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The dynamical entanglement of two stretching vibrations of triatomic molecules H2O and SO2 in an alge-
braic model is studied in terms of the reduced-density linear entropy with initial states that are, respectively,
taken to be the product of Fock states and coherent states on each bond. It is shown that the entanglement of
initial states with local-mode character is regular while that of states with normal-mode character is irregular.
For initial coherent states with a small amplitude, the regularity of the entanglement with a long period appears
in SO2 and “classical” beat phenomena of the entanglement happens in H2O, where the period of the beat is
longer. Those long periods of the entanglement indicate that the entanglement sustains long enough so that
quantum information process and quantum computation could be accomplished.
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I. INTRODUCTION

Entanglement has become a potential physical resource in
quantum information processing that has undergone a rapid
development in recent years �1�. Since quantum entangled
states play an important role in deposit and transport of
quantum information, considerable effort has been devoted
to generating entanglement in quantum-optic and atomic sys-
tems �2–6� and characterizing entanglement in various sys-
tems �7–10�. The possibility for the generation of the maxi-
mally entangled states with a fixed photon number from
squeezed vacuum states is theoretically studied �3�. Such a
kind of entangled source can be applied in quantum telepor-
tation �4�. Atom-photon entangled coherent states in atomic
Bose-Einstein condensate can be prepared via electromag-
netically induced transparency �5�. It is shown that the non-
linear interaction between excitons in two coupled semicon-
ductor microcrystallites increases the maximum values of
entanglement more than that of the linear coupling model
�6�. Besides generation of entangled states, the study of en-
tanglement characteristics of various systems helps one to
relate those characteristics to the understood properties of the
system. It is demonstrated that the entanglement in several
models �8� is largest near quantum critical points. It is sug-
gested that the small-amplitude oscillations of entanglement
might be regarded as fingerprints of the underlying classical
chaos in smooth Hamiltonian systems �9�. A signature of
quantum chaos based on dynamics of entanglement is given
for the kicked top �10�. One of the important properties in
those studies �2–10� is that the model parameter can be var-
ied for various behaviors of entanglement. Thus those works
are, to some extent, limited to ideal theoretical models. For
molecular systems, a scheme is proposed to generate en-
tanglement between two coupled identical polar molecules
separated in a distance of tens of nanometers �11�. The pos-
sibility that a suitably excited molecule can mimic the logical
action of a Turing machine is analyzed in �12�. Recent the-
oretical studies have highlighted the feasibility of using mo-
lecular vibrational states for quantum computing �13,14�. It
is shown that extremely high quantum gate fidelity can be
achieved for a qubit system based on vibrational eigenstates
of diatomic molecules and the increase of fidelity can be

realized with an increase of anharmonicity parameter in the
molecules �14�. In present work, we investigate the entangle-
ment dynamics of realistic molecular vibrations in an alge-
braic model �15�, where model parameters have been opti-
mized from experimental spectra of triatomic molecules H2O
and SO2. Thereby the quite different behaviors of entangle-
ment in those two molecules can be characterized.

Algebraic methods �16� are developed to be an effective
theory for descriptions of vibrations, rotations, and rotation-
vibration interactions in molecules �17�. For highly excited
vibrations of polyatomic molecules, various algebraic mod-
els �15,18–22� and some important physical quantities such
as band intensities �19� and potential-energy surfaces �20�
are satisfactorily analyzed and interpreted. The simplest Lie
algebraic Hamiltonian is within the u�2� algebraic frame-
work. It is shown that a u�2� force-field expansion has a
much faster convergence than the conventional force-field
expansion �21�. Furthermore, a simple scheme is proposed to
extract the corresponding classical dynamics from the u�2�
model parameters �15� and to incorporate bend modes with
possible interactions between vibrational modes �22�. How-
ever, the quantum dynamics of highly excited vibrations
within algebraic frameworks �15,18–22�, especially on the
dynamics of quantum entanglement, has not yet been consid-
ered. Here we study the dynamical entanglement of stretch-
ing vibrations of H2O and SO2 in a u�2� algebraic model �15�
that conserves a multiplet quantum number �MQN�. The
reduced-density linear entropy is employed to measure the
entanglement with various MQN and initial states. The initial
states are taken to be the product of Fock states and coherent
states on each bond, respectively. It is demonstrated that the
entanglement of initial states with local-mode character is
regular while that of states with normal-mode character is
irregular. Using a simplified model, we explain the period of
regular entanglement of a pure state in H2O and coherent
states with a small amplitude in H2O and SO2. The entangle-
ment of coherent states in H2O can, under a condition, show
a beat phenomenon with a time evolution very similar to that
in classical physics. The entanglement of coherent states
with small amplitude for SO2 exhibits regular with a longer
period, indicating that the entanglement lasts long enough for
the quantum information process and quantum computation
to be accomplished.
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The paper is organized as follows. Section II presents u�2�
algebraic model for H2O and SO2. In Sec. III we study the
dynamics of entanglement with two kinds of initial states.
We conclude the paper with discussions in the last section.

II. u(2) ALGEBRAIC MODEL

For stretching vibrations in a symmetrical A-B-A tri-
atomic molecules, the algebraic Hamiltonian �15� reads,

Ĥ = Ĥ0�va,vc� + Ĥi, �1�

where Ĥ0�va ,vc� and Ĥi is, respectively, diagonal and nondi-
agonal Hamiltonian with va�c� representing the vibrational
quantum number on stretch bond a�c�, which is given by,

Ĥ0�va,vc� = a�a,c�
�1,0��Ĉa + Ĉc� + a�a,c�

�2,0��Ĉa
2 + Ĉc

2� + 2a�a,c�
�1,1�ĈaĈc

+ a�a,c�
�3,0��Ĉa

3 + Ĉc
3� + a�a,c�

�2,1�ĈaĈc�Ĉa + Ĉc� , �2�

Ĥi = m�a,c�
�1� � f̂ a

+ f̂ c
− + f̂ a

− f̂ c
+� + m�a,c�

�2� � f̂ a
+ f̂ a

+ f̂ c
− f̂ c

− + f̂ a
− f̂ a

− f̂ c
+ f̂ c

+� , �3�

where a�a,c�
�i,j� and m�a,c�

�i� �i=1,2 ,3, and j=0,1� are parameters,

the subscript a and c denote the two equivalent local-stretch

vibrations, and Ĉi and f̂ i
± �i=a ,c� are u�2� operators with the

matrix elements being,

�Ni,vi��Ĉi�Ni,vi� = �	1 +
1

Ni

	vi +

1

2

 −

1

Ni
	vi +

1

2

2��vi�,vi

,

�4�

�Ni,vi�� f̂ i
+�Ni,vi� =��vi + 1�	1 −

vi

Ni

�vi�,vi+1, �5�

�Ni,vi�� f̂ i
−�Ni,vi� =�vi	1 −

vi − 1

Ni

�vi�,vi−1, �6�

where �Ni ,vi� �i=a ,c� is the local basis on the stretch bond i
with Ni being related to the number of bound states for the
corresponding anharmonic oscillator �17�. The algebraic
Hamiltonian Eq. �1� conserves MQN, which is defined by

vm = va + vc, �7�

so that in addition to the energy there are two integrals of the
motion, and the Hamiltonian matrix is block diagonal with

respect to MQN. Fitting the experimental spectra of H2O and
SO2, Iachello and co-workers have listed the optimized pa-
rameters in the model in Table I of Ref. �15�, where the
classical dynamics of the classical counterpart of Eq. �1� has
been analyzed.

III. DYNAMICS OF ENTANGLEMENT

We study the dynamics of entanglement in the algebraic
model Eq. �1�. There have been various measures of en-
tanglement in the literature, and we choose the linear entropy
for its simplicity as well as its wide applicability. The linear
entropy of entanglement, s�t�, is defined by �23�

s�t� = 1 − Tra��a�t��2, �8�

where Tra denotes the trace over the first subsystem a, and
�a�t� is the reduced-density matrices, �a�t�=Trc���t�����t��,
where index a and c stand for the degree of freedom on
stretch mode a and c, respectively, and ���t�� is the quantum
state of the full system, which evolves in time under the
action of algebraic Hamiltonian Eq. �1�.

We employ two kinds of initial states, Fock states and
coherent states, to inspect the time evolution of the entangle-
ment. The importance of studying in detail the entanglement
in different initial states is threefold. It may be viewed as a
key to the understanding of some of the striking differences
between the quantum and classical description of the world.
Since Fock states for H2O are of local-mode or normal-mode
character, we show that they display quite different behaviors
of the entanglement. Continuous-variable-type entangled
states including squeezed states and coherent states have
been widely applied to quantum teleportation �4�, quantum
cryptography �24�, and quantum computation �25�. Therefore
it is an interesting topic to investigate the entanglement of
coherent states.

A. Entanglement of Fock states

In order to explore the dynamical properties of quantum
entanglement of highly excited vibrations in H2O and SO2,
we take MQN vm to be 15, 20, and 25, as an example. Within
every vm two initial states are taken to be

���0��A = �Na,0� � �Nc,vm� 
 �0,vm� , �9�

���0��B = ��Na,
vm

2
� � �Nc,

vm

2
� 
 �vm

2
,
vm

2

 , vm even,

�Na,
vm − 1

2
� � �Nc,

vm + 1

2
� 
 �vm − 1

2
,
vm + 1

2

 , vm odd. � �10�

Because the two vibrational modes are identical for H2O and
SO2, so Na=Nc
N and the exchange of the vibrational
quantum number on each bond a and c gives the same result.

The states ���0��A and ���0��B correspond, respectively, to a
typical local mode and a normal mode for H2O while both
states are of typical normal mode for SO2 �26�. It should be
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mentioned that some important ideas were introduced for
understanding the properties of local and normal modes, in-
cluding dynamical tunnelling �27�, locality parameter �28�,
polyad phase sphere �29�, and susceptibility of eigenstates
�30�. Here we explore the differences between those two
typical states in dynamics of quantum entanglement.

With those initial states, Figs. 1�a�–1�c� for H2O,
1�d�–1�f� for SO2 show the entanglement dynamics de-
scribed by the linear entropy, which is for vm=15, 20, and
25, respectively. Some observations in Fig. 1 are as follows.
For those two molecules, the increasing rate of the linear
entropy in the early-time evolution of state ���0��B is more
rapid than that of state ���0��A, and the amplitude and the
frequency of oscillations of the entropy of state ���0��B are
larger that those of state ���0��A. The larger the MQN vm, the
larger the difference of the entropy between those two states
for H2O, but the smaller for SO2. The first maximal entropy
of state ���0��B for H2O and both ���0��A and ���0��B for
SO2 increases as vm increases, while that of state ���0��A for
H2O decreases. Considering the local-mode or the normal-
mode characters of those two initial states, we notice the
main difference between the entropy of the typical local-
mode and the typical normal-mode state, that is, the entropy
of the typical local-mode state ���0��A is better quasiperiodic
than that of the typical normal-mode states ���0��B for H2O
with the maximal entropy of local-mode states being smaller
than that of normal-mode states. For those two states with
normal-mode character that difference is small for SO2.

Additionally, we still note that there is a significant prop-
erty in the period and the shape of the entropy for state
���0��A for H2O, as shown in Fig. 2, that is, the evolution of
the entropy is periodic and regular. Such a period is ex-
plained with the analytic form of the entropy for state
���0��A. In diagonalization of the algebraic Hamiltonian we
note that for a given vm, the contributions of �0,vm� and
�1,vm−1� to the eigenenergy of �0,vm� are one order of mag-
nitude larger than those of other states for H2O. Thus we
neglect the 2:2 resonance term with m�a,c�

�2� in Eq. �2� and

consider the interaction between just two states �0,vm� and

�1,vm−1�. In this case we obtain the linear entropy of the
initial state �0,vm�, given by,

s�t� =
2�2

�2 �1 −
�2

�2 sin2��t��sin2��t� , �11�

where �=m�a,c�
�1� �vm�1− �vm−1� /N� and �

= 1
2
��H0�0,vm�−H0�1,vm−1��2+4�2, where H0�va ,vc� is the

eigenvalue of Ĥ0�va ,vc� on local base �va ,vc�. It is easy to
get the period � of the entropy from Eq. �11�,

� =
�

�
. �12�

In this way the period given by Eq. �12� is 0.0163, 0.0119,
and 0.0093 ps for H2O with vm=15, 20, and 25, respectively,
which quite approximates to the corresponding period
0.0164, 0.0122, and 0.0096 ps obtained in Fig. 2. The ampli-
tude of Eq. �11� indeed decreases as vm increases for H2O. It
would be usable for a quantum information process since the
state ���0��A for H2O is in entanglement but goes with dis-
entanglement, because entanglement and disentanglement
are both necessary for quantum computation.

It should be pointed out that Eq. �11� with vm=1 is the
exactly analytic form for those two molecules, which was
employed to check the numerical method we used here.
Those yield the same results in the case of vm=1. In simu-
lation of the entropy we found that the difference between
Eq. �11� and the numerical results increase as vm increases.
That is because Eq. �11� is based on a simple model. For
other initial states with larger vm, it is probably impossible to
relate the period to the parameters in Eq. �1� for each mol-
ecule since there are anharmonic interactions between
stretches and many frequencies take part in the evolution.

B. Entanglement of coherent states

We now study the entanglement of continuous-variable-
type states of H2O and SO2. Here we are interested in coher-
ent states, and the discussion for other kinds of continuous-
variable-type states is straightforward. The initial states are
given by,

FIG. 1. The linear entropy s�t� for H2O �a�, �b�, �c�, and SO2 �d�,
�e�, �f� with vm=15, 20, and 25, respectively. Here two initial states
are used: ���0��A �dotted line� and ���0��B �solid line�.

FIG. 2. The linear entropy s�t� of initial state ���0��A for H2O
with vm=15 �dotted line�, 20 �dashed line�, and 25 �solid line�.
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���0���,	 = e
−���2−�	�2

2 �
m

�m

�m!
�Na,m� � �

n

	n

�n!
�Nc,n� ,

�13�

where � and 	 are the amplitude of the coherent states on
bond a and c, respectively, and m �n� is the vibrational quan-
tum number on bond a �c�. The values of � and 	 can be
taken to be any complex number. Here we let �=	 be a real
number. In simulation of the entropy we truncated the set of
Fock states that compose the Poissonian distribution at some
nt with �n=0

nt e−�2
�2n /n!�1. The accuracy of the results ob-

tained was tested by adding more Fock states to that distri-
bution to see whether the calculated values changed.

Figure 3 shows the linear entropy of initial coherent
states, where the amplitude � of coherent states is taken to be
0.2, 1.0, and 1.8, as an example. The maximal entropy in-
creases as the amplitude � increases for those two molecules.
The frequency of oscillation of the entropy for H2O is larger
than that for SO2. The oscillation of the entropy in the cases
of �=1.0 and 1.8 for H2O is irregular while that for SO2 is
quasiperiodic. For smaller amplitude �=0.2, the oscillation
of the entropy is periodic for SO2 while that exhibits quasi-
periodic in the early-time evolution for H2O. To see that
more clearly, Fig. 4 shows the entropy in longer time evolu-
tion for �=0.2, where the similar thing for �=0.1 is plotted

for comparison. It is nicely observed that “classical” beat
phenomena of the entropy of the initial coherent states hap-
pens for H2O with the similar shape for �=0.2 and 0.1, as in
classical physics and in the well-known Jaynes-Cummings
model �31,32�. In Fig. 4 the quasiperiod of beat is far longer
than that of early-time evolution of the entanglement. The
later period will be discussed below. The beat phenomenon
of entanglement has been very recently observed for two
distinguishable qubits in a one-dimensional harmonic trap
�33�. The beat can be used as the carrier of information.
Hence the long period of beat is necessary for quantum in-
formation processing. The period for SO2 and quasiperiod
for H2O are already explained in terms of the analytic form
of the entropy for the coherent state with a small amplitude
�.

In the case of a small amplitude �, the initial coherent
state can be approximately taken to be,

���0���,� � P�0,0��0,0� + P�1,0��1,0� + P�0,1��0,1� + P�2,0�


�2,0� + P�0,2��0,2� + P�1,1��1,1� , �14�

where P�m ,n�=e−�2
��m+n� /�m! n!, m�n�=0, 1, and 2 is the

vibrational quantum number on bond a �c�. We again neglect
the 2:2 resonance term with m�a,c�

�2� in Eq. �2� and consider the

1:1 resonance interaction. Thus, due to P�0,2�= P�2,0�, that
state evolves as follows,

���t���,� = P�0,0��0,0� + e−iH0�1,0�t��P�1,0�cos�m�a,c�
�1� t� − iP�0,1�sin�m�a,c�

�1� t���1,0�

+ �P�0,1�cos�m�a,c�
�1� t� − iP�1,0�sin�m�a,c�

�1� t���0,1�� + e−i�1t��P�2,0�cos��t� − i
P�2,0��2 + P�1,1�


�
sin��t����2,0�

+ �0,2�� + �P�1,1�cos��t� − i
2P�2,0�
 − P�1,1��2

�
sin��t���1,1�� , �15�

where �1= �H0�2,0�+H0�1,1�� /2, �2= �H0�2,0�
−H0�1,1�� /2, 
=m�a,c�

�1� �2�1−1/N�, and �=�2
2+�2
2.

Therefore, the linear entropy s�t� of that state can be ex-

pressed in analytic form, which is too lengthy to include
here. For �=0.2, the �quasi-�period of the entropy by Eq.
�15� is 0.278 and 3.99 ps for H2O and SO2, respectively,

FIG. 3. The linear entropy s�t� for H2O �a� and SO2 �b� with
initial coherent states. Here the amplitude of coherent states is taken
to be �=0.2 �solid line�, 1.0 �dashed line�, and 1.8 �dotted line�.

FIG. 4. The linear entropy s�t� for H2O in longer time evolution
with initial coherent states. Here the amplitude of coherent states is
0.2 �a� and 0.1 �b�.
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which is quite close to the corresponding period 0.281 and
4.07 ps obtained in Fig. 3. For �=0.1, the nearly same pe-
riod as above is obtained analytically and numerically for
H2O. However, there is a larger difference in the amplitude
and the beat frequency of the entropy between the analytical
and numerical calculation although that amplitude in both
cases decreases as � decreases. That is because the analytical
calculation is performed with a simplified model.

It is worthwhile emphasizing that the long period of en-
tanglement of coherent states with small amplitude for SO2
and the longer period of beat in entanglement for H2O mean
that the entanglement lasts for a long time. The entanglement
as a physical resource is available on the condition that the
entanglement could sustain long enough so that some pro-
cessing can be performed. For example, the entanglement
between the atom and the cavity field must survive long
enough so that it can be transferred to a next atom via co-
herent interaction �34�. The increasingly long period of en-
tanglement in a generalized Jaynes-Cummings model can be
realized by increasing the detuning parameter �35�. Therefore
the long time sustained entanglement for H2O and SO2
would be applied to quantum information and quantum com-
putation.

IV. CONCLUSION AND DISCUSSION

We have investigated dynamical entanglement in tri-
atomic molecules H2O and SO2 in u�2� algebraic model �15�
with various MQN and initial states, where the entanglement
is measured by the linear entropy. It is shown that the maxi-
mal entropy of an initial state with the local-mode character
is smaller than that of one with the normal-mode character.
The entropy of typical local-mode state ���0��A in H2O ex-
hibits a better period that has been explained with the sim-
plest model based on two energy levels. That implies that
two states �0,vm� and �1,vm−1� in H2O could be reasonable
candidates for a qubit in quantum communication. For initial
state ���0��B with normal-mode character, the linear entropy

for those two molecules is irregular with the maximal en-
tropy increasing as MQN increases. Those behaviors can be
taken as dynamical signature to differ the local-mode from
the normal-mode state. For initial coherent states with a
small amplitude, it is shown that the periodicity of the en-
tropy appears in SO2 and classical beat phenomena of the
entropy happens in H2O, and that the maximal entropy of the
coherent states increases as the amplitude of coherent states
increases. The �quasi-�period of the entropy of ���0��A in
H2O and coherent states with a small amplitude in H2O and
SO2 has been explained with a simplified model based on a
few energy levels. The long periods of entanglement of co-
herent states with small amplitude for H2O and SO2 show
that the entanglement sustains long enough so that some task
could be accomplished. For the stretching vibrations of H2O
and SO2, the quantum state with large dynamical entangle-
ment can be prepared by a typical normal-mode state or by
coherent states with a large amplitude. We believe that those
are useful in quantum information processing and quantum
computing based on vibrational states in triatomic molecules
H2O and SO2.

It is possible to study entanglement dynamics and en-
tanglement transfer in other polyatomic molecules, espe-
cially to explore the influence of classical bifurcations or
chaos, which occur frequently in highly excited molecules,
on quantum entanglement, and part of the results will be
discussed elsewhere �36�. It is desirable to investigate deco-
herence for molecules due to coupling between vibrational
and other degrees of freedom �i.e., electronic or rational�. It
is worth to explore the relation between dynamics of quan-
tum entanglement and quantum dynamics of localized exci-
tations in molecules.
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