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The electron propagator is calculated for a set of closed-shell atoms using GW-like self-energies that contain
the coupling of single-particle degrees of freedom with excited states in the framework of the random phase
approximation. The effect of including exchange diagrams is investigated. Calculations are performed in the
Hartree-Fock �HF� basis of the neutral atom. The HF continuum is taken into account using a discretization
procedure, and the basis set limit is estimated using a systematic increase of basis set size. We check the
approximation of taking the self-energy diagonal in the HF basis, and to what extent the extended Koopman’s
theorem is fulfilled using an approximate self-energy. Finally we try to model the information contained in the
propagator in terms of a functional containing Hartree-Fock quantities and demonstrate the feasibility of
simultaneously reproducing the correlation and ionization energy of an underlying ab initio model.
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I. INTRODUCTION

It is well known that ab initio treatments of electronic
systems become unworkable for sufficiently complex sys-
tems. In many modern applications the Kohn-Sham formu-
lation �1� of density functional theory �DFT� �2�, where only
single-particle equations must be solved in a self-consistency
loop, is the only feasible approach. There is therefore con-
tinuing interest, not only in developing new and more accu-
rate functionals, but also in studying conceptual improve-
ments and extensions to the DFT framework. In particular
there is room for improvement in the description of long-
range �van der Waals� forces and dissociation processes
�3–9�. More generally one could say that the present DFT
can handle short-range interelectronic correlations quite well,
but often fails when dealing with near-degenerate systems
characterized by a small particle-hole gap.

Microscopic theories offer some guidance in the develop-
ment of extensions to DFT. Orbital dependent functionals
can be constructed using many-body perturbation theory
�MBPT� �10,11�, though the spirit of DFT is somewhat vio-
lated �12� since one must perform a MBPT calculation for
each system. In fact, the lack of a systematic improvement in
DFT methods is addressed by the recent development of gen-
eral ab initio DFT �13–16�. In this approach one considers a
perturbative expansion �e.g., MBPT or coupled cluster� that
generates the exact ground-state wave function from a cho-
sen reference determinant. Requiring that the correction to
the density vanishes at a certain level of perturbation theory
allows one to construct the corresponding approximation to
the Kohn-Sham potential. While highly interesting from a
theoretical point of view, it is again unclear how much is
gained by reformulating the perturbation techniques in terms
of DFT quantities, though it is claimed that in low orders
�second-order MBPT� significant improvements can be made
over MP2 results evaluated with Hartree-Fock orbitals �15�.

Among various ab initio approaches, one can expect the
relationship between DFT and the propagator or Green’s
function �GF� formulation of many-body theory �17,18� to be
especially fruitful �19�. The Dyson equation of GF theory is

essentially also a single-particle equation, with the electronic
self-energy appearing as a �complex and energy-dependent�
potential that treats correlation effects exactly. The resulting
electron propagator �or its imaginary part, the spectral func-
tion� contains most of the relevant information, including the
total binding energy, the one-body density matrix, and the
ionization energies and electron affinities. The use of GF
theory in electronic structure problems has a long history
�see, e.g., Refs. �20–25� for reviews and general papers�. The
link between GF theory and DFT has been explored through
the Sham-Schlüter equations �26�.

An alternative approach to the ab initio DFT route would
be to concentrate directly on the electron spectral function
for a number of systems, identify the components that are
universal �i.e., not depending on the external potential�, and
model these in terms of functionals. The present paper is a
step in this direction and demonstrates that it is feasible,
within this framework, to reproduce the results of a GF cal-
culation with an underlying microscopic model for the
self-energy.

The microscopic model used in this paper has a self-
energy of the GW type �27�. That is, it treats the coupling of
single-particle states with the two-particle–one-hole �2p1h�
and one-particle–two-hole �1p2h� space, including partial di-
agonalization in the 1p1h space through the random phase
approximation �RPA�. This allows for possible collective ef-
fects on the atomic excited states. Nonrelativistic GF calcu-
lations have been performed for the neutral closed-shell at-
oms He, Be, Ne, Mg, Ar, Ca, Zn, and Kr. While the lack of
relativistic effects is of course inappropriate for the heaviest
atoms, the results are still useful for identifying trends in
nonrelativistic Coulombic systems.

Apart from the above motivation, there are several inter-
esting aspects in these calculations. In previous papers
�28–30� the second-order self-energy was treated, with em-
phasis on the self-consistency between the propagator and
the self-energy. The present paper extends this study by ex-
amining the higher-order diagrams related to the RPA de-
scription of the excited states, though we did not attempt to
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do this in a self-consistent fashion. We also look at the influ-
ence of the exchange diagrams in the particle-hole channel.
In the GF description of the electron gas and periodic sys-
tems the role of exchange is still debated in connection with
issues of self-consistency �31–33�, but it does not seem to
have been studied in any detail for finite systems. Finally, the
closed-shell atoms are simple enough �spherical symmetry�
to allow a quasiexact treatment of the single-particle con-
tinuum, a feature that is lacking when finite basis sets are
used. This is in accord with the idea that functionals should
be parametrized in the basis set limit �34�.

The choice for GW-like self-energies is primarily made
for convenience, as it allows the use of large basis sets. More
accurate ionization energies would be obtained with increas-
ingly sophisticated self-energy models, e.g., using the alge-
braic diagrammatic construction �ADC� method �35,36�
where an approximate three-particle propagator is con-
structed, though this seems only feasible in small model
spaces.

The paper is organized as follows. In Sec. II, the formal-
ism of propagator theory is briefly summarized, introducing
the RPA and the GW self-energy. Numerical details of the
calculation are discussed in Sec. III, including the method of
continuum discretization and convergence issues related to
basis set size. The importance of such a convergence study is
emphasized by comparing the results in Ref. �28�, obtained
with a self-consistent second-order self-energy, to those of a
recent calculation �37�. We also test, at the second-order
level, in how far the approximation of taking the self-energy
diagonal in the Hartree-Fock �HF� basis is justified, and
whether the extended Koopman’s theorem �38–41� still
holds when using a nonexact self-energy. Section IV contains
a detailed analysis of the numerical results for the single-
particle properties and correlation energies. In Sec. V A, the
theoretical outline is given of a method for treating electron
correlations. The method relies on the decomposition of the
spectral function in its quasiparticle part and a small corre-
lation part, where the latter should be modeled by means of a
functional. An example of how the decomposition can be
achieved is worked out in Sec. V B. In Sec. V C, a functional
is constructed that reproduces the ab initio results of Sec. IV.
Finally, a summary and some conclusions are formulated in
Sec. VI.

Atomic units are used throughout the paper.

II. THEORY

A. Dyson equation

The theoretical framework used in this study is that of
propagator theory, where the single-particle �sp� propagator
is the object of interest, instead of the many-body wave
function. The sp propagator is defined in configuration and
energy space as

G��,�;E� = ��0
N�a�

1

E − �Ĥ − E0
N� + i�

a�
†

+ a�
† 1

E + �Ĥ − E0
N� − i�

a���0
N� , �1�

where � ,� , . . ., label the elements of a complete orthonormal

basis set of sp states, the second-quantization operators a�

�a�
†� remove �add� a particle in state � ���, and ��0 is an

infinitesimal convergence parameter. The exact ground state
of the N-electron system is denoted by ��0

N� and its energy

by E0
N. The Hamiltonian Ĥ reads

Ĥ = Ĥ0 + V̂ , �2�

where Ĥ0 contains the kinetic energy and electron-nucleus

attraction, and V̂ is the interelectron repulsion, with

����V����as = ����V���� − ����V���� �3�

its antisymmetrized matrix element.
The sp propagator in Eq. �1� can be written alternatively

in its Lehmann representation,

G��,�;E� = �
m

��0
N�a���m

N+1���m
N+1�a�

† ��0
N�

E − �Em
N+1 − E0

N� + i�

+ �
n

��0
N�a�

† ��n
N−1���n

N−1�a���0
N�

E + �En
N−1 − E0

N� − i�
, �4�

where the ��m
N+1�, ��n

N−1� are the eigenstates, and Em
N+1, En

N−1

the eigenenergies, in the �N±1�-electron system. The poles
of the propagator therefore reflect the electron affinities and
ionization energies, and are located at Am

N =Em
N+1−E0

N

�addition domain� and at In
N=E0

N−En
N−1 �removal domain�.

The propagator holds enough information to calculate any
one-body observable of interest. In addition, the total energy
�in case of a Hamiltonian with at most two-body interac-
tions� is also known through the Migdal-Galitskii sum rule,
expressed in matrix form as

E0
N =

1

2
	 dE

2	i
ei�E Tr
��H0� + E��G�E��� . �5�

The sp propagator can be determined through Dyson’s
equation,

�G�E�� = �G�0��E�� + �G�0��E���
�E���G�E�� . �6�

In this equation, G�0��E� represents the sp propagator of the

noninteracting system with Hamiltonian Ĥ0, and G�E� that of

the complete Hamiltonian Ĥ. The �irreducible� self-energy

�E� has a perturbative expansion as a power series in the

interelectron Coulomb repulsion V̂. Each term in the series
also contains a number of noninteracting propagators. A self-
consistent Green’s function approach involves a regrouping
of the series, in which the self-energy is expressed in terms
of the dressed propagators G�E�, rather than the noninteract-

ing ones. To first order in V̂ this amounts to Hartree-Fock.
The second-order self-consistent approach has been studied
in Ref. �28�. In Fig. 1 the corresponding self-energy is
represented diagrammatically, as well as the structure of
the lowest-order diagrams that are generated when the
self-consistent self-energy is expanded in terms of HF
propagators.
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Other approximations to the self-energy can be con-
structed by summing a particular class of diagrams to infinite

order in V̂. For the high-density electron gas the relevant
class contains the ring diagrams. Note that the higher-order
ring diagrams are not generated in the self-consistent second-
order self-energy. The explicit summation of ring diagrams is
known as the random phase approximation �RPA�, and the
corresponding G0W0 self-energy takes into account screening
corrections to the bare Coulomb force. The self-consistent
GW version is able to generate excellent correlation energies
in the electron gas, but has some nonrealistic features �e.g.,
the damping of plasmon-related structures� �31–33�. These
probably require a more sophisticated treatment of the
exchange part of the particle-hole interaction.

B. Polarization propagator

For the finite systems treated in the present paper we
use a self-energy approximation that incorporates RPA
collective particle-hole excitations. The excited states in the
N-electron system can be described by means of the
polarization propagator

���,�−1;�,�−1;E� = �
n�0

X��
n �X��

n �*

E − En + i�
− �

n�0

�Y��
n �*Y��

n

E + En − i�
,

�7�

where En=En
N−E0

N are the excitation energies, and the
transition amplitudes read

X��
n = ��0

N�a�
†a���n

N�, Y��
n = ��0

N�a�
†a���n

N� = X��
n . �8�

The RPA approximation to the polarization propagator is
shown diagrammatically in Fig. 2. We will consider two dif-
ferent polarization propagators: RPA proper, where only the
direct part of the ph interaction is included, and G �general-
ized� RPA where both the direct and exchange matrix ele-
ments enter. The restriction to only direct matrix elements is
very natural for the electron gas, as they are dominant for
1p1h excitations with small total momentum. For a finite

system one cannot say this a priori.
More explicitely, denoting the unoccupied �occupied� HF

sp states with p �h�, the transition amplitudes Xph
n and Yph

n

follow from the standard RPA eigenvalue problem,

� A B

B* A* �Xn

Yn  = En�1 0

0 − 1
�Xn

Yn  , �9�

where

Aph,p�h� = �p,p��h,h���p
HF − �h

HF� + �ph��V�hp�� ,

Bph,p�h� = �pp��V�hh�� �10�

for RPA, whereas the antisymmetrized Coulomb matrix ele-
ments are taken for GRPA. The ��

HF are the HF sp energies,
and the excited states correspond to the positive-energy
solutions of Eq. �9�, normalized as 1=�ph��Xph

n �2− �Yph
n �2�.

In practice, for the closed-shell systems under study
spherical quantum numbers ��nalamla

msa
are used, and the

excited states are labeled by total orbital angular momentum
L and total spin S.

C. Self-energy in „G…G0W0 approximation

The self-energy in the G0W0 approximation is shown dia-
grammatically in Fig. 3. Note that the HF part of the self-
energy has been absorbed in the unperturbed propagators
which represent HF sp states. The G0W0 self-energy contains
intermediate states where the RPA excited states are coupled
to HF sp states, and can be written as


G0W0��,�;E� = �
p,n�0

U��,p;n�U*��,p;n�
E − �En + �p

HF� + i�

+ �
h,n�0

U*�h,�;n�U�h,�;n�
E + �En − �h

HF� − i�
, �11�

in terms of the coupling vertex

U��,�;n� = �
ph

���h�V��p�Xph
n + ��p�V��h�Yph

n � . �12�

In both the RPA polarization propagator and the coupling
vertex, only the direct term of the interaction is retained. It is
also possible to use the GRPA polarization propagator and
the full antisymmetrized interaction matrix elements in the
coupling vertex of Eq. �12�. This is henceforth called the G
�generalized� G0W0 approximation, and the corresponding
self-energy is depicted in Fig. 4.

FIG. 1. Diagrams for the self-consistent second-order self-
energy. Single fermion lines represent the HF propagator, double
lines the self-consistent propagator. The antisymmetrized interac-
tion matrix elements are depicted as zigzag lines. On the right-hand
side are the diagrams of the second and third order, and a represen-
tative fourth-order diagram, that are generated when the self-energy
is expanded in terms of the HF propagator.

FIG. 2. Diagrammatic equation for the RPA and GRPA polariza-
tion propagators. The dashed �zigzag� line represents a direct �anti-
symmetrized� Coulomb interaction matrix element. The fermion
lines represent HF propagators.

FIG. 3. Diagram for the G0W0 self-energy.

FIG. 4. Diagram for the GG0W0 self-energy.
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As indicated in Fig. 4 the second-order diagram should be
once subtracted, in order to compensate for double counting.
A �partially� self-consistent scheme based on the same self-
energy was referred to as G �generalized� GW in Ref. �42�.
In this work, exchange diagrams are introduced by means of
vertex corrections �instead of an antisymmetrized interac-
tion�, but upon expansion the same diagrammatical content is
found. One should note that subtracting a diagram introduces
poles with negative residue in the self-energy. This can lead
to unphysical poles in the propagator, though it is seldom a
problem for the ionization pole.

In most of the calculations the self-energy has been
assumed diagonal in the HF basis,


��,�;E� = ��,�
��E� . �13�

We checked for a few cases �see also the discussion in the
next section� that this introduces errors of 1–2 mH for the
ionization energies, about the same error as finite basis set
effects.

III. CALCULATIONAL DETAILS

A. Discretization of the continuum

The sp basis set to be used in the calculations should
consist of the HF sp states in the neutral closed-shell
atom. While the occupied states are discrete, all unoccupied
HF states lie in the continuum. As it is technically hard
to work with continuum states, we introduce discrete virtual
orbitals in the manner of Ref. �28�. This amounts to
first solving the HF problem for the occupied states, then
adding to the HF mean field a parabolic potential wall
U�r�=�r−rw�cw�r−rw�2, placed at a distance rw from the
atomic center. The latter eigenvalue problem has a basis of
discrete eigenstates. This basis is truncated by specifying the
largest orbital angular momentum lmax and the number of
unoccupied states for each l. Finally the HF problem �with-
out the parabolic potential wall� is solved again in the trun-
cated basis, yielding the sp basis set used in the calculations.
Obviously the exact form of the auxiliary confining potential
should not affect results, if a sufficiently large basis set is
retained after truncation.

It was checked numerically for several cases that various
parameters for the parabolic wall indeed yield the same basis
set limit. The speed of convergence, however, can be very
different, and reflects the range and accuracy of the sampling
of the HF continuum. In addition, the potential wall cannot
be too close to the center for the l values of the occupied
states without spoiling the latter. As an example, in Fig. 5 the
G0W0 ionization energy for Be is shown for two different
confining potentials, as a function of increasing basis set
size. Each incremental step represents addition of one higher
l value with five virtual orbitals, while simultaneously in-
creasing the number of virtual orbitals of the lower l by
about 20%. The value n=2 corresponds to the size of the
basis set used in Ref. �28�. For the radial wave functions with
l�0, the upper curve in Fig. 5 uses a confining potential
with rw=0 and cw=5, whereas the lower one uses rw=5 and
cw=5 �expressed in atomic units�.

Eventually, the same confining potentials were used as in
the self-consistent second-order calculation of Ref. �28� �see
Table I�.

The numerical treatment of the continuum states in a fi-
nite system can be troublesome. Note that this issue was
recently investigated in Ref. �43�, where small molecules
were treated with a partially self-consistent GW self-energy
using a periodic code and a supercell technique to describe
isolated molecules. This led to extremely poor convergence
in terms of the number of scattering states retained in the
model space. Such difficulties, however, were not encoun-
tered with the discretization of the continuum in the present
work.

B. Convergence issues

For the default calculations the size of the basis sets �see
Table I� was taken the same as in Ref. �28�, where it yielded
convergence to about 1 mH, for the ionization energy with
the second-order self-energy. We checked that the same
holds for the �G�G0W0 ionization energies in the present
paper.

The total energies converge much slower than the ioniza-
tion energies. This is due to the laborious description of the
interelectronic cusp when expanding in noninteracting wave
functions �44,45�, and the fact that cusp effects tend to cancel
for the ionization energy �being a difference of two ener-
gies�. In order to estimate contributions to the total energy
missing due to basis set truncation, we studied the conver-
gence properties when performing systematic basis set in-
creases in the manner described above. Numerically one
finds that the corresponding changes to the energy behave in
a very smooth way, with a decrease that is slower than

1 2 3 4 5 6
basis set size

-0.338

-0.337

-0.336

-0.335

-0.334

-0.333

-0.332

io
ni

za
tio

n 
en

er
gy

 (
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u.
)

FIG. 5. Convergence behavior of the G0W0 ionization energy
�a.u.� of Be for two different confining potentials, as a function of
basis set size �see text�.
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exponential but faster than an inverse power law. By extrapo-
lating in both ways one obtains upper and lower bounds to
the basis set limit. For the lighter atoms, the numerical tables
below contain these bounds, together with the result of the
default basis set size of Table I. For the heavier atoms such a
convergence study was not possible, but similar basis set
truncation errors should be expected.

In order to check the reliability of these bounds we also
applied the extrapolation scheme to the MP�2� energies ob-
tained with the same basis sets. The resulting upper an lower
bounds are shown in Table II and Table VI; the interval con-
tains the quasiexact MP�2� basis set limit for He to Ar ob-
tained in Ref. �45�, except for Be �by less than 2 mH�. As
expected, the same extrapolation procedure performed on the
ionization energies yields corrections that are much smaller.

The issue of basis set truncation errors is important, espe-
cially when comparing GF results by different authors. As an
example, Table II contains correlation and ionization ener-
gies obtained with the second-order self-energy, evaluated
both with HF propagators and in self-consistent GF theory.
The self-consistent version, first applied to atoms in Ref. �28�
and more recently in Ref. �37�, is quite involved and does not
allow a very large number of sp orbitals.

For the correlation energies �E0
N−E0

N�HF�� similar quali-
tative trends are observed �e.g., the near equivalence of the
MP�2� calculation with the self-consistent energies�, but the
small size of the basis sets used in Ref. �37� precludes a
direct comparison. This can also be appreciated by compar-
ing the MP�2� values. For Ne, e.g., the MP�2� limit value is
−0.388 H �45�. Our standard basis yields −0.338 H. The
value obtained in Ref. �37� by evaluating the Luttinger-Ward
functional with HF propagators is expected to coincide with
the MP�2� value, and yields only −0.286 H.

For the ionization energies the agreement, as expected, is
much better, though one still finds deviations of 20 mH �in
the self-consistent result for Ne�. Comparing with the ex-
trapolated values in Table II, it is again plausible that this is
due to the limited size of the basis sets in Ref. �37�. Apart
from basis set differences, the ionization energies in Ref.
�37� were calculated on the basis of the extended Koopman’s
theorem or EKT �see Refs. �38–41� for a recent numerical
application�, as the lowest eigenvalue � of the generalized
eigenvalue problem �M�−��u=��N�−��u, in terms of the re-
moval energy matrix �M�−�� and one-body density matrix
�N�−��,

TABLE I. Confining potentials U�r�=�r−rw�cw�r−rw�2, and number of occupied �Nocc� and unoccupied �Nvir� orbitals for the basis sets
used in the default calculation. Entries for each l value read �Nocc-Nvir-rw�. The parameter cw has the same value �cw=5� in all cases.

l He Be Ne Mg Ar Ca Zn Kr

0 1-20-3 2-20-11 2-10-2 3-20-10 3-20-1 4-25-12 4-15-7 4-15-7

1 0-15-0 0-20-5 1-20-4 1-20-7 2-25-3 2-25-7 2-25-10 3-25-10

2 0-8-0 0-10-5 0-10-0 0-20-5 0-20-0 0-20-5 1-3-4 1-15-5

3 0-5-0 0-10-5 0-10-0 0-15-3 0-10-0 0-10-3 0-15-0 0-15-0

4 0-5-0 0-5-5 0-5-0 0-10-1 0-10-0 0-10-1 0-15-0 0-15-0

5 0-5-0 0-5-5 0-5-0 0-5-0 0-5-0 0-5-0 0-15-0 0-15-0

6 0-5-0 0-5-5 0-5-0 0-5-0 0-5-0 0-5-0 0-10-0 0-10-0

7 0-5-5 0-5-0 0-5-0

8 0-5-0 0-5-0

TABLE II. Correlation and ionization energies �a.u.� obtained with the second-order self-energy, evaluated non-self-consistently
�
�2��GHF��, and self-consistently �
�2��G��. Values as obtained by Dahlen et al. �Ref. �37�� and by Van Neck et al. �Ref. �28��. The

�2��GHF� values in Ref. �28� were recalculated for the present work, and the extrapolation bounds �see text� are indicated between brackets.
The corresponding MP�2� correlation energies are also given. The column labeled ELW�GHF� corresponds to the MP�2� values in Ref. �37�.

Correlation energies Ionization energies

Ref. �37� Ref. �28� and present work Ref. �37� Ref. �28� and present work


�2��GHF� 
�2��G� ELW�GHF� 
�2��GHF� 
�2��G� MP�2� 
�2��GHF� 
�2��G� 
�2��GHF� 
�2��G�

He −0.0396 −0.0352 −0.0352 −0.037
�−0.0356,−0.0344�

−0.037 −0.0368
�−0.0374,−0.0372�

0.9059 0.9017 0.905
�0.9051,0.9053�

0.906

Be −0.0934 −0.0681 −0.0677 −0.060
�−0.0652,−0.0640�

−0.055 −0.0615
�−0.0745,−0.0730�

0.3275 0.3130 0.330
�0.3301,0.3302�

0.320

Ne −0.2509 −0.2869 −0.2862 −0.160
�−0.1594�

−0.339 −0.338
�−0.389,−0.369�

0.7363 0.7412 0.745
�0.7475,0.7483�

0.763

Mg −0.3133 −0.2951 −0.2947 −0.134
�−0.159,−0.154�

−0.331 −0.331
�−0.446,−0.383�

0.2605 0.2548 0.276
�0.2764,0.2766�

0.274
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N�,�
�−� =	 dE

2	i
ei�EG��,�;E� = ��0

N�a�
†a���0

N� ,

M�,�
�−� =	 dE

2	i
ei�EEG��,�;E� = ��0

N�a�
†�a�,Ĥ���0

N� .

�14�

The ionization energies in Ref. �28�, on the other hand, were
obtained directly by solving Dyson’s equation, under the as-
sumption that the self-energy is diagonal in the HF basis.

In order to assess these different methods a test calcula-
tion for Ne was performed with the non-self-consistent
second-order self-energy, without the diagonality assump-
tion. The ionization energy calculated directly from the
Dyson equation �0.747 H� was indeed found to coincide with
the EKT value, suggesting that EKT also holds for a simple
approximate self-energy. At the same time, the ionization
pole is also close to the default result �0.745 H� calculated
by solving Dyson’s equation with a diagonal approximation
for the self-energy. Obviously the EKT, which relies on the
asymptotics in coordinate space, does not hold for a diagonal
approximation. We did check that for average quantities
such as the mean-removal energy, Tr�Ml=1

�−� �, or occupation
number, Tr�Nl=1

�−� �, of an l=1 electron in Ne, the diagonal
�nondiagonal� results are again very close, −0.9620 H
�−0.9638 H� and 0.9963 �0.9965�, respectively.

IV. NUMERICAL RESULTS

A. (G)RPA excited states

In Table III, the energies of a few low-lying 1p1h excited
states in He and Ne, as obtained in the GRPA, are compared
with the experimental ones. Note that in HF on the neutral
atom no bound p �unoccupied� orbitals exist; the ph spec-
trum has no discrete excited states, but a continuum starting
at −�h

HF. The same holds in RPA, since the direct ph interac-
tion is repulsive. Only in GRPA, where the attractive ph
exchange term is included, do discrete excited states appear
that form a Rydberg series as seen experimentally. This can
easily be seen �46� by considering a sub-block of the GRPA

A-matrix in Eq. �9� formed by the ph states with the same h,
i.e.,

Hp,p�
�h� = Aph,p�h = �p,p���p

HF − �h
HF� + �ph�V�hp��as. �15�

Since the HF basis diagonalizes the HF Hamiltonian one has

�p,p��p
HF = �p�H0�p�� + �

h�

�ph��V�p�h��as, �16�

so that

Hp,p�
�h� = − �p,p��h

HF + �p�H0�p�� + �
h���h�

�ph��V�p�h��as.

�17�

The matrix H�h� clearly represents a sp Hamiltonian where
the HF mean field of the neutral atom is changed to an ionic
mean field by canceling the contribution of orbital h. Hence
the appearance of the Rydberg sequence in GRPA, since the
ionic mean field goes asymptotically like −1/r. Similar con-
siderations applied to RPA show that to the neutral atom HF
mean field a repulsive term �on the diagonal� �ph �V �hp� is
added, which cannot give rise to a discrete ph spectrum. The
appearance of an ionic mean field for the unoccupied states is
the most important collective effect in ph space, which oth-
erwise shows little mixing among states with different h, and
provides the microscopic underpinning for use of the VN−1

potential �47�.
For the noble gases the GRPA spectrum is in reasonable

agreement with experiment when �since we do not use spin-
orbit coupling� averaged energies are compared, i.e., the
J-averaged experimental energies are compared with the
LS-averaged GRPA energies, see Table III.

For Be and Ca the GRPA equation has a complex solution
in the L	=1−,S=1 channel. This reflects an instability �due
to the small ph gap involved� of the closed-shell ground state
against 2s−12p or 4s−14p particle-hole excitations, i.e., the
closed-shell configuration is a poor starting point for a per-
turbative expansion. Similar remarks apply to Mg and Zn. In

TABLE III. Energies �a.u.� of low-lying excited states in He and Ne obtained in GRPA. The first column contains the dominant ph
configuration. In the last two columns, the LS-averaged GRPA values are compared with the J-averaged experimental ones �49�.

ph E�L�S� Average Experimental

He

1s2s 0.776�0+0�, 0.724�0+1� 0.737 0.736

1s2p 0.797�1−0�, 0.780�1−1� 0.784 0.773

1s3s 0.858�0+0�, 0.846�0+1� 0.849 0.837

Ne

2p3s 0.674�1−0�, 0.660�1−1� 0.664 0.614

2p3p 0.755�0+0�, 0.717�0+1�, 0.740�1+0�, 0.740�1+1�,
0.739�2+0�, 0.733�2+1�

0.735 0.684

2p4s 0.782�1−0�, 0.779�1−1� 0.780 0.724
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this case no complex solution occurs, but the lowest GRPA
excitation energy is just above zero and cannot reproduce the
experimental spectrum.

B. Comparison of G0W0 and GG0W0 results

In Table IV the first ionization energies of the eight
atomic systems are shown, calculated with different self-
energies. Note that even though the excitation spectrum is in
principle continuous, the G0W0 ionization pole converges
easily with increasing size of the discrete basis set. This is
the same behavior as in a calculation with the second-order
self-energy using the neutral atom HF propagator: discretiza-
tion errors in the unoccupied states tend to be compensated
by the interaction matrix elements. Similarly, one finds nu-
merical convergence of the GG0W0 ionization pole long
before the GRPA spectrum itself has converged.

The GG0W0 self-energy gives reasonable ionization poles
only for the noble gases. Because of the GRPA instability no
results are given in Table IV for Be and Ca. The ionization
pole for Mg and Zn is badly off the mark, again because the
GRPA spectrum is unrealistic. Even for the noble gases, it is
interesting to note that the G0W0 ionization energies are con-
siderably closer to the experimental value than GG0W0. Cor-
relation effects, such as the shift from the ionization pole
from its HF value, are severely overestimated in GG0W0.
This points to the fact that exchange effects should be in-
cluded in a more sophisticated way, and that superior results
for the spectral function are obtained by leaving them out
altogether �except at the level of the Fock mean field term�.

C. Detailed G0W0 results

An overview of the sp properties obtained with the G0W0
self-energy is given in Table V. For comparison, the HF
results, and the results obtained in Ref. �28� with the self-

consistent second-order self-energy 
�2��G�, are also listed.
The table contains the position and strength of the dominant
fragments in the spectral function. For the valence states the
experimental energies come from Ref. �49� and the strengths
�determined by electron momentum spectroscopy� from
Refs. �49–52�. The single-particle energies for the core orbit-
als were taken from x-ray photoelectron spectroscopy �53�.
The G0W0 description of the valence states is on the whole
remarkably good, and an improvement on the 
�2��G� results.
For the more deeply bound sp states, both are comparable.
The G0W0 spectroscopic factors behave largely like the 
�2�

��G� ones, i.e., about 0.95 for the ionization state, and
somewhat smaller for the next shells. For the 3s orbital in Ar
and the 4s orbital in Kr the strength of the main fragment is
only about 0.5, but sizeable fragments are experimentally
seen at somewhat higher energies. This fragmentation of sp
strength is not reproduced in the calculations.

In our calculations the addition poles of the propagators
are all at positive energy, i.e., we do not find stable
N+1-electron �anion� states. This is in agreement with the
experimental situation for the closed-�sub�shell atoms under
consideration, for which the electron affinity is either zero or
exceedingly small �in case of Ca�. A more stringent test of
the addition part of the G0W0 propagator would be for open-
shell atoms having stable anion states �29�. However, a
quasiexact treatment of the continuum is much harder to
achieve than for the closed-shell atoms in the present work.

The correlation energies are presented in Table VI, where
G0W0 results are compared with the other schemes. Note
again the close correspondence between MP�2� and 
�2��G�.
On the whole, the G0W0 correlation energies are worse
than the 
�2��G� results, but better than 
�2��GHF�. Fo
r the heavier atoms �Zn and Kr�, the G0W0 values for the
correlation energy are unphysical, i.e., the G0W0 total energy
lies above the HF one. The effect is also observed for
the non-self-consistent second-order self-energy
�2��GHF�,

TABLE IV. First ionization energies �a.u.�, obtained with different self-energies: second-order non-self-consistently �
�2��GHF��, self-
consistently �
�2��G��, and G0W0. Extrapolation bounds are given between brackets. The column labeled �Expt.� contains the estimated
nonrelativistic ionization energies from Ref. �48� for the atoms He through Ar; values for Ca through Kr are taken from Ref. �49�.

HF 
�2��GHF� 
�2��G� �28� G0W0 GG0W0 Expt.

He 0.918 0.905 0.906 0.9089
�0.9096,0.9100�

0.878 0.9037

Be 0.309 0.330 0.320 0.3367
�0.3378,0.3383�

/ 0.3426

Ne 0.850 0.745 0.763 0.801
�0.805,0.807�

0.714 0.7946

Mg 0.253 0.276 0.274 0.281
�0.282,0.283�

�0.412� 0.2808

Ar 0.590 0.578 0.585 0.595
�0.598,0.599�

0.609 0.583

Ca 0.195 0.224 0.224 / 0.2247

Zn 0.291 0.329 0.331 �0.484� 0.3452

Kr 0.524 0.526 0.560 0.536 0.548 0.5145
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but disappears when the self-energy 
�2��G� is calculated
self-consistently �see Kr�, suggesting that it is inherent for a
non-self-consistent treatment of the self-energy.

V. BUILDING A G0W0-BASED FUNCTIONAL

A. General considerations

In general, the single-particle spectral function of an in-
teracting system is related to the propagator as

S��,�;E� =
1

2	i
sign��F − E��G��,�;E� − G*��,�;E�� ,

�18�

where the Fermi energy for finite systems can be defined as
�F= 1

2 �E0
N+1−E0

N−1�. The zeroth and first energy-weighted
moments obey the sum rules

TABLE V. Single-particle properties generated by different self-energies, compared with experimental values. All energies in atomic
units. The experimental energies and occupation numbers are taken from Refs. �49–52� for the valence states �indicated with *� and from Ref.
�53� for the core orbitals. Extrapolation bounds for the G0W0 ionization energies of He through Ar are given in Table IV.

Single particle energies Spectral strength

HF 
�2��G��28� G0W0 Expt. 
�2��G��28� G0W0 Expt.

He 1s −0.918 −0.906 −0.9089 −0.9037* 0.972 0.956

Be 1s −4.732 −4.620 −4.609 −4.533* 0.873 0.895

2s −0.309 −0.320 −0.3367 −0.343* 0.950 0.938

Ne 1s −32.77 −31.51/−33.26 −32.14 −31.70 0.544/0.364 0.852

2s −1.931 −1.750 −1.774 −1.782* 0.876 0.905 0.85�2�
2p −0.850 −0.763 −0.801 −0.793* 0.904 0.943 0.92�2�

Mg 1s −49.03 −48.20 −48.35 −47.91 0.871 0.901

2s −3.768 −3.815/−3.399 −3.626/−3.547 −3.26 0.503/0.442 0.184/0.641

2p −2.282 −2.146 −2.171 −2.12* 0.882 0.901

3s −0.253 −0.274 −0.281 −0.2811* 0.962 0.941

Ar 1s −118.6 −118.0 −117.6 −117.87 0.935 0.898

2s −12.32 −11.93 −11.95 −12.00 0.897 0.729

2p −9.570 −9.519 −9.269 −9.160 0.786 0.898

3s −1.277 −1.159 −1.156 −1.075* 0.876 0.858 0.55�1�
3p −0.590 −0.585 −0.595 −0.579* 0.938 0.942 0.95�2�

Ca 1s −149.4 −148.5 −148.4 0.910

2s −16.82 −16.56/−16.44/−16.28 −16.11 0.278/0.151/0.326

2p −13.63 −13.27 −12.79 0.854

3s −2.245 −2.073 �−1.63� 0.767

3p −1.340 −1.314 −1.265* 0.890

4s −0.195 −0.224 −0.225* 0.938

Zn 1s −353.3 −352.3 −355.0 0.892

2s −44.36 −43.58 −43.96 0.610

2p −38.92 −38.20 −37.83 0.861

3s −5.636 −5.280 −5.14 0.676

3p −3.836 −3.517/−3.491 −3.29 0.616/0.146

3d −0.779 −0.646 −0.636* 0.905

4s −0.291 −0.331 −0.345* 0.948

Kr 1s −520.2 −518.6 −519.0 −526.75 0.879 0.910

2s −69.91 −68.67 −69.08/−68.95/−68.90 −70.63 0.861 0.221/0.347/0.113

2p −63.01 −61.87 −62.62/−62.07 −62.356 0.883 0.112/0.743

3s −10.85 −10.14 −10.53/−10.42 −10.77 0.729 0.129/0.388

3p −8.332 −7.756 −7.959 −7.979 0.793 0.787

3d −3.824 −3.566 −3.598 −3.47* 0.901 0.908

4s −1.153 −1.119 −1.054 −1.012* 0.933 0.843 0.510�6�
4p −0.524 −0.560 −0.536 −0.519* 0.960 0.944 0.980�5�
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N�,� = 	
−�

+�

dES��,�;E� = ��0
N�
a�

† ,a����0
N� ,

M�,� = 	
−�

+�

dEES��,�;E� = ��0
N�
a�

† ,�a�,Ĥ����0
N� .

�19�

Note that the integrations in Eq. �19� are over the entire
energy axis. If the integration is restricted to the removal
domain �−� ,�F� one retrieves the one-body density matrix
�N�−�� and removal energy matrix �M�−�� as defined in Eqs.
�14�, i.e.,

N�,� = 	
−�

�F

dES��,�;E� + 	
�F

+�

dES��,�;E� = N�,�
�−� + N�,�

�+� ,

�20�

and similarly for M�,�.
Working out the �anti�commutators on the right-hand side

of Eq. �19�, the sum rules can be expressed in closed form as

N�,� = ��,�, �21�

M�,� = ���H0��� + �
��

����V����asN��
�−�. �22�

In normal Fermi systems, the bulk of the spectral strength
is concentrated in quasiparticle states, which �at least near
the Fermi surface� can be thought of as the solutions of


�H0� + Re�
�E���u = Eu . �23�

In the closed-shell systems at hand, e.g., the first ionization
state �0

N−1 �corresponding to the first pole in the removal
domain of the propagator� typically has a spectroscopic fac-
tor of about 95% �see Table V�. More deeply bound orbitals
may acquire a width, but have similar summed strength
concentrated near an average quasiparticle energy.

One can therefore consider to split off the quasiparticle
part of the spectral function,

�S�E�� = �SQ�E�� + �SB�E�� , �24�

and try to parametrize the residual small background contri-
bution. Since the dependence on the external potential is
mostly absorbed in the quasiparticle part, the background
part can be assumed to be generated only by universal
electron-electron correlations.

In fact, the full energy dependence of �SB�E�� is not
needed, since one can apply the quasiparticle-background
separation of Eq. �24� to the energy integrations in Eq. �19�,
i.e., one has

�N� = �NQ� + �NB�, �M� = �MQ� + �MB�, etc. �25�

It is now clear that modelling the background contributions
�MB

�±�� and �NB
�±�� as a functional of, e.g., the density matrix

�N�−��, is sufficient to generate a self-consistent set of equa-
tions. Using Eqs. �21� and �25� the eigenvalue problem
�MQ�u=��NQ�u, determining the quasiparticle orbitals and
energies, can be expressed as

��M� − �MB��u = ���I� − �NB��u . �26�

The N solutions with lowest energy represent excitations in
the N−1 system, and contribute to the density matrix.

A detailed discussion of this procedure, and its relation to
DFT, will be given in a future presentation �54�. Here we
merely want to demonstrate the feasibility of such an
approach, by reproducing the G0W0 results of Sec. IV.

B. Background separation in the spectral function

Since we have assumed the G0W0 propagator to be diag-
onal in the HF basis, the same holds for the spectral function
S��E�. The contribution of the quasiparticle and background
components to the N�

�±� and M�
�±� integrals is most easily ob-

tained by replacing the propagator by a three-pole ansatz.
One pole at energy �Q� and with strength sQ� should describe
the quasiparticle excitation. The two other poles, at �B�

�±� and
with strength sB�

�±�, reflect the background in the removal and
addition domain. Note that this ansatz is the same as used in
Refs. �28,29,33� to simplify the intermediate propagator in
fully self-consistent calculations.

TABLE VI. Correlation energies �a.u.� for different schemes. In the first row, the HF ground-state energy is given. See caption of Table
V for the labeling of the other rows. Extrapolation bounds are given between brackets. The experimental values are taken from Ref. �48�.

He Be Ne Mg Ar Ca Zn Kr

HF energy −2.862 −14.573 −128.547 −199.615 −526.818 −676.758 −1777.848 −2752.055

MP�2� −0.0368
�−0.0374,−0.0372�

−0.0615
�−0.0745,−0.0730�

−0.338
�−0.389,−0.369�

−0.331
�−0.446,−0.383�

−0.592
�−0.713,−0.655�

−0.529 −0.851 −1.185


�2��GHF� −0.0360
�−0.0356,−0.0344�

−0.0602
�−0.0652,−0.0640�

−0.162
�−0.1594,−�

−0.132
�−0.159,−0.154�

−0.245 −0.018 0.888 0.559


�2��G��28� −0.037 −0.055 −0.339 −0.331 −0.596 −1.135

G0W0 −0.065
�−0.061�

−0.101
�−0.115,−0.114�

−0.276
�−0.298,−0.290�

−0.232 −0.420 −0.192 0.317 0.143

Expt. −0.042 −0.094 −0.391 −0.439 −0.726
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The position and strength of the three poles should be
chosen in such a way that the zeroth and first energy-
weighted moments of the ab initio �G0W0� spectral function
are reproduced, in both the removal and addition domain.
This requirement is sufficient to determine one of the back-
ground poles, e.g., for a hole state ��h the quasiparticle
pole is in the removal domain, and in the addition domain
one simply has

sBh
�+� = 	

�F

+�

dESh�E�, sBh
�+��Bh

�+� = 	
�F

+�

dEESh�E� . �27�

In the removal domain the quasiparticle-background splitting
is somewhat ambiguous, but one must have at least that

sBh
�−� + sQh = 	

−�

�F

dESh�E�, sBh
�−��Bh

�−� + sQh�Qh = 	
−�

�F

dEESh�E� .

�28�

A choice of two more constraints is needed to fix the two
poles, keeping in mind that near the Fermi energy the quasi-
particle pole should be very close to the well-defined quasi-
particle pole of the ab initio spectral function. While the
remainder of the analysis does not depend on the precise
choice, we find that good results are obtained by requiring
the reproduction of two additional energy-weighted mo-
ments. As an example, Fig. 6 shows the G0W0 spectral
function and the three-pole ansatz for the 2s orbital in Ne.

The matrices �NB
�±�� and �MB

�±�� corresponding to the
present ab initio model are now completely known: they are
diagonal and given by NB�

�±�=sB�
�±�, MB�

�±�=sB�
�±��B�

�±�, respectively.

C. Modelling the background contribution

The G0W0 self-energy �a non-self-consistent approach� is
evaluated with HF propagators. The corresponding spectral
function therefore has the properties

	 dES��E� = 1, 	 dEES��E� = ��
HF. �29�

To be consistent the general Eq. �26�, that generates a self-
consistency problem through the dependence of �M� on the

density matrix, should be solved in first iteration as a correc-
tion starting from the HF picture. The first moment �M� ap-
pearing in the general Eq. �26� must therefore be evaluated
with the HF density matrix, and reduces to the HF Hamil-
tonian. Taking into account the diagonal approximation,
the eigenvalue problem of Eq. �26� becomes an algebraic
equation

��
HF − sB�

�+��B�
�+� − sB�

�−��B�
�−� = �Q�sQ� �30�

�with sQ�=1−sB�
�+�−sB�

�−��, which is indeed fulfilled as it is
equivalent with Eq. �29�.

In principle, the modelling of the background quantities
now amounts to finding a functional for �sB�

�±�, �B�
�±�� in terms of

HF quantities. This would then yield the �sQ�, �Q�� and
hence the first two energy-weighted moments of the spectral
function in the removal and addition domain. However, with
the eye on future applications it would be highly impractical
to model �sQp, �Qp� for individual virtual orbitals, since it
would lead to severe basis-set dependence. In the following
we will therefore consider only the summed contributions of
the virtual orbitals, to the correlation energy.

The correlation energy �E=E0
N�G0W0�−E0

N�HF� can be
written, according to the Migdal-Galitskii sum rule, as

�E =
1

2��h

�h�H0�h��sQh + sBh
�−� − 1� + �

p

�p�H0�p�sBp
�−�

+ �
h

�sQh�Qh + sBh
�−��Bh

�−� − �h
HF� + �

p

sBp
�−��Bp

�−�
=

1

2��p

�h�H0�h�sBp
�−� − �

h

�p�H0�p�sBh
�+� + �

p

sBp
�−��Bp

�−�

− �
h

sBh
�+��Bh

�+� . �31�

The last line is obtained using Eq. �30� and only contains
background p�−� and h�+� poles, i.e., it does not depend on
the precise description of the quasiparticle-background
separation.

It is convenient to rewrite the correlation energy as a sum
of three terms with definite sign,

�E = 1
2 ��0 + B�+� + B�−�� , �32�

where

�0 = �
p

�h�H0�h�sBp
�−� − �

h

�p�H0�p�sBh
�+� � 0,

B�−� = − �
p

sBp
�−���F − �Bp

�−�� � 0,

B�+� = − �
h

sBh
�+���Bh

�+� − �F� � 0. �33�

The first term is positive �provided �h �H0 �h�� �p �H0 � p�,
which is usual in a normal Fermi system�, and represents
the energy increase of the unperturbed Hamiltonian due to
the depletion of the hole states and occupation of the particle
states. The second and third term are negative, since the
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FIG. 6. The G0W0 spectral function of the 2s orbital in Ne,
represented as a bar diagram. The location and strength of the poles
in the three-pole ansatz are depicted as open circles.
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��+� ���−�� are located above �below� the Fermi energy. Note
that Eq. �32� follows from Eq. �31� by using particle-number
conservation, �psBp

�−�=�hsBh
�+�. The G0W0 self-energy slightly

violates this �the maximal relative deviation is 2�10−3 for
Be�, but the difference for the correlation energy is less than
1 mH.

We now discuss the separate modelling of the three
terms in Eq. �33�. For the B�+� term, the individual
Bh

�+�=sBh
�+���Bh

�+�−�F� corresponding to the occupied orbitals in
all atoms are represented by the open symbols in Fig. 7, as a
function of xh=�F−�h

HF. Since the HF spectrum for the par-
ticle states starts at zero energy, the HF Fermi energy is taken
as �F= 1

2�hI

HF, with hI the ionization orbital. The ab initio data
points in Fig. 7 follow a global behavior as a function of x,
with the reasonable limit that correlation effects become neg-
ligible for orbitals corresponding to deeply bound electrons.
A similar global behavior is observed in Fig. 8, where the
Bh

�+� are plotted versus the average density of the HF orbital,

�̄h =	 dr��r���h�r��2, �34�

with correlation effects decreasing for high densities. Both
trends are related, of course, but we found it useful, espe-
cially for orbitals near the Fermi surface, to keep both the
dependence on xh and on �̄h. Looking at data points �con-
nected by lines in Figs. 7 and 8� of orbitals in the same atom,
it is clear that a function of xh and �̄h can only describe the
average behavior, and considerable scatter is observed. This
could be expected in atoms where details of the allowed
angular-momentum couplings are important �and should be
less in complex molecules�. The final interest, however, lies
in the reproduction of the correlation energy which only
contains the summed contribution of orbitals.

Visual inspection of the data suggested that the average
behavior of the ab initio data points is adequately repre-
sented by a simple functional dependence,

Bh
�+� = sBh

�+���F − �Bh
�+�� � f�xh, �̄h� = e−�xh/3��̄h�−2/3 xh

�1 + xh

,

�35�

to which an atom-dependent proportionality factor should be
added. For the B�+� term in Eq. �33� we therefore propose

B�+� = − �C�+��− �hI

HF�a�+�
��̄hI

�b�+�
�− �hI

�0��c�+���
h

f�xh, �̄h� ,

�36�

where the bracketed proportionality factor is expressed as a
power law in three HF variables characterizing the atomic

TABLE VII. Optimized parameter set for the functional in Eqs.
�36�–�39�.

C a b c

�+� 0.0993 −0.4958 0.4564 0.4200

0 0.1591 −1.5215 1.3938 −0.0817

�−� 0.0249 −0.3630 −0.1078 1.0149

I 0.8039 0.5644 0.3154 −0.3483
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FIG. 7. Contributions of individual hole orbitals to B�+� versus
xh=�F−�h

HF for all atoms. The open symbols represent the G0W0

values of Bh
�+� �see Eq. �35��. The points corresponding to the two

Be orbitals �triangles� and the eight Kr orbitals �squares� are con-
nected by a line. The corresponding solid symbols represent the
values for Be and Kr given by the functional in Eq. �36�.
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FIG. 8. Contributions of individual hole orbitals to B�+� versus
�̄h for all atoms. The open symbols represent the G0W0 values of
Bh

�+� �see Eq. �35��. The points corresponding to the three Ne orbit-
als �triangles� and the six Ca orbitals �squares� are connected by a
line. The corresponding solid symbols represent the values for Ne
and Ca given by the functional in Eq. �36�.
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FIG. 9. The three contributions of Eq. �33� to the G0W0 corre-
lation energy �E versus atomic number Z. The open symbols, con-
nected by a line, represent the G0W0 values. The corresponding
closed symbols depict the values from the functional in Eqs.
�36�–�38�. Circles, 1

2�0; squares, 1
2B�+�; and triangles, 1

2B�−�.

CHARACTERIZATION OF THE ELECTRON PROPAGATOR… PHYSICAL REVIEW A 74, 062503 �2006�

062503-11



system near the Fermi energy: the HF particle-hole gap
�−�hI

HF�, the average density �̄hI
, and the unperturbed energy

�hI

�0�= �hI � Ĥ0 �hI� of the ionization orbital.
For the terms B�−� and �0, which contain contributions of

the virtual orbitals, the same power-law form is used,

B�−� = − �C�−��− �hI

HF�a�−�
��̄hI

�b�−�
�− �hI

�0��c�−�
���

h

f�xh, �̄h� ,

�37�

�0 = �C0�− �hI

HF�a0��̄hI
�b0�− �hI

�0��c0���
h

f�xh, �̄h� . �38�

The presence of the factor ��hf�xh , �̄h�� noticeably enhances
the power-law goodness of fit for these terms.

Finally the G0W0 ionization energy, relative to the HF
Fermi energy, also has definite sign and is likewise expressed
as

�F − �QhI
= �CI�− �hI

HF�aI��̄hI
�bI�− �hI

�0��cI� . �39�

The parameter values obtained by a fit to the G0W0 data
are listed in Table VII. The 16 model parameters were deter-
mined by Monte Carlo optimization using a cost function
with equal weight contributions from the partial energies B�±�

and �0, the total correlation energy �E, and the ionization
energy �QhI

. This was done for a training set of seven atoms,
all except Mg which is used as a test for the parametrization.

The G0W0 data are compared with the results of the func-
tional in Figs. 9 and 10 and Table VIII. The trend for the
partial energies in Fig. 9 is obviously very well reproduced,
with a maximal relative deviation of less than 7% for the
atoms in the training set, and 16% for Mg. The total corre-
lation energy in Fig. 10 results from a delicate cancellation
of partial energies with different signs, but the functional
performs again very well. Note that it is easy to obtain near
perfect fits for just the total correlation energy, but we feel
that it has physical importance to capture the competition
between the three partial energies as well. The largest devia-
tion in the correlation energy does not occur for the test atom
but for Ar. This is understandable, since the functional is

required to reproduce the unphysical trend in the G0W0 cor-
relation energies, which rise and become positive for the
heavier atoms. Since the functional seems to have sufficient
flexibility to do this, one can certainly expect accurate results
for more realistic ab initio models. Figure 10 also contains
the shift in ionization energy from its HF value, which is also
nicely captured by the functional.

Another feature, visible in the partial energies of Fig. 9
and even more pronounced in the correlation and ionization
energies of Fig. 10, is the staggering between the noble gas
atoms and the alkaline earth atoms, with the s subshell clo-
sure in the latter leading to larger correlation effects. The
built-in dependence on the HF ph gap in the functional, is
crucial in this respect, as it can distinguish between the noble
gases and the alkaline-earth series. It is gratifying to see that
the functional is able to put both the correlation and ioniza-
tion energy for Mg �not included in the training set� at
exactly the right position within this trend.

VI. SUMMARY AND CONCLUSIONS

In this paper we studied a specific model for the electron
self-energy to obtain an ab initio spectral function for a se-

TABLE VIII. Comparison between the G0W0 values for the three energy terms in Eq. �33�, the total
correlation energy �E, and the shift in ionization energy �QhI

−�hI

HF, with values from the functional as defined
in Eqs. �36�–�39�.

G0W0 Functional

1
2�0

1
2B�+� 1

2B�−� �E �QhI
−�hI

HF 1
2�0

1
2B�+� 1

2B�−� �E �QhI
−�hI

HF

He 0.031 −0.057 −0.038 −0.065 −0.0090 0.029 −0.058 −0.037 −0.065 −0.0106

Be 0.048 −0.079 −0.070 −0.101 0.0278 0.048 −0.080 −0.073 −0.105 0.0280

Ne 0.334 −0.362 −0.249 −0.276 −0.049 0.345 −0.361 −0.263 −0.279 −0.040

Mg 0.391 −0.347 −0.276 −0.232 0.028 0.330 −0.298 −0.277 −0.245 0.030

Ar 0.678 −0.601 −0.497 −0.420 0.005 0.699 −0.588 −0.470 −0.359 −0.006

Ca 0.755 −0.472 −0.473 0.143 0.012 0.718 −0.471 −0.442 0.139 0.011

Zn 1.700 −0.799 −0.583 −0.192 0.029 1.709 −0.774 −0.605 −0.194 0.034

Kr 2.131 −1.111 −0.877 0.317 0.040 2.188 −1.164 −0.884 0.330 0.040
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FIG. 10. The G0W0 shift in total and ionization energy versus
atomic number Z. The open symbols, connected by a line, represent
the G0W0 values. The corresponding closed symbols depict the val-
ues of the functional. Circles, shift in ionization energy �QhI

−�hI

HF;
squares, correlation energy �E.
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ries of test systems, consisting of the closed-shell atoms He,
Be, Ne, Mg, Ar, Ca, Zn, and Kr. For the self-energy the
G0W0 approximation was taken. This leads to good values
for the ionization energies, somewhat better than the second-
order self-energy, even in the self-consistent version. The
G0W0 correlation energy, however, becomes unrealistic for
the larger atoms.

The inclusion of exchange in the polarization propagator
leads to a realistic spectrum of excited states, but only for the
noble gases. For atoms with a smaller ph gap, the RPA in-
cluding exchange has instabilities, or leads to very small
excitation energies.

In the future we intend to perform similar studies for mo-
lecular systems. Note that the use of pseudopotential meth-
ods while restricting to the valence electrons, can be easily
incorporated in a GF framework.

The present work is part of a program that aims at con-
structing functionals for the correlation part of the electronic
spectral function. A brief outline is given of the underlying

general theory, which leads to single-particle equations de-
scribing the quasiparticle energies and orbitals. More details
concerning the potential exactness of such an approach, will
be provided elsewhere �54�. In this paper we constructed a
simple functional that depends only on HF quantities, but is
able to reproduce the effects of electron correlations embed-
ded in the G0W0 self-energy. Instead of focusing solely on
the correlation energy, we require that several partial contri-
butions to the correlation energy, as well as the ionizaton
energy, are simultaneously reproduced. In this way, one can
expect to obtain a more realistic description of correlated
electronic systems.
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