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Current-spin-density-functional theory �CSDFT� provides a framework to describe interacting many-electron
systems in a magnetic field which couples to both spin and orbital degrees of freedom. Unlike in the usual
�spin-�density-functional theory, approximations to the exchange-correlation energy based on the model of the
uniform electron gas face problems in practical applications. In this work, explicitly orbital-dependent func-
tionals are used and a generalization of the optimized effective potential method to the CSDFT framework is
presented. A simplifying approximation to the resulting integral equations for the exchange-correlation poten-
tials is suggested. A detailed analysis of these equations is carried out for the case of open-shell atoms and
numerical results are given using the exact-exchange energy functional. For zero external magnetic field, a
small systematic lowering of the total energy for current-carrying states is observed due to the inclusion of the
current in the Kohn-Sham scheme. For states without current, CSDFT results coincide with those of spin-
density-functional theory.
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I. INTRODUCTION

Density-functional theory �DFT� �1,2� is the standard tool
to calculate the electronic structure of interacting many-
electron systems. The original theorems of DFT have been
successively extended to cover a wide range of different
physical situations. One of the most important extensions is
the spin-DFT �SDFT� formalism �3� which allows one to
describe systems with magnetic ground states in arbitrary
external magnetic fields. In SDFT, however, the magnetic
field couples only to the electronic spin while the coupling to
the orbital degrees of freedom is not taken into account. To
include also the coupling to the orbital currents, one has to
resort to the current-spin-density-functional theory �CSDFT�
of Vignale and Rasolt �4,5�.

Conceptually, DFT, SDFT, and CSDFT are very similar:
they all map the system of interacting electrons onto a sys-
tem of noninteracting particles in some effective fields. In the
case of DFT, this auxiliary system yields the same electron
density as the interacting one while in SDFT the magnetiza-
tion densities of the two systems coincide as well. In CSDFT,
also the paramagnetic current density of the auxiliary system
is equal to the paramagnetic current density of the true, in-
teracting system. In all three formalisms the energy of the
interacting system is written as a functional of the corre-
sponding densities and the value for the ground-state energy
is obtained by minimizing this functional with respect to the
densities.

While all three flavors of DFT are exact in principle, in
practice they all require an approximation for the exchange-
correlation �XC� energy �which is a piece of the total energy�
as a functional of the respective densities. In both DFT and
SDFT, approximations based on the uniform electron gas
such as the local �spin-�density approximation �L�S�DA� are
surprisingly successful and they also form a good starting
point for the construction of more sophisticated functionals
such as generalized-gradient approximations.

In CSDFT, however, the situation is different. While it is
possible to construct LDA-type approximations along similar

ideas as in �S�DFT, these functionals are awkward to use in
practical calculations �6� for a clear physical reason: when a
uniform electron gas is exposed to an external magnetic
field, Landau levels form and, for given magnetic field, the
XC energy density exhibits derivative discontinuities as a
function of the density whenever a new Landau level starts
to be filled. If this XC energy density is then used as the
main ingredient in the construction of a LDA, these discon-
tionuities show up in the corresponding XC potentials at
those points in space where the local densities coincide with
the densities of the uniform gas for which these discontinui-
ties occur. This makes practical calculations extremely diffi-
cult. One solution to this problem is to smoothly interpolate
the XC energy density between the limits of weak and strong
magnetic fields �7,8� but this interpolation then misses the
physics in the exchange-correlation energy arising from the
Landau levels.

The problem described above is entirely due to the con-
struction of the LDA in CSDFT. Since the appearance of
Landau levels is intrinsically an orbital effect, the use of
explicitly orbital-dependent approximations to the XC en-
ergy functional offers a promising alternative which we ex-
plore in the present work. In �S�DFT, orbital functionals have
attracted increasing interest in recent years �9� since these
approximations offer a cure for notorious problems like, e.g.,
the self-interaction error of local and semilocal functionals.
The calculation of the XC potential corresponding to an
orbital-dependent XC energy functional is technically some-
what more involved than for explicitly density-dependent ap-
proximations and can be achieved with the so-called opti-
mized effective potential �OEP� method �10�. Here we
present the extension of the OEP method to the CSDFT for-
malism �11� and derive a set of coupled OEP integral equa-
tions for the corresponding exchange-correlation potentials.
We then introduce a simplifying approximation in the spirit
of Krieger, Li, and Iafrate �KLI� �12,13� which transforms
the integral equations into a set of algebraic equations that
can be solved more easily in practical calculations. We
present the resulting equations for fully noncollinear effec-
tive magnetic fields. This generalizes earlier work on a non-
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collinear implementation of orbital functionals in SDFT �14�.
It is also similar in spirit to a recent work �15� which, how-
ever, uses a much larger set of densities.

In a previous paper �11� we have solved the OEP equa-
tions of CSDFT for two-dimensional quantum dots in exter-
nal magnetic fields. In the present work we study the case of
atoms at zero external magnetic field using the exact-
exchange energy functional. In particular, we are interested
in studying open-shell atoms which generally have degener-
ate ground states. It is well known �16,17� that in �S�DFT
common approximations for the exchange-correlation energy
do not lead to the same total energy for the different ground-
state configurations. Here we investigate this problem in the
framework of CSDFT because some of these ground states
actually carry a nonzero current and one might hope that
CSDFT is better suited to describe the degeneracies. The
motivation to study simple atomic systems also aims at a
better understanding of the differences between SDFT and
CSDFT. The same orbital functional may perform quite dif-
ferently in the three different schemes.

The present paper is organized as follows. In Sec. II we
give the fundamental equations of CSDFT before we present
the derivation of the noncollinear OEP and KLI equations in
Sec. III. This is followed in Sec. IV by an analysis of the
properties of the KLI potentials for open-shell atoms at zero
external magnetic field. Numerical results are presented in
Sec. V before we draw our conclusions.

II. CURRENT-SPIN-DENSITY-FUNCTIONAL THEORY

In this section we briefly describe the formalism of
current-spin-density-functional theory as originally sug-
gested by Vignale and Rasolt �4,5�. With this extension of the
original DFT �1,2� formulation it becomes possible to study
interacting many-electron systems in external magnetic
fields. The CSDFT approach also goes beyond the widely
used spin-DFT formalism �3� in the sense that, while in
SDFT the magnetic field couples only to the spin degrees of
freedom, in CSDFT it also couples to the orbital degrees of
freedom through the vector potential.

The Hamiltonian of interacting electrons in an external
electrostatic potential v0�r� and an external magnetic field
B0�r�=��A0�r� is given by �atomic units are used through-
out�

Ĥ = T̂ + Ŵ +� d3r n̂�r�v0�r� −� d3r m̂�r�B0�r�

+
1

c
� d3r ĵp�r�A0�r� +

1

2c2 � d3r n̂�r�A0
2�r� , �1�

where T̂ and Ŵ are the operators of the kinetic energy and
the electron-electron interaction, respectively. The operators
for the density, the magnetization density, and the paramag-
netic current density are given by

n̂�r� = �̂†�r��̂�r� , �2�

m̂�r� = − �B�̂†�r���̂�r� , �3�

and

ĵp�r� =
1

2i
��̂†�r� � �̂�r� − ���̂†�r���̂�r�� , �4�

respectively. Here we have defined field operators �̂†�r�
= (�̂↑

†�r� , �̂↓
†�r�) for two-component spinors, i.e., the formula-

tion is not restricted to collinear magnetism with all the spins
aligned in a single direction. � is the vector of Pauli matrices
and �B=1/ �2c� is the Bohr magneton.

Following Vignale and Rasolt �4,5�, the ground-state en-
ergy can be written as a functional of the three densities as

E�n,m,jp� = F�n,m,jp� +� d3r v0�r�n�r� −� d3r m�r�B0�r�

+
1

c
� d3r jp�r�A0�r� +

1

2c2 � d3r n�r�A0
2�r� ,

�5�

where F�n ,m , jp� is a universal functional of the densities n,
m, and jp in the sense that it is independent of the external
fields v0, B0, and A0. It may be decomposed in the usual way
as

F�n,m,jp� = Ts�n,m,jp� + U�n� + EXC�n,m,jp� , �6�

where Ts�n ,m , jp� is the kinetic energy functional for nonin-
teracting electrons,

U�n� =
1

2
� d3r� d3r�

n�r�n�r��
�r − r��

�7�

is the classical electrostatic energy, and EXC�n ,m , jp� is the
exchange-correlation energy.

Using Eq. �6� and minimizing the total energy �5� leads to
the effective single-particle Kohn-Sham equations of
CSDFT, which read

	1

2

− i � +

1

c
As�r��2

+ vs�r� + �B�Bs�r���i�r� = �i�i�r� ,

�8�

where �i�r� are two-component, single-particle Pauli
spinors. The effective potentials are given by

vs�r� = v0�r� + vH�r� + vXC�r� +
1

2c2 �A0
2�r� − As

2�r�� , �9�

Bs�r� = B0�r� + BXC�r� , �10�

and

As�r� = A0�r� + AXC�r� , �11�

where the Hartree potential is given by

vH�r� =� d3r�
n�r��

�r − r��
. �12�

The exchange-correlation potentials are functional deriva-
tives of the exchange-correlation energy EXC with respect to
the corresponding conjugate densities,
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vXC�r� =
�EXC�n,m,jp�

�n�r�
, �13�

BXC�r� = −
�EXC�n,m,jp�

�m�r�
, �14�

AXC�r� = c
�EXC�n,m,jp�

�jp�r�
. �15�

The effective potentials are such that the ground-state densi-
ties of the Kohn-Sham system reproduce those of the inter-
acting system. The particle density can then be computed by

n�r� = 

i=1

N

�i
†�r��i�r� , �16�

the magnetization density by

m�r� = − �B

i=1

N

�i
†�r���i�r� , �17�

and the paramagnetic current density by

jp�r� =
1

2i


i=1

N

��i
†�r� � �i�r� − ���i

†�r���i�r�� , �18�

where the sums in Eqs. �16�–�18� run over the occupied
Kohn-Sham spinor orbitals.

As usual in DFT, the exact form of the exchange-
correlation energy functional EXC�n ,m , jp� is unknown and
needs to be approximated in practice. In the present work, we
focus on a class of approximate functionals which also has
attracted increasing interest in SDFT in recent years. This is
the class of functionals that explicitly depend on the Kohn-
Sham orbitals and are therefore only implicit functionals of
the densities. In our context these functionals are appealing
for two reasons: first, they are constructed without any
reference to the uniform electron gas and second, they are
ideally suited to describe the appearance of Landau levels
which in itself may be viewed as an orbital effect.

III. OPTIMIZED EFFECTIVE POTENTIAL METHOD
IN CSDFT

The calculation of the exchange-correlation potential for
orbital-dependent functionals in ordinary �S�DFT is done in
the framework of the optimized effective potential method
�9,10,18�. This method derives its name from the fact that it
yields that local potential whose orbitals minimize the total
energy functional of the interacting system. This optimized
potential is obtained as a solution of the so-called OEP inte-
gral equation.

Recently, the OEP equations have been derived for the
noncollinear formulation of SDFT �14�. Here we derive the
OEP integral equations for the exchange-correlation poten-
tials in CSDFT �11� by calculating the functional derivatives
of EXC with respect to the three effective potentials vs, Bs,
and As. Making use of the correspondence both between

Kohn-Sham spinors and ground-state densities as well as be-
tween Kohn-Sham spinors and effective potentials, these
functional derivatives can be computed in two different ways
by using the chain rule, i.e.,

�EXC

�vs�r�
=� d3r�
vXC�r��

�n�r��
�vs�r�

+
1

c
AXC�r��

�jp�r��
�vs�r�

− BXC�r��
�m�r��
�vs�r�

�
= 


i=1

N � d3r�
 �EXC

��i�r��
��i�r��
�vs�r�

+ H.c.� , �19�

�EXC

�Bs�r�
=� d3r�
vXC�r��

�n�r��
�Bs�r�

+
1

c
AXC�r��

�jp�r��
�Bs�r�

− BXC�r��
�m�r��
�Bs�r�

�
= 


i=1

N � d3r�
 �EXC

��i�r��
��i�r��
�Bs�r�

+ H.c.� , �20�

�EXC

�As�r�
=� d3r�
vXC�r��

�n�r��
�As�r�

+
1

c
AXC�r��

�jp�r��
�As�r�

− BXC�r��
�m�r��
�As�r�

�
= 


i=1

N � d3r�
 �EXC

��i�r��
��i�r��
�As�r�

+ H.c.� �21�

where H.c. is the Hermitian conjugate. Equations �19�–�21�
constitute a system of coupled integral equations for the un-
known exchange-correlation potentials. For simplicity, we
have assumed that the approximation for EXC to be used
depends only on the occupied spinor orbitals such as, e.g.,
the exact-exchange functional

Ex
EXX���i�� = −

1

2

i,j

occ � d3r� d3r�
�i

†�r�� j�r�� j
†�r���i�r��

�r − r��
,

�22�

which we use in our numerical implementation.
For any approximation of EXC given explicitly in terms of

the spinor orbitals, the functional derivatives of EXC with
respect to these spinors can be evaluated easily. The other
functional derivatives in Eqs. �19�–�21� may be computed
exactly from first-order perturbation theory by considering
variations of the Kohn-Sham spinors due to a perturbation

�Ĥs�r�� of the Kohn-Sham Hamiltonian. To first order in the
perturbation these variations are

��i�r� = 

j=1

j�i

	
� j�r�
�i − � j

� d3r�� j
†�r���Ĥs�r���i�r�� , �23�

where for simplicity we have assumed a nondegenerate spec-
trum. For arbitrary variations �vs�r�, �Bs�r�, and �As�r� in
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the three effective potentials, the perturbation �Ĥs�r� is given
by

�Ĥs�r� = �vs�r� +
1

2ic
� �As�r� +

1

ic
�As�r� �

+
1

c2As�r��As�r� + �B��Bs�r� . �24�

Insertion into Eq. �23� allows us to identify the functional
derivatives of the spinors with respect to the effective poten-
tials as

��i�r�
�vs�r��

= 

j=1

j�i

	
� j�r�
�i − � j

�� j
†�r���i�r��� , �25�

��i�r�
�Bs�r��

= �B

j=1

j�i

	
� j�r�
�i − � j

�� j
†�r����i�r��� , �26�

and

��i�r�
�As�r��

= 

j=1

j�i

	
� j�r�
�i − � j


 1

2ic
�� j

†�r�����i�r��

− ���� j
†�r����i�r��� +

1

c2As�r�� j
†�r���i�r��� .

�27�

From Eqs. �25�–�27� one can compute the static response
functions, i.e., the functional derivatives of the densities with
respect to the effective potentials. Inserting everything into
Eqs. �19�–�21� one can then write the OEP integral equations
in a very compact form as



i=1

N

�i
†�r��i�r� + H.c. = 0, �28�

− �B

i=1

N

�i
†�r���i�r� + H.c. = 0, �29�

and

1

2i


i=1

N

��i
†�r� � �i�r� − ���i

†�r���i�r�� + H.c. = 0,

�30�

where we have defined the so-called orbital shifts �9,19�

�i�r� = 

j=1

j�i

	
� j�r�Dij

�i − � j
, �31�

with

Dij =� d3r�
vXC�r��� j
†�r���i�r�� +

1

2ic
AXC�r�

��� j
†�r�����i�r�� − ���� j

†�r����i�r���

+ �BBXC�r��� j
†�r����i�r�� − � j

†�r��
�EXC

��i
†�r��

� .

�32�

The name “orbital shifts” �31� derives from their structure as
a first-order shift from the unperturbed Kohn-Sham orbital
�i under a perturbation whose matrix elements are given by
Dij. The OEP equations �28�–�30� have a very simple inter-
pretation: they merely say that the densities do not change
under this perturbation. Keeping in mind that the Kohn-
Sham system already yields the exact densities, this state-
ment is actually quite obvious.

As already mentioned, the OEP equations are a set of
coupled integral equations for the exchange-correlation po-
tentials. In this work we do not attempt a full solution of
these equations but rather suggest a simplifying approxima-
tion �18� in the spirit of Krieger, Li, and Iafrate �12,13�, who
introduced the same approximation in the usual OEP method
of SDFT. In this KLI approximation the orbital shifts are
approximated by replacing the energy denominator by some
constant, i.e.,

�i�r� �
1


�




j=1

	

� j�r�Dij − �i�r�Dii� . �33�

Inserting this approximation into the OEP equations and ap-
plying the completeness relation for the Kohn-Sham spinors
one obtains after some algebra a set of algebraic equations
for the exchange-correlation potentials which can conve-
niently be written as

D�r�VXC�r� = R�r� . �34�

Here, we have defined the seven-component vector VXC�r� as

VXC
T �r� = 
vXC�r�,BXC

T �r�,
1

c
AXC

T �r�� �35�

and the 7�7 matrix D�r� has the structure

D�r� = � n�r� − mT�r� jp
T�r�

− m�r� �B
2n�r�1 J�r�

jp�r� JT�r� N�r�
� ,

where 1 is the 3�3 unit matrix. The matrix elements of the
3�3 matrices J and N are defined by

J���r� = −
�B

2i


i=1

N 
�i
†�r�
�

��i�r�
�r�

−
��i

†�r�
�r�


��i�r��
�36�

and
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N���r� =
1

2

i=1

N 
 ��i
†�r�

�r�

��i�r�
�r�

+
��i

†�r�
�r�

��i�r�
�r�

�
−

1

4n�r�
�n�r�
�r�

�n�r�
�r�

, �37�

where �=1, 2, and 3 correspond to the Cartesian coordinates
x, y, and z, respectively. The seven components of the vector
R�r� on the right-hand side of Eq. �34� are given by

R1�r� =
1

2

i=1

N 
�i
†�r�

�EXC

��i
†�r�

+ ni�r�Dii + H.c.� , �38�

R1+��r� =
1

2

i=1

N 
− �B�i
†�r�
�

�EXC

��i
†�r�

+ mi,��r�Dii + H.c.� ,

R4+��r� =
1

2

k=1

N 
 1

2i
�k

†�r�
�

�r�

�EXC

��k
†�r�

−
1

2i

��k
†�r�

�r�

�EXC

��k
†�r�

+ jp,k,��r�Dkk + H.c.� , �39�

with the density ni�r�, magnetization density mi�r�, and para-
magnetic current density jp,i�r� of the single orbital �i�r�. It
is worth mentioning that in order to arrive at this result we
used the identity �5�

��n�r�AXC�r�� = 0, �40�

which follows directly from gauge invariance of the
exchange-correlation energy.

The KLI equations �34� can be solved by iteration: start
with an intial guess for the potentials to compute the orbitals
and the right-hand side of Eq. �34�, then solve this equation
for the new potentials and iterate until self-consistency is
achieved.

In a different work �11� we have solved the KLI equations
for a two-dimensional quantum dot in an external magnetic
field. In the present work we use our CSDFT OEP formalism
to study open-shell atoms in zero external magnetic field. In
the next section we discuss some further assumptions we
employed in our implementation and deduce some analytic
results for the KLI potentials.

IV. OPEN-SHELL ATOMS AT ZERO MAGNETIC FIELD

We want to employ our CSDFT OEP formalism to study
open-shell atoms. From the point of view of CSDFT this is
interesting since some states out of the multiplet of degener-
ate ground states have a nonvanishing current density while
others do not carry a current.

In the limit of zero external magnetic field, the Kohn-
Sham equation �8� takes the form


−
�2

2
+ v0�r� + vH�r� + vXC�r� +

1

2ic
��AXC�r�� +

1

ic
AXC �

+ �B
BXC�r���i�r� = �i�i�r� . �41�

It should be noted that the effective scalar potential of Eq. �9�
contains a term quadratic in AXC. This term is exactly can-
celed by another quadratic term which follows from evaluat-
ing the square of the canonical momentum in Eq. �8� and
therefore only terms linear in AXC appear in Eq. �41�.

In the following we employ the collinear approximation
assuming that the Kohn-Sham spinors decompose into
spin-up �
= +1� and spin-down �
=−1� orbitals, i.e., �i�r�
= (�i,
=+1�r� ,0) or ��r�= (0,��r�i,
=−1). As a result the mag-
netization density is parallel to the z direction, m�r�
= (0,0 ,m�r�). In addition, we assume cylindrical symmetry
for both the densities and the corresponding conjugate poten-
tials �that is, they do not depend on the azimuthal angle ��.
As a consequence the magnetic quantum number is a good
quantum number for the single-particle orbitals which then
take the form

�im
�r� = gj
�r,��exp�im����
� , �42�

where we used radial coordinates and m is the magnetic
quantum number �not to be confused with m�r�, the z com-
ponent of the magnetization density�. 
 is the spin index
and ��
� is the eigenfunction of the z component of the
spin operator. In the collinear approximation, BXC�r�
= (0,0 ,BXC�r�) is parallel to the z axis while AXC�r�
=AXC�r�e� where e� is the unit vector in the � direction. As
an additional consequence of the cylindrical symmetry of our
problem we have �AXC�r�=0.

We restrict ourselves to ground states whose densities can
be reproduced by a single Slater determinant. For example,
for the boron atom one configuration has all three up elec-
trons and the two down electrons in states with magnetic
quantum number m=0 while in another configuration one of
the up electrons occupies an m=1 state with the other occu-
pations unchanged. In this way current-carrying and zero-
current states can be considered. The resulting current only
has a component in the � direction, jp�r�= jp�r�e�. We may
then rewrite Eq. �41� as


−
�2

2
+ v0�r� + vH�r� + vXC�r� +

1

c

m

r sin �
AXC�r�

+ �B
BXC�r���im
�r� = �im
�im
�r� . �43�

In the following we discuss a number of typical cases. For
atomic closed-shell configurations, where the density is
spherical and both the magnetization density and the para-
magnetic current density vanish identically, both AXC and
BXC vanish identically. Obviously, in this situation CSDFT
reduces to the original density-only DFT.

For ground-state configurations where only orbitals with
m=0 are occupied, the correct value for jp�r�—which is zero
at any point in space—is trivially obtained already within the

OPTIMIZED EFFECTIVE POTENTIAL METHOD IN… PHYSICAL REVIEW A 74, 062511 �2006�

062511-5



SDFT scheme. Therefore, we expect that vXC�r�=vXC
SDFT�r�,

BXC�r�=BXC
SDFT�r�, and AXC�r�=0. Actually, any other choice

of AXC�r� would not make any difference for the ground-
state densities. In a way this may be regarded as a simple
manifestation of the nonuniqueness of the CSDFT potentials
pointed out in Ref. �20�.

As a third case we consider ground-state configurations
with a half-filled shell as in, e.g., the nitrogen atom. Again,
SDFT already gives the correct values of the total densities.
Therefore, we again expect that vXC�r�=vXC

SDFT�r�, BXC�r�
=BXC

SDFT�r�, and AXC�r�=0.
Ground-state configurations carrying a nonvanishing

paramagnetic current are the most interesting ones in our
context. At zero external magnetic field, this situation arises
only for open-shell atoms away from half filling. Indeed, it is
for these states that we expect AXC�r��0 as well as vXC�r�
�vXC

SDFT�r�, BXC�r��BXC
SDFT�r�.

In the following we analyze the KLI equations for the
above cases in order to confirm these expectations. We re-
mind the reader that in our derivation of the OEP equations
we assumed that EXC depends only on the occupied orbitals.
Moreover, we also assume that

�EXC

��im
�r�
� exp�− im�� �44�

holds. Both of these assumptions are correct for the exact-
exchange functional which we consider in our numerical
implementation.

Under these assumptions, the first two KLI equations �for

= ±1� are

vXC,
�r� +
1

c

jp,
�r�
n
�r�

AXC�r� = wXC,

�1� �r� + wXC,


�2� �r� , �45�

where we have defined the spin-dependent scalar potential

vXC,
�r� = vXC�r� + �B
BXC�r� . �46�

The terms on the right-hand side of Eq. �45� are given by

wXC,

�1� �r� =

1

n
�r�
i,m
occ

nim
�r�uXC,im
�r� �47�

and

wXC,

�2� �r� =

1

n
�r�
i,m
occ

nim
�r�dXC,im
, �48�

with

uXC,im
�r� =
1

�im

* �r�

�EXC

��im
�r�
�49�

and

dXC,im
 =� d3r nim
�r��vXC,
�r� − uXC,im
�r��

+
1

c
� d3r jp,im
�r�AXC�r� . �50�

Here nim
�r� and jp,im
�r� are the density and the paramag-

netic current density of the single-orbital �im
�r� which, for
our symmetry, are related by

jp,im
�r� = m
nim
�r�
r sin �

. �51�

The third KLI equation reads







jp,
�r�vXC,
�r�� +
1

c
N�r�AXC�r�

= 




�w̃XC,

�1� �r� + w̃XC,


�2� �r�� �52�

with

N�r� = 






i,m

occ
jp,im

2 �r�
nim
�r�

, �53�

w̃XC,

�1� �r� = 


i,m

occ

jp,im
�r�uXC,im
�r� , �54�

and

w̃XC,

�2� �r� = 


i,m

occ

jp,im
�r�dXC,im
. �55�

It is interesting to note that vXC,
�r� and AXC�r� couple to
each other only if at least one of the jp,
�r� is nonvanishing.

At this point, we again consider open-shell configurations
for which all occupied orbitals have m=0. Then N�r� van-
ishes and the KLI equation �45� reduces to the KLI equation
of SDFT while Eq. �52� becomes a trivial identity. As a con-
sequence, vXC,
�r�=vXC,


SDFT�r� and AXC�r� is undetermined. As
discussed above, AXC�r� does not affect any of the ground-
state densities and we fix it as AXC�r�=0.

Next we consider configurations with a half-filled shell.
We assume that we have already solved the SDFT KLI equa-
tions and use the resulting orbitals and potentials plus the
initial guess AXC�r�=0 as a start for the iterative solution of
the CSDFT KLI equations. We substitute this initial guess
into Eqs. �45� and �52� to compute the new potentials. The
occupied orbitals of SDFT either have m=0 or they come in
pairs with m and −m. This leads to the same contributions to
uXC,
,i�r� for orbitals in the same shell while for the para-
magnetic current they contribute with equal magnitude but
opposite sign. Hence, the KLI equations become

vXC,

new �r� = wXC,


�1� �r� + wXC,

�2� �r� = vXC,


SDFT�r� �56�

and

1

c
N�r�AXC

new�r� = 0 ⇒ AXC
new�r� = 0. �57�

This shows that the SDFT solution along with AXC�r�=0 is
also a CSDFT solution. We also tested numerically that the
solution AXC�r�=0 is stable against �not necessarily small�
perturbations of the initial guess.

Finally, we consider the most interesting case of ground-
state configurations with a paramagnetic current different
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from zero. For these configurations we expect AXC�r��0.
Solution of the third KLI equation �52� with respect to
AXC�r� yields

AXC�r� = c






�w̃XC,

�1� �r� + w̃XC,


�2� �r� − jp,
�r�vXC,
�r��

N�r�
.

�58�

In this equation, the denominator increases for increasing
number of electrons. The numerator also typically increases
when more orbitals are occupied but, due to large cancella-
tions for contributions arising from orbitals with opposite
values of m, it increases with a slower rate than the denomi-
nator. As a consequence, we expect larger exchange-
correlation vector potentials AXC�r� for atoms in the first row
than for atoms in the second row �but the same column� of
the periodic table.

In the remainder of this section we discuss the asymptotic
behavior of the exchange-correlation potentials and the vec-
tor potential.

We start by assuming that, for finite systems, the
exchange-correlation potentials in the asymptotic region far
away from the system behave as

vXC,
�r� �
r→	

−
1
r

�59�

and

lim
r→	

AXC�r� = 0. �60�

Equation �59� certainly is a reasonable assumption: it is the
well-known asymptotic behavior for vXC,
 of SDFT which
we assume to be unchanged in CSDFT. Equation �60� then
ensures that the term proportional to AXC�r� /r in the Kohn-
Sham equation �43� decays faster than vXC,
�r� asymptoti-
cally. At this stage, Eq. �60� may be viewed as a working
assumption in order to be able to proceed further. Below we
show that it is consistent with the solution of the KLI equa-
tion.

Under this assumption we can deduce �9,21� the
asymptotic behavior of the atomic orbitals from the Kohn-
Sham equation �43� as

lim
r→	

�im
�r� = r−1+1/�im
 exp�− �im
r� , �61�

where �im
=�−2�im
. This implies that the spin density is
dominated asymptotically by the highest occupied orbital of
that spin. The same is true for the current density if the
magnetic quantum number of this orbital is different from
zero �as typically is the case for current-carrying states of
open-shell atoms�.

In order to proceed further with our analysis we restrict
ourselves to the exact-exchange functional of Eq. �22�. Then
the KLI equation �45� allows us to establish the following
relation between vXC,
 and AXC in the asymptotic region:

vXC,
�r� +
1
c

M


r sin �
AXC�r� �

r→	

−
1
r

+ dXC,N
M

, �62�

where we tacitly assumed that we are taking the limit away
from a nodal plane of the highest occupied orbital of spin 

�9,22�. Here N
 is the orbital index of that orbital and M
 is
its magnetic quantum number. Since we are working in the
collinear approximation, the Kohn-Sham equations for the
two spin channels are completely decoupled and we can
choose a constant shift in vXC,
 such that

dXC,N
M

 = 0. �63�

Equation �62� together with Eq. �59� then implies

M


r sin �
AXC�r� �

r→	

0, �64�

which is consistent with the assumption of Eq. �60�.
However, a closer inspection of the KLI equations �45�

and �52� shows that they become linearly dependent in the
asymptotic region and therefore do not have a unique solu-
tion. This again may be viewed as a manifestation of the
nonuniqueness problem in CSDFT �20,23�. In our numerical
procedure to be described in the next section we take a prag-
matic approach to the problem of linearly dependent KLI
equations and choose a solution with AXC�r�→0 and a
vXC,
�r� satisfying Eq. �59�.

Before concluding this section, we discuss some symme-
try properties of the exchange-correlation vector potential
and exchange-correlation magnetic field. By inspection of
the two KLI equations �45� and �52� it is clear that under the
exchange of spin-up and spin-down electrons BXC�r�
changes sign. Similarly, moving an electron from an orbital
with magnetic quantum number m to a previously unoccu-
pied one with −m leads to AXC�r� changing sign. These trans-
formations can be performed independently leading to the
same total energy.

V. NUMERICAL RESULTS FOR OPEN-SHELL ATOMS
AT ZERO EXTERNAL MAGNETIC FIELD

In this section we describe the numerical results for open-
shell atoms obtained within the KLI approximation of
CSDFT using the exact-exchange functional of Eq. �22�. In
particular, we are interested in calculating total energies of
current-carrying and zero-current states in various ground-
state configurations. In principle, the states of the ground-
state multiplet should be degenerate but in SDFT zero-
current states are always lower in energy than current-
carrying states. Since the current appears to be the quantity
leading to these spurious energy splittings, it is interesting to
see if CSDFT �where the current is one of the fundamental
variables� can alleviate the problem. Since the main differ-
ence between SDFT and CSDFT is the appearance of an
exchange-correlation vector potential in the Kohn-Sham
equation, we also present some results for the XC potentials
in the different approaches.

We have developed an atomic code for CSDFT and SDFT
calculations in a basis set representation, assuming cylindri-
cal symmetry of the Kohn-Sham potentials and densities. As
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basis functions we use Slater-type functions for the radial
part multiplied by spherical harmonics for the angular part.
For the Slater functions we employ the quadruple-� basis sets
�QZ4P� of Ref. �24�. We have tested our code by computing
the total energies of spherically symmetric atoms of the first
and second rows of the periodic table in exchange-only KLI
approximation and compared with results from accurate,
fully numerical codes available in the literature �9,12,25�.
Our code reproduces these total energies to within an aver-
age deviation of 0.1 kcal/mol for the atoms in the first row
and to within an average deviation of 0.5 kcal/mol for atoms
in the second row of the periodic table.

We performed self-consistent exchange-only calculations
in the KLI approximation of CSDFT for open-shell atoms in
current-carrying and zero-current configurations. The con-
figurations are selected by specifying the number of occu-
pied states for each value of the magnetic quantum number
m. Once a choice has been made, the occupations remain
unchanged during the self-consistency cycle. In all the cases
we studied we were able to obtain self-consistent solutions
for both zero-current and current-carrying states.

As expected, for zero-current states we always obtain a
self-consistent CSDFT solution with vanishing exchange
vector potential, AX�r��0. In fact, this solution, which is
equivalent to the corresponding SDFT solution, always gives
the lowest total energy.

For current-carrying states we always find a nonvanishing
AX. However, as a consequence of the linear dependence of
the KLI equations �45� and �52� discussed in the previous
section, the exchange potential and vector potential are not
uniquely determined. In fact, without additional numerical
measures we obtain unphysical potentials which diverge as-
ymptotically. This may lead to a wrong ordering of the oc-
cupied and unoccupied orbitals or even to convergence prob-
lems. A numerically convenient scheme to use the KLI
equations �45� and �52� during the self-consistency cycle is
to first calculate vXC,
�r� from Eq. �45� with the AXC�r� ob-
tained in the previous iteration. In this step we impose the

asymptotic behavior of vXC,
�r� �
r→	

−1/r. Then, with this up-
dated vXC,
�r� we use Eq. �52� to obtain a new AXC�r�. In

order to enforce the asymptotic limit AXC�r� �
r→	

0 we add a
small quantity � to N�r� in Eq. �58�. Total energies and cur-
rent densities are very insensitive to the choice of �: for the
fixed value of �=10−4 a.u. which we use for all our calcula-
tions, total energies vary by an order of 10−2 kcal/mol or less
if � is varied by an order of magnitude around its chosen
value.

In Fig. 1 we show the L=0 �i.e., spherical� component of
an expansion of the exchange vector potentials in terms of
Legendre polynomials, i.e., AX�r�=
L=0

	 AX
L�r�PL�cos ��, for

the oxygen and sulfur atoms in the current-carrying state. As
we argued in the previous section, the exchange vector po-
tential of sulfur is smaller than the one for oxygen which also
implies that the difference between SDFT and CSDFT total
energies is smaller for the heavier atom.

In previous work �26–28� it has been assumed that
CSDFT and SDFT calculations lead to very similar results
because the term associated with the vector potential is ex-

pected to be small. In order to verify this assumption, we
compare the self-consistent exchange potentials and mag-
netic fields for the current-carrying state of the oxygen atom
for a SDFT and a CSDFT calculation. The spherical compo-
nents of the exchange potentials in the two approaches are
shown in Fig. 2. The potentials are hardly distinguishable on
the scale of the plot which confirms the initial assumption. If
one looks at the corresponding exchange magnetic fields
�Fig. 3� one sees that the overall structure of the SDFT and
the CSDFT results are quite similar. However, there are sig-
nificant differences in magnitude close to the nucleus
which can be expected to have a visible effect on the result-
ing chemical shifts �29�. This is also reflected by a substan-
tial difference in the relative magnetization density ��0�
= �n↑�0�−n↓�0�� / �n↑�0�+n↓�0�� at the nuclear position.

0.001 0.01 0.1 1 10
 r (a.u.)

-2

0
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6

A
xL=

0 (r
) 
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.u

.)

Oxygen
Sulfur

FIG. 1. Spherical component of the exchange vector potentials
for current-carrying states of the oxygen and sulfur atoms.
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FIG. 2. Spherical component of the exchange scalar potentials
for the current-carrying state of the oxygen atom computed in
SDFT and CSDFT.
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For the current-carrying state of oxygen we obtain the
value ��0�=−1.03�10−3 in SDFT and ��0�=−1.16�10−3 in
CSDFT which amounts to a difference of approximately
13%. While we are confident that the difference of SDFT and
CSDFT values for ��0� is not a numerical artifact, the abso-
lute numbers should be read with some caution. In order to
estimate the accuracy of these numerically sensitive results
we have also calculated the same quantity for the nitrogen
atom and obtain ��0�=−1.77�10−3. This value differs by
approximately 9% from the value ��0�=−1.62�10−3 given
in Table 10 of Ref. �9� which was obtained with a fully
numerical code for spherically symmetric effective poten-
tials.

Finally, we have calculated the spurious energy splittings
between different configurations of open-shell atoms of the
first two rows of the periodic table in SDFT and CSDFT. The
results are collected in Table I. As mentioned before, in all
cases the splittings are positive, i.e., the zero-current states
are always lowest in energy. The splittings themselves are
systematically lower in CSDFT than in SDFT due to the
additional variational degree of freedom in the former ap-
proach. The effect of including the vector potential is more
significant for the lighter atoms while for the second row the
CSDFT splittings are only less than 0.1 kcal/mol smaller
than the ones obtained from SDFT. Although a CSDFT ap-
proach to the degeneracy problem appeared promising our
results show only a small and insufficient improvement. This
finding is somewhat at odds with recent suggestions to re-
duce the splittings by inclusion of the current density as a
variable in the construction of approximate exchange-
correlation functionals �30–32�. These works, however, sug-
gested orbital functionals in the framework of SDFT where
the orbital dependence entered through the current density.
No attempt was made to implement these functionals in a

CSDFT framework. Finally, we point out that in a recent
work �33� we showed that a pure DFT approach using the
exact-exchange functional surprisingly leads to energy split-
tings which are almost an order of magnitude smaller than
the ones obtained in SDFT.

VI. CONCLUSIONS

In this work, we have shown how one can use orbital-
dependent functionals in the framework of current-spin-
density functional theory. We have derived the OEP integral
equations which have to be solved to obtain the correspond-
ing exchange-correlation potentials. We have simplified these
integral equations in the spirit of the well-known KLI ap-
proximation.

We have analyzed the KLI equations and the resulting
potentials for open-shell atoms at zero external magnetic
field and have also presented numerical results for these sys-
tems using the exact-exchange functional. We have shown
that CSDFT and SDFT are equivalent for the states with zero
paramagnetic current. This equivalence breaks down for
current-carrying states where total energies in CSDFT are
lower than those of SDFT.

We also verified that the CSDFT Kohn-Sham scheme
leads to a reduction �compared to SDFT� of the spurious
splittings between current-carrying and zero-current states al-
though it is too small to recover the degeneracy between
these states.

The most important result of our study, however, is the
fact that the problems of LDA-type current-density function-
als derived from the uniform electron gas �such as unphysi-
cal discontinuities of the corresponding exchange-correlation
potentials� never appear when using orbital-dependent func-
tionals.
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TABLE I. Spurious energy splittings 
=E�M = ±1�−E�M =0�
�in kcal/mol� between current-carrying and zero-current states com-
puted in SDFT and CSDFT.

Atom 
SDFT 
CSDFT Atom 
SDFT 
CSDFT

B 1.66 1.38 Al 1.68 1.58

C 1.58 1.34 Si 1.76 1.63

O 2.36 2.29 S 3.04 3.01

F 2.32 2.27 Cl 3.15 3.10
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FIG. 3. Spherical component of the exchange magnetic field for
the current-carrying state of the oxygen atom computed in SDFT
and CSDFT.
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