion �57� can be achieved by studying the difference D�k	5�
of the left-hand side LH�k	5�, obtained by numerically solv-
ing the Schrödinger equation, and the right-hand side

RH�k	5�, as given analytically. Figure 1 shows the absolute
value �D�k	5� / �k	5�3� of the difference

D�k	5� = LH�k	5� − RH�k	5� �59�

divided by �k	5�3 as function of k	5 for values of k	5 down
to 0.01 and below. The fact that �D�k	5� / �k	5�3� clearly
tends to zero as k	5→0 confirms that Eq. �57� is correct up
to and including terms of order �k	5�3. We have also sub-
jected the analytical formulas �42�, �52�, and �53� to analo-
gous numerical tests.

V. SUMMARY AND DISCUSSION

A straightforward adaptation of effective-range theory of
ordinary elastic scattering to the case of quantum reflection
by an attractive potential tail leads to a simple formula �18�
or �22� for the leading and next-to-leading terms in the near-
threshold behavior of the complex phase shift, whose real
and imaginary parts describe the phase and the modulus of
the quantum reflection amplitude according to Eq. �17�. For
potentials falling off faster than −1/r3 asymptotically, the
leading near-threshold behavior of the complex phase shift is

�r+ i�i �
k→0

−Ak, where A= ā− ib is a complex scattering
length whose real and imaginary part are the mean scattering
length ā and minus the threshold length b of the potential
tail. For potentials falling off faster than −1/r5, the next-to-
leading term is proportional to k3—see Eq. �22�, and it is
determined by a complex effective range �19�. This complex
effective range is completely defined via zero-energy solu-
tions of the Schrödinger equation, which are taken to obey
incoming boundary conditions in the semiclassical region on
the near side of the nonclassical region where quantum re-
flection is generated. Analytical solutions of the Schrödinger
equation are known at energy zero for all potentials which
can be regarded as homogeneous �5� in the nonclassical re-
gion, and for a number of nonhomogeneous potential tails as
well �11,21,22�. Even if the zero-energy solutions are not
known analytically, the complex scattering length and effec-
tive range can be calculated by solving the Schrödinger
equation numerically at threshold, and this gives the param-
eters for the near-threshold behavior of the complex phase
shift up to and including O�k3� as long the potential falls off
faster than −1/r5.

For �attractive� homogeneous potential tails, i.e. those
with neglible deviations from the homogeneous form �5� in
the nonclassical region, both complex scattering length A�

and effective range Reff are proportional to the parameter 	�

describing the strength of the potential, with known con-
stants of proportionality depending only on �, see Eqs. �29�
and �32�. The ratio Reff /A� is real and tends to 2/3 for large
�, meaning that the corrections of order �k	��3 to the com-
plex phase shift become smaller and smaller with increasing
power �.
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FIG. 1. Absolute value of the difference D�k	5� of left- and
right-hand sides of Eq. �57� divided by �k	5�3 as function of k	5.
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