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The m�6 correction to energy is expressed in terms of an effective Hamiltonian H�6� for an arbitrary state of
helium. Numerical calculations are performed for n=2 levels, and the previous result for the 2 3P centroid is
corrected. While the resulting theoretical predictions for the ionization energy are in moderate agreement with
experimental values for 2 3S1, 2 3P, and 2 1S0 states, they are in significant disagreement for the singlet state
21P1.
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High precision calculations of helium energy levels in-
cluding relativistic and QED effects is a complicated task
�1�. It has been recognized early on that the two-electron
Dirac-Coulomb Hamiltonian is only an approximate Hamil-
tonian, as it includes negative energy spectra and does not
account for magnetic and higher order interactions between
electrons. The proper approach has to be based on quantum
electrodynamic theory. For heavy few-electron ions the inter-
actions between electrons can be treated perturbatively, on
the same footing as the electron self-energy and vacuum po-
larization. Highly accurate results have been obtained for
heavy helium- and lithium-like ions �2,3�, and a convenient
formulation of this 1 /Z expansion has been introduced a few
years ago by Shabaev in Ref. �4�. For systems with a larger
number of electrons the zeroth order Hamiltonian will in-
clude an effective local potential to approximately account
for interactions between electrons. This approach is being
developed by Sapirstein et al. �5�, and more recently by Sha-
baev and collaborators �6�. One of the most interesting re-
sults obtained so far was the calculation of QED corrections
to parity violation in the cesium atom �6�.

For light atomic systems relativistic and QED effects
are only a small correction to the nonrelativistic
Hamiltonian, and for this reason they can be treated pertur-
batively. More precisely, this perturbative approach relies
on expansion of the binding energy in powers of the fine
structure constant �,

E��� = E�2� + E�4� + E�5� + E�6� + E�7� + O��8� , �1�

where E�n�=m�nE�n� is a contribution of order �n. However,
this expansion is nonanalytic, inasmuch as some of the E�n�

coefficients contain ln � �see, for example, Eq. �4��. Each
E�n� can be expressed in terms of the expectation value of
some effective Hamiltonian H�n� with the nonrelativistic
wave function �7�. This approach allows for a consistent in-
clusion of all relativistic and QED effects order by order in
�. We present in this work high precision calculations of
n=2 energy levels in helium including the contribution E�6�.
This contribution has already been derived separately for
triplet states in Refs. �8,9�, and for singlet states in Refs.
�10,11�. Here we obtain H�6� valid for all helium states, and

present numerical results for 2 3S1, 2 3P, 21S0, and 2 1P1
energy levels.

The leading term in the expansion of the energy in
powers of �, E�2�=E, is the nonrelativistic energy, the eigen-
value of the nonrelativistic Hamiltonian, which in atomic
units is
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The relativistic correction E�4� is the expectation value of the
Breit-Pauli Hamiltonian H�4� �12�
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E�5� is the leading QED correction. Apart from the anoma-
lous magnetic moment correction to the spin-orbit and spin-
spin interactions, which we neglect here, as we consider
singlet or spin-orbit averaged �centroid� levels, it includes
the following terms �1�:
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The next order contribution E�6� is much more complicated.
It can be represented in general as

E�6� = �H�6�� + H�4� 1

�E − H��
H�4�� , �7�

but separate matrix elements of the first and the second term
in the above are divergent. The spin dependent terms which
contribute to fine structure are finite, and have been derived
by Douglas and Kroll in Ref. �8�. These contributions are not
included here because we consider spin-orbit averaged lev-
els. The singularities of matrix elements in Eq. �7� can be
eliminated by algebraic transformations �11� in a similar way
for both singlet and triplet states. Therefore we extend the
result obtained in Ref. �11� to arbitrary states of helium, and
the contribution E�6� can be represented as
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where P� = p�1+ p�2, p� = �p�1− p�2� /2, r�=r�1−r�2, and
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The operators HA� , HB, HC, and HD are parts of the H�4�

Hamiltonian from Eq. �3�, which was transformed �11� to
eliminate singularities from second order matrix elements,
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where �� 1
2 �� 2

2 in HA� in Eq. �10� is understood as a differen-
tiation of � on the right-hand side as a function �omitting
�3�r��. ER1 and ER2 are one- and two-loop electron self-
energy and vacuum polarization corrections, respectively
�10,11�,
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The higher order contribution E�7� is known only to some
approximation. Following Ref. �13� the hydrogenic values
for one-, two-, and three-loop contributions �14� at order m�7

are extrapolated to helium, according to

E�7� = �E�7��1S,He+� + E�7��nX,He+��

�
��3�r1� + �3�r2��He

��3�r��1S,He+ + ��3�r��nX,He+
− E�7��1S,He+�

�16�

for X=S, and for states with higher angular momenta
E�7��nX ,He+� is neglected.

We pass now to the calculation of matrix elements. The
wave function is expressed in terms of explicitly correlated
exponential functions �i,

�i = e−�ir1−�ir2−	ir12 ± �r1 ↔ r2� , �17�

�� i = r�1e−�ir1−�ir2−	ir12 ± �r1 ↔ r2� , �18�

with random �i, �i, 	i �15�. This basis set is a very effective
representation of the two-electron wave function, so much so
that the nonrelativistic energies with 1500 basis functions are
accurate to about 18 digits. Moreover, matrix elements of
operators for relativistic and higher order corrections can all
be obtained analytically in terms of rational, logarithmic and
dilogarithmic functions, for example,

1

16�2 � d3r1� d3r2
e−�r1−�r2−	r

r1r2r
=

1

�� + ���� + 	��	 + ��
.
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Numerical results for matrix elements of m�6 operators with
singlet and triplet P states are presented in Table I, due to the
singularity of these operators we had to use octuple precision
arithmetic. The m�6 correction to the energy also involves
second order matrix elements Esec. If we write

HA� = QA, �20�

HB = Q� B · s� , �21�

HC = Q� C ·
��� 1 − �� 2�

2
, �22�

HD = QD
ijsisj , �23�

where s�= ��� 1+�� 2� /2, then one obtains for singlet states

E�2 1S0�sec = �2 1S�QA
1
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+ �2 1S�QC
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E�2 1P1�sec = �2 1Pi�QA
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+ �2 1Pi�QC
j 1
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and the contributions from HB and HD vanish. The result for
the 2 3S1 state is

E�2 3S1�sec = �2 3S�QA
1
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TABLE I. Expectation values of operators entering H�6� for the
2 1P1 and 2 3P centroid.

Operator 2 1P1 2 3P

4��3�r1� 16.014 493 15.819 309

4��3�r� 0.009 238 0.0

4��3�r1� /r2 3.934 080 4.349 766

4��3�r1�p2
2 3.866 237 4.792 830

4��3�r� /r1 0.012 785 0.0

4��3�r�P2 0.070 787 0.0

4�p��3�r�p� 0.0 0.077 524

1/r 0.245 024 0.266 641

1/r2 0.085 798 0.094 057

1/r3 0.042 405 0.047 927

1/r1
2 4.043 035 4.014 865

1/ �r1r2� 0.491 245 0.550 342

1/ �r1r� 0.285 360 0.317 639

1/ �r1r2r� 0.159 885 0.198 346

1/ �r1
2r2� 1.063 079 1.196 631

1/ �r1
2r� 1.002 157 1.109 463

1/ �r1r2� 0.105 081 0.121 112

�r�1 ·r�� / �r1
3r3� 0.010 472 0.030 284

�r�1 ·r�� / �r1
3r2� 0.043 524 0.075 373

r1
i r2

j �rirj −3�ijr2� / �r1
3r2

3r� −0.004 745 0.090 381

p2
2 /r1

2 1.127 058 1.410 228

p�1 /r1
2p�1 16.067 214 15.925 672

p�1 /r2p�1 0.190 797 0.279 229

p1
i �rirj +�ijr2� / �r1r3�p2

j 0.053 432 −0.097 364

Pi�3rirj −�ijr2� /r5Pj 0.013 743 −0.060 473

p2
kr1

i /r1
3�� jkri /r−�ikrj /r−�ijrk /r�

�−rirjrk /r3�p2
j

−0.039 975 0.071 600

p1
2p2

2 0.973 055 1.198 492

p1
2 /r1p2

2 3.102 248 3.883 404

p�1� p�2 /rp�1� p�2 0.216 869 0.399 306

p1
kp2

l �−� jlrirk /r3−�ikrjrl /r3�
�+3rirjrkrl /r5�p1

i p2
j

−0.126 416 −0.187 304
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The result for the 2 3P centroid, defined by

E�2 3P� = 1
9 �E�2 3P0� + 3E�2 3P1� + 5E�2 3P2�� , �27�

is

E�2 P3�sec = �2 3Pi�QA
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Numerical results for second order matrix elements are pre-
sented in Table II. One notices a strong cancellation between
m�6 contributions and the Dirac energy for the He+ ion, the
subtotal line in Table II. Because of this cancellation, the
dominant contribution is the one loop radiative correction,
with the exception of the 2 1P1 state, where the wave func-
tion at the nucleus happens to be very close to 16, the He+

value, see Table I.
The summary of all important contributions to ionization

energies is presented in Table III. We include the first and
second order mass polarization correction to the nonrelativ-
istic energy, as well as first order nuclear recoil corrections
�4m2 /M and �5m2 /M. We expect higher order terms in the

TABLE II. Contributions to ionization energy E�6� for n=2 states of the helium atom. EQ is a sum of
operators in Eq. �8�, in comparison to Ref. �11� it includes the contribution EH. ELG is the logarithmic
contribution, last term in Eq. �8�. The sum EB+EC+ED of spin dependent, second order corrections for 2 3P
centroid is taken from Ref. �18�.

m�6 2 1S 2 1P 2 3S 2 3P

EQ 12.287 491 12.236 966 13.052 109 11.963 305

EA� −16.280 186�10� −16.084 034�5� −17.189 809�10� −15.848 510�2�
EB 0.0 0.0 −0.018 722

EC −0.033 790 0.201 363 −0.001 108 −0.168 704�2�
ED 0.0 0.0 −0.003 848

−EDirac�He+� 4.000 000 4.000 000 4.000 000 4.000 000

Subtotal −0.026 485�10� 0.354 296�5� −0.161 377�10� −0.053 908�3�
ER1 2.999 960 0.106 839 3.625 397 −1.106 416

ER2 0.016 860 0.000 112 0.032 331 −0.009 867

ELG 0.133 682 0.011 364 0.0 0.0

Total 3.124 017�10� 0.472 611�5� 3.496 351�10� −1.170 191�3�

TABLE III. Contributions to ionization energy of n=2 helium states in MHz. Physical constants from
�23�, R�=10 973 731.568 525�73� m−1, �=1/137.035 999 11�46�, ” e=386.159 267 8�26� fm, m� /me

=7294.299 536 3�32�, c=299 792 458. Efs is a finite nuclear size correction with the charge radius r�

=1.673 fm.

��2 1S� ��2 1P� ��2 3S� ��2 3P�

��2 −960 331 428.61 −814 736 669.94 −1 152 795 881.77 −876 058 183.13

�2 /M�2 8 570.43 41 522.20 6 711.19 −58 230.36

�3 /M2�2 −16.72 −20.80 −7.11 −25.33

Efs 1.99 0.06 2.59 −0.79

m�4 −11 971.45 −14 024.05 −57 629.31 11 436.88

m2 /M�4 −3.34 −2.81 4.28 11.05

m�5 2 755.76 38.77 3 999.43 −1 234.73

m2 /M�5 −0.63 1.91 −0.80 −0.62

m�6 58.29 8.82 65.24 −21.83

m�7 −3.85�1.90� −0.16�16� −5.31�1.00� 1.93�40�
Ethe −960 332 038.13�1.90� −814 709 145.99�16� −1 152 842 741.56�1.00� −876 106 246.93�40�
Eexp −960 332 040.86�15� −814 709 153.0�3.0� −1 152 842 742.97�0.06� −876 106 247.35�6�

KRZYSZTOF PACHUCKI PHYSICAL REVIEW A 74, 062510 �2006�

062510-4



mass ratio to be much below the 0.01 MHz level, the preci-
sion of calculated contributions �see Table III�. Results for
nonrelativistic as well as for leading relativistic corrections
are in agreement with those obtained previously by Drake
�13,16�. Corrections of order m�5 were calculated using the
Drake and Goldman �17� values for Bethe logarithms. The
m�6 correction is calculated in this work. All but m�7 con-
tributions are calculated exactly. This last one, m�7, is
estimated on the basis of the hydrogenic value according to
Eq. �16�. It is the only source of uncertainty of theoretical
predictions, as the achieved numerical precision for each
correction is below 0.01 MHz.

The value for the 2 1S0 state has already been presented in
our former work �11�; here we display in more detail all the
contributions. The value for the 2 3S1 state is in agreement
with our previous calculation in �9�, where we obtained
E�6�=3.496 93�50�. This provides justification of the correct-
ness of the obtained result, since the two derivations of the
m�6 operators were performed in a different way. However,
the result for the 2 3P state is in disagreement with our result
from Ref. �18�. For this reason we checked Ref. �18�, and
found a mistake. The derived set of operators representing
E�6� was correct, but the expectation value of HEN� , in the
notation of Ref. �18�, was in error. The correct result is
�HEN� �=11.903 751. With the second order matrix element
−15.838 656�9� and subtracting He+ m�6 energy −Z6 /16, it
is equal to 0.049 702�9�, while the former result was
0.140 689�9�, see Table II of �18�. Together with other cor-
rections from that table the total m�6 contribution becomes
−1.170 188�9�, in agreement with the result obtained here.

We find a moderate agreement with experimental ioniza-
tion energies for the 2 1S0, 2 3S1, and 2 3P states but a sig-
nificant disagreement for the 2 1P1 state. Following Ref.
�13�, the result for the 2 3S1 state was obtained by combining

the 2 3S1–3 3D1 measurement by Dorrer et al. �19�
786 823 850.002�56� MHz with the theoretical 3 3D1 ioniza-
tion energy 366 018 892.97�2� MHz calculated by Drake
�13,16�. The ionization energy of the 2 3P state was obtained
from the measurement of the 2 3S1–2 3P transition by Can-
cio et al. �20� of 276 736 495.6246�24� MHz and the previ-
ously obtained 2 3S1 ionization energy. The ionization energy
of the 2 1S state was obtained from measurements of
2 1S–n 1D transitions by Lichten et al. �21� with n=7–20
and Drake’s calculations for n 1D states �13,16�. Finally, the
result for 2 1P ionization energy is determined by combining
the 2 1P–3 1D2 transition 448 791 404.0�30� MHz by San-
sonetti and Martin �22� �including correction of 0.6 MHz
�13��, with calculated �13,16� 3 1D2 energy
365 917 749.02�2� MHz. The significant disagreement with
theoretical predictions for 2 1P state calls for an independent
calculation of the m�6 term and, on the other hand, for the
direct frequency measurement of 2 1P–3 1D2 or 2 1P–2 1S
transitions.

Further improvement of theoretical predictions can be
achieved by the calculation of m�7 contributions. The prin-
cipal problem here will be the numerical evaluation of the
relativistic corrections to Bethe-logarithms and the deriva-
tion of remaining operators. Such a calculation has recently
been performed for helium fine structure �24�. Therefore, in
view of newly proposed experiments �25�, calculations for
other states of helium, although not simple, can be achieved.
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