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How entangled is a randomly chosen bipartite stabilizer state? We show that if the number of qubits each
party holds is large, the state will be close to maximally entangled with probability exponentially close to 1. We
provide a similar tight characterization of the entanglement present in the maximally mixed state of a randomly
chosen stabilizer code. Finally, we show that typically very few Greenberger-Horne-Zeilinger states can be
extracted from a random multipartite stabilizer state via local unitary operations. Our main tool is a concen-
tration inequality which bounds deviations from the mean of random variables which are naturally defined on
the Clifford group.
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I. INTRODUCTION

Randomly chosen states and subspaces play a central role
in the study of quantum information. For example, consider-
ation of random stabilizer codes played a crucial role in one
of the first proofs that there exist good quantum correcting
codes �1�, as well as much of the early understanding of
entanglement distillation and quantum channel capacities
�2–4�. More recently, through an improved understanding of
the typical properties of randomly chosen quantum states,
expressions for many capacities of quantum channels �5–9�,
several advances in cryptography �10–12�, and an emerging
understanding of quantum correlations in high-dimensional
systems �13� have all been attained.

Perhaps the property of quantum states that is most im-
portant to understand is entanglement. Entanglement is an
essential resource in quantum information which neverthe-
less remains quite poorly understood in general. Even in the
asymptotic limit it is difficult to characterize the entangle-
ment in a bipartite mixed state. Indeed, such fundamental
quantities as the entanglement of formation, EF, and the dis-
tillible entanglement, ED, are unknown in all but a few ex-
amples �see, e.g. �14–16��.

It has, however, proved possible to find tight bounds
on the typical EF and ED of a random mixed state,
�U= 1

r �i=1
r U�i��i�U† of rank 2k, with both local dimensions

roughly 2n�1, and where U is distributed according to the
unitarily invariant measure �i.e., the Haar measure� on
U�dAdB� �13�. The surprising result is that with high prob-
ability, �U has EF	n and ED�n− k

2 which implies that a
typical �U of high rank �2k	22n� has near-maximal entangle-
ment of formation while having distillable entanglement
which is exponentially smaller, implying either an extreme
irreversibility in the creation of �U or a near-maximal viola-
tion of the conjecture of EF’s additivity �17�. While this di-
chotomy is quite striking, its physical and computational sig-
nificance are not at all clear—no constructions of such
extreme states are known, and the generation of a state dis-
tributed like �U would require exponential resources. Char-

acterizing the typical entanglement of random states whose
distribution can be generated efficiently is thus crucial to
understanding whether this irreversibility is a fact of nature
or merely a mathematical curiosity.

In this paper, we characterize the typical entanglement for
just such a distribution—the uniform distribution on the set
of stabilizer states, which can be generated efficiently using
the random-walk-based algorithm of Ref. �18�. Stabilizer
states are relevant to almost all known quantum error-
correcting codes, and as such it is hoped that a characteriza-
tion of their typical entanglement properties will not only
shed light on the irreversibility question mentioned above,
but also point us towards better codes. Furthermore, since a
highly entangled multipartite stabilizer state is the fundamen-
tal resource in the one-way model of quantum computation
�19�, a deeper understanding of such states may elucidate the
role played by entanglement in quantum computations.

The bipartite entanglement of stabilizer states has previ-
ously been explored in Refs. �20–22�, with the result that any
such state can be transformed by local unitaries �i.e., it is LU
equivalent� to a tensor product of Einstein-Podolsky-Rosen
�EPR� pairs and �possibly classically correlated� local states.
An expression for the number of EPR pairs that can be ex-
tracted from any particular stabilizer state in terms of the
structure of its stabilizer group was also found. Our contri-
bution is to estimate the expectation of this expression for a
random stabilizer group and provide an exponential bound
on deviations from this estimate. Shortly after this work first
appeared, results for the case of pure stabilizer states were
presented in Ref. �23�.

In contrast to a rank-2k state with a Haar-induced distri-
bution, we find that a random 2n�2n rank-2k stabilizer state
has EF=ED	n− k

2 . That ED and EF must coincide is clear,
since any stabilizer state is LU equivalent to the tensor prod-
uct of EPR pairs and a separable state. It is fascinating, how-
ever, that the value they take is essentially maximal—a sta-
bilizer state of rank 2k can have at most 2n−k pure qubits,
and in a typical such state each of these is half of an EPR
pair.

In addition to these results on bipartite entanglement, we
are able to characterize the typical number of Greenberger-
Horne-Zeilinger �GHZ� states that can be extracted via local
unitaries from a random multipartite stabilizer state. Unlike
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EPR pairs, which are abundant in a random bipartite state,
GHZ-equivalent states are quite uncommon. For example,
we find that for a pure m-partite state in which all m systems
are of size roughly n qubits, in the limit of large n the ex-
pected number of GHZ states that can be extracted via local
unitaries is close to zero and that significant deviations from
this mean are unlikely.

We will concentrate on the case where all of our systems
have asymptotically equal numbers of qubits �e.g., bipartite
systems of nA+nB qubits with nA=n and nB=n+O�log n��,
both because this case is likely the most useful in terms of
applications and because it is exactly where standard
Markov-type arguments break down. For instance, in the
case of bipartite stabilizer states a straightforward Markov
inequality argument can be used to give bounds on devia-
tions of entanglement from its mean of the form 1

2nA−nB
, but

when nA=n and nB=n+O�log n� this bound is quite weak,
scaling like 1

nO�1� . Using a new concentration inequality, we
are able to provide exponential bounds in this regime.

Our main tool throughout is theorem II.1, which captures
the notion of measure concentration on the Clifford group. In
particular, this theorem is a quantitative version of the intu-
itively obvious observation that a slowly varying function on
the Clifford group will not deviate significantly from its
mean. The result is quite general, and we expect it will prove
useful in further analyses of the entanglement of stabilizer
states, as well as the analysis of stabilizer codes.

The paper is organized as follows. In Sec. II we present a
bound on deviations from the mean of random variables on
the Clifford group. In Sec. III we use this inequality to char-
acterize the typical entanglement in a pure bipartite stabilizer
state, and in Sec. IV we study pure multipartite states, while
in Sec. V we turn our attention to mixed bipartite stabilizer
states. Section VI contains a few comments on other appli-
cations of our inequality as well as some open questions.

We use the following conventions throughout. Logarithms
and exponents are always base 2. The Pauli group on n qu-
bits is denoted by Pn. An abelian subgroup of Pn with 2n−k

elements will typically be called Sn−k and have generators

Si�i=1

n−k. Two elements of Pn, P1 and P2, either commute
or anticommute with the commutation relation P1P2
= �−1���P1,P2�P1P2 serving as a definition for ��P1 , P2�. An-
gular brackets will denote the group generated by the ele-
ments they enclose, so that, e.g., Sn−k= �Si�i=1

n−k. The dimension
of a subgroup of Pn is the logarithm of the number of ele-
ments in the group, so that dim Sn−k=n−k. We say that ��� is
stabilized by U when U���= ��� and call ��� a stabilizer state
on n qubits if it is simultaneously stabilized by all elements
of a maximal Abelian subgroup �S� of the Pauli group on n
qubits. A mixed stabilizer state of rank 2k is the maximally
mixed state on the subspace stabilized by an Abelian sub-
group S�Pn of size 2n−k or, equivalently, is the maximally
mixed state on the stabilizer code defined by S.

The Clifford group on n qubits is denoted by Cn, and
its elements are typically called c. A real valued function
F on a metric space �X ,d� is called �-Lipschitz if
�F�x�−F�y����d�x ,y� for all x ,y�X. E denotes an expec-
tation value, while g�RG is a random variable distributed
uniformly on G.

II. CONCENTRATION INEQUALITY
ON THE CLIFFORD GROUP

The notion of measure concentration is a generalization of
the basic fact from probability theory that the empirical mean
of many independent, identically distributed �i.i.d.� random
variables, 1

N�i=1
N Xi, tends to be very close to the mean of the

underlying distribution. The point is that not only the empiri-
cal mean of a large number of random variables, but any
function which depends in a sufficiently smooth way on a
large number of fairly independent random variables will
tend to be roughly constant. The imprecision of the previous
sentence is a reflection of the broad range of problems this
idea can be applied to—one’s definition of “fairly indepen-
dent” or “roughly constant” depends on the particular ques-
tion under consideration �24–26�. To make precise the notion
of a smooth function on the Clifford group, we must first
introduce a notion of distance between two elements of the
group. One natural candidate is an analog of the Hamming
distance on the set of binary strings. In particular, for some
fixed set of generators of Pn, 
Si�i=1

2n , we let the 
Si� distance
between c1 ,c2�Cn be the number # of generators on which
c1 and c2 disagree �ignoring differences in phase�,

d
Si�
�c1,c2� = # 
i�c1Sic1

† � c2Sic2
†� ,

and choose the smallest such value over all generating sets
of Pn:

d�c1,c2� = min

Si�

d
Si�
�c1,c2� . �1�

That this defines a metric is shown in Sec. IV.
Our “smooth” functions will be those which are

1-Lipschitz. That is, we will study deviations from the mean
of real functions F on Cn such that �F�c1�−F�c2���d�c1 ,c2�.
The precise meaning of the claim that they are “roughly con-
stant” is given by the following theorem.

Theorem II.1. Let F be a 1-Lipschitz function on �Cn ,d�
and c�RCn be a uniformly distributed random variable. Then

P„�F�c� − EF�c�� � 	… 
 2 exp�−
	2

64n

 .

We will prove this theorem, which is quite similar to a result
of Maurey for the symmetric group �27�, by using a result of
�24� that characterizes concentration on a finite metric space.
In particular, we say that a metric space �X ,dX� has length at
most L if there exists an increasing sequence of partitions
�i.e., a filtration� of X,


X� = �0 � �1
¯ � �m = ˆ
x�‰x�X,

and real numbers a0 , . . . ,am with �i=0
m ai

2=L2 such that if
�i= 
Aj

i� j=1,. . .,ri
and Aj

i ,Ak
i �Ap

i−1 there exists a bijection �ip
jk :

Aj
i →Ak

i that satisfies dX(x ,�ip
jk�x�)�ai �Fig. 1 may help elu-

cidate this fairly clumsy definition�. A concentration inequal-
ity is then given by the following.

Theorem II.2 �Theorem 4.2 of �24��. Let �X ,dX� be a finite
metric space of length at most L and let P be the normalized
counting measure on X. Then, for every 1-Lipschitz function
F on �X ,dX� and every 	
0,
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P�
F 
 EF + 	�� � exp�− 	2/2L2� .

Theorem II.1 is an immediate consequence of the following
theorem.

Theorem II.3. The length of �Cn ,d� is at most �32n.
Proof. Let 
Si�i=1

2n be a set of generators for Pn such that
for t� 
1, . . . ,n�, S2t−1 and S2t anticommute and all other
pairs of generators commute. We choose our filtration of Cn
to be

�k = 
AP1P2¯Pk

k � ,

where 
Pi�i=1
k are independent elements of Pn such that

��Pi , Pj�=��Si ,Sj� and

AP1P2¯Pk

k = 
c � Cn�cSic
† = Pi for i = 1, . . . ,k� .

Now we need to find bijections

�P1,. . .,Pk−1

PQ : AP1P2¯Pk−1P
k → AP1P2¯Pk−1Q

k .

We first consider the case where Q is independent of

P1 , . . . , Pk−1 , P� and k is even. Since both P and Q anticom-
mute with Pk−1 and commute with 
Pi�i=1

k−2, we can always
find T1 and T2 such that the ordered lists


P1, . . . ,Pk−1,P,Q,T1�

and


P1, . . . ,Pk−1,Q,P,T2�

have the same commutation relations and are independent
generators for the same group. In particular, given any T1
which commutes with 
Pi�i=1

k−2 and is independent of


P1, . . . ,Pk−1,P,Q� ,

we can simply choose

T2 = T1

if ��P ,T1�=��Q ,T1� and

T2 = Pk−1T1

if ��P ,T1����Q ,T1�. This allows us to extend both sets to
generators of Pn with the same Pk+3 , . . . , P2n. That is,

SP = 
Si
P�i = 
P1, . . . ,Pk−1,P,Q,T1,Pk+3, . . . ,P2n�

and

SQ = 
Si
Q�i = 
P1, . . . ,Pk−1,Q,P,T2,Pk+3, . . . ,P2n�

both generate the Pauli group and have the same commuta-
tion relations. As a result, there is an element of the Clifford
group cPQ�Cn such that

cPQSi
PcPQ

† = Si
Q

and choosing

�P1,. . .,Pk−1

PQ �c1� = c1cPQ

gives us

d„c1,�P1,. . .,Pk−1

PQ �c1�… � d
c1
†Si

Pc1�„c1,�P1,. . .,Pk−1

PQ �c1�… � 3.

If k is odd and Q is independent of


P1, . . . ,Pk−1,P� ,

we can make a similar argument. In particular, if PQ=−QP
�i.e., ��P ,Q�=1�, we can immediately extend


P1, . . . ,Pk−1,P,Q�

and


P1, . . . ,Pk−1,Q,P�

to

SP = 
Si
P�i = 
P1, . . . ,Pk−1,P,Q,Pk+2, . . . ,P2n�

and

SQ = 
Si
Q�i = 
P1, . . . ,Pk−1,Q,P,Pk+2, . . . ,P2n� ,

so that SP and SQ have the same commutation relations and
are different in only two entries. Choosing

�P1. . .Pk−1

PQ �c1� = c1cPQ,

where again

cPQSi
PcPQ

† = Si
Q,

we find

d„c1,�P1,. . .,Pk−1

PQ �c1�… � 2.

If P and Q commute, there are T1 and T2 such that


P1, . . . ,Pk−1,P,Q,T1,T2�

are independent and satisfy

TjPi = PiTj ,

QT1 = T1Q ,

QT2 = − T2Q ,

FIG. 1. Finding the length of Cn. We construct an increasing
sequence of partitions of Cn, 
Cn�=�0��1

¯ ��2n={
c�}c�Cn
, such

that any pair of sets in a partition which belong to the same set in
the preceding partition have a bijection �, which satisfies
d(c ,��c�)�4. Our filtration contains 2n partitions, so our length is
then �32n.
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PT1 = − T1P ,

PT2 = T2P ,

so that there are

SP = 
Si
P�i = 
P1, . . . ,Pk−1,P,Q,T1,T2,Pk+4 . . . ,P2n�

and

SQ = 
Si
Q�i = 
P1, . . . ,Pk−1,Q,P,T2,T1,Pk+4, . . . ,P2n� ,

with the same commutation relations. Once again we use cPQ
such that

cPQSi
PcPQ

† = Si
Q

to define �P1,. . .,Pk−1

PQ and find that, this time,

d„c1,�P1,. . .,Pk−1

PQ �c1�… � 4.

When Q� �P1 , . . . , Pk−1 , P� and k is even, the requirements
that Q� �P1 , . . . , Pk−1�, ��Pi ,Q�=0, for i=1, . . . ,k−2, and
��Pk−1 ,Q�=1 imply that the only choice for Q that is not
equal to P is just Q� PPk−1, so we can let

SP = 
P1, . . . ,Pk−1,P,Pk+1 . . . ,P2n�

and

SQ = 
Si
Q�i = 
P1, . . . ,Pk−1,Q,Pk+1, . . . ,P2n�

and proceed as above, with the result that

d„c1,�P1,. . .,Pk−1

PQ �c1�… � 1.

If k is odd and Q� �P1 , . . . , Pk−1 , P�, we find that Q can only
satisfy the required commutation relations and belong to
�P1 , . . . , Pk−1 , P� if Q� P, so in this case we find that

d„c1,�P1,. . .,Pk−1

PQ �c1�… = 0

�recalling that we equate Clifford group elements which dif-
fer only by phases�.

Collecting the various cases, we see that we can find the
bijections we require with ak�4, so that the length of Cn is
no more than

L =��
k=1

2n

ak
2 = �32n .

�

III. PURE BIPARTITE STATES

Recently, �22� studied the entanglement of a bipartite sta-
bilizer state in terms of the structure of its stabilizer group.
Their result can be summarized as follows.

Theorem III.1 �result 1 of �22��. Let ��AB� be a pure bi-
partite stabilizer state with stabilizer S. Then, ��� is LU
equivalent to

E���AB�� =
1

2
�dim S − dim�SÂ + SB̂�� = nA − dim SB̂ �2�

EPR pairs, where SÂ= 
g�S �g= IA � gB� and SB̂= 
g�S �g
=gA � IB�.

Using this theorem, we will investigate the average en-
tanglement of a stabilizer state, then strengthen our results to
statements about typical states using theorem II.1. We begin
with the following lower bound.

Theorem III.2. Let ��� be uniformly distributed on the set
of stabilizer states on AB, where A contains nA qubits and B
has nB qubits and nA
nB. Then

E�S��A�� 
 nB −
2nB

2nA
,

where �A=TrB��AB���AB� and S��A�=−Tr�A log �A is the
von Neumann entropy of �A.

Proof. We use a result of �28� for the average subsystem
purity of a state uniformly distributed over the entire Hilbert
space AB, together with a result of �18�, which implies that
the average over stabilizer states takes the same value. In
particular, in �29� it was shown that if ��� is a uniformly
distributed pure state on AB,

ETr�A
2 =

2nA + 2nB

2nA+nB + 1
,

where the expectation is with respect to the uniform measure
on all states in AB. Furthermore, the observation of �18� that
a so-called bilateral Clifford twirl is equivalent to a bilateral
full twirl implies that the average purity of a random stabi-
lizer state has the same value. That is,

ETr�A
2 =

2nA + 2nB

2nA+nB + 1
,

where the expectation is with respect to the uniform distri-
bution on stabilizer states. To complete the proof, we use the
fact that −log Tr�2�S��� together with the concavity of the
log function to conclude

ES��A� 
 − E log Tr�A
2 
 − log ETr�A

2


 log�2nA+nB + 1

2nA + 2nB

 
 nB −

2nB

2nA
.

�
We will also need the following lemma, whose proof de-

pends on a more general lemma of Sec. IV.
Lemma III.3. As a function of c�CnA+nB

, the entanglement
of ���=c�0���nA+nB� is 1-Lipschitz with respect to the metric
defined in Eq. �1�.

Proof. Using Eq. �2� together with lemma IV.4, which is
proved below, immediately implies the result. �

Theorem III.2, which estimates the average entanglement
of a bipartite stabilizer state, can be combined with this
evaluation of the Lipschitz constant of the bipartite entangle-
ment of stabilizer state ���=c�0���nA+nB� to yield a character-
ization of the typical entanglement in such a state. That is,
we can use these to prove theorem III.4.

Theorem III.4. Let ��� be uniformly distributed on the set
of stabilizer states on AB, where A contains nA qubits and B
has nB qubits and nA
nB. Then the probability of the en-
tanglement of ��� deviating from its mean is given by
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P„S��A� 
 E�S��A�� − 	… � exp�−
	2

64�nA + nB�
 ,

where �A=TrB ��AB���AB� and S��A�=−Tr�A log �A is the
von Neumann entropy of �A. In particular, letting nA=n
+� log n
n=nB, 	=n�, and considering n
2/� leads to

P„S��A� 
 n�1 − ��… � exp�−
n�2

512

2n

2n + � log n

 .

Proof. From theorem II.1 and lemma III.3, we can imme-
diately conclude that

P„S��A� 
 ES��A� − 	… � exp�−
	2

64�nA + nB�
 .

From theorem III.2 we know that E�S��A��
nB− 2nB

2nA
, so that

P�S��A� 
 n −
1

n� − n�/2� � exp�−
n�2

256

n

2n + � log n

 ,

which leads to

P„S��A� 
 n�1 − ��… � exp�−
n�2

512

2n

2n + � log n

 .

�

IV. PURE MULTIPARTITE STATES

The results of the previous section have immediate con-
sequences for the number of GHZ states that can be LU
extracted from a random stabilizer state. In particular, we
find the following theorem.

Theorem IV.1. Let ��m� be a state uniformly distributed on
the set of pure m-partite stabilizer states with each party
holding n qubits and where m
4. Then if for every 4�m�
�m we let �m����m�� denote the maximal number of

m�-GHZ states, 1
�2

��0��m�+ �1��m��, which can be extracted
from ��m� via unitaries which act locally �with respect to a
partition of the m parties into m� groups�,

P„�m���m�� � �n…

� exp�− �m/2�n �2

512
�1 − 1/�m/2��2�1 − 1/m�


and

P„�m����m�� � �n… � exp�− n
�2

64

1

m

 .

Proof. We first consider the case where m�=m. Let
k= �m /2�, B denote parties 1 through k and A denote the rest,
and consider the number of EPR pairs with respect to the
A �B partition that can be extracted from ��m� via local uni-
taries on A and B. Supposing �m���m��=g, we can see that
the total number of EPR pairs that can be LU extracted be-
tween A and B is no larger than kn− �k−1�g as follows. First
notice that local unitaries do not alter the local entropies of
A and B, so that the number of EPR pairs A and B can extract
is no more than S�B�. However, the kg qubit support of

B’s part of the g GHZ states contains only g bits of entropy,
since the reduced state on these qubits is of the form
� 1

2
��0��0��k+ 1

2 ��1��1��k��g. B’s remaining kn−kg qubits can
have a maximum of kn−kg bits of entropy, leading us to
conclude that S�B��kn−kg+g.

Letting �= �m−2�m /2���n / log n� and using theorem III.4
we thus find the probability that �m���m����n is no larger
than

P„S��B� 
 kn − �k − 1�n�… � exp�−
kn�2

512
�1 − 1/k�22kn

mn

 .

Similarly, for 4�m�
m, let B denote the three smallest
groups in our partition and let k be the number of parties in
B. Once again, if �m����m����n, the number of EPR pairs
that can be extracted between A and B can be no larger than
kn− �k−1�n�. Theorem III.4 can then be used, this time with
�= �m−2k��n / log n�, to show that

P„S��B� 
 kn − �k − 1�n�… � exp�−
kn�2

512
�1 − 1/k�22kn

mn

 .

The expressions in the theorem are obtained by substitut-
ing the values for k and in the case of m�
m using the fact
that k
3. �

We cannot understand the entanglement of a tripartite sta-
bilizer state by simply considering the bipartite entanglement
of various partitions. In this case, we use the following theo-
rem, which was proved in �21�.

Theorem IV.2 �theorem 3, corollary 2 of �21��. Let ��� be
a pure m-partite stabilizer state with stabilizer S. Then the
number of GHZ states, ��m

+ �= 1
�2

��0��m+ �1��m�, extractable
from ��� via local unitaries is

��S� = dim�S� − dim�Sloc� , �3�

where Sloc is given by Sloc=��=1
m S�̂ and S�̂=
g

�S �g acts trivially on ��.
Below we will find an upper bound for the expected value

of Eq. �3� when m=3, which we will then combine with the
following lemmas, which imply that the number of GHZ
states LU extractable from a random m-partite stabilizer state
�m fixed� concentrates tightly around its mean value when
the number of qubits each party holds is large.

Lemma IV.3. Consider the binary representation of Pn on
F2

2n, wherein c�Cn is represented by an element of GL2n�F2�
�see, e.g., �30��. The metric of Eq. �1� is given by

d�c1,c2� = 2n − dim Ker�c1̂ − c2̂� ,

where, e.g., ĉ�GL2n�F2� is the representative of c�Cn.
This lemma, together with the fact that Rank�c1−c3�

�Rank�c1−c2�+Rank�c2−c3�, makes it clear that the dis-
tance defined in Eq. �1� is in fact a metric.

Proof. To see this, note that

min

Si�

# 
i�c1Sic1
† � c2Sic2

†� = min

Si�

# 
i��c1̂ − c2̂�Si � 0�

= 2n − dim Ker�c1̂ − c2̂� . �4�

�

TYPICAL ENTANGLEMENT OF STABILIZER STATES PHYSICAL REVIEW A 74, 062314 �2006�

062314-5



Lemma IV.4. As a function of c�Cn, where n=��=1
m n�, the

dimension of Sloc
c �defined in theorem IV.2� of Sc=cS0c† for

some fixed stabilizer S0 is m-Lipschitz with respect to the
metric defined in Eq. �1�. In particular, the number of
m-partite GHZ states �with m
3� that can be LU extracted
from the state with stabilizer Sc=cS0c†, which is given by
��c�=dim�Sc�−dim�Sloc

c �, is also m-Lipschitz.
Proof. Here, Sloc=��S�̂, where S�̂ is the subset of S which

acts trivially on �. The dimension of Sloc
c1 is given by

dim�Sloc
c1 � = Rank��

�

��̂�Sc1��̂� ,

where ��̂ is the projector onto the set of Paulis that act
trivially on �̂ and �Sc1 is the projector onto Sc1. If we let
d�c1 ,c2�= l, we see that

�dim�Sloc
c1 � − dim�Sloc

c2 ��

= �Rank��
�

��̂�Sc1��̂� − Rank��
�

��̂�Sc2��̂��
� Rank��

�

��̂�Sc1��̂ − �
�

��̂�Sc2��̂

= Rank��

�

��̂��Sc1 − �Sc2���̂

� �

�

Rank��c1 − c2���S0
��

� m�2�
�

n� − dim Ker�c1 − c2�

= md�c1,c2� .

�
The following theorem shows that the average number of

GHZ states which are LU extractable from a random tripar-
tite stabilizer state is quite small, as long as none of the
systems is larger than the other two combined.

Theorem IV.5. Let ��ABC� be a uniformly distributed tri-
partite stabilizer state with local dimensions such that nA
+nB
nC, nB+nC
nA, and nA+nC
nB. Then, the expected
number of GHZ states that can be extracted from ��ABC� is
quite small. In particular,

E����ABC�� �
nC

2nA+nB−nC
+

nB

2nA+nC−nB
+

nA

2nB+nC−nA
.

Proof. We first express the dimension of Sloc using the
inclusion-exclusion formula

dim�SÂ + SB̂ + SĈ� = dim�SÂ� + dim�SB̂� + dim�SĈ�

− dim�SÂ � SB̂� − dim�SÂ � SĈ�

− dim�SB̂ � SĈ� . �5�

Now note that the bipartite entanglement of the state with
respect to the A �BC partition is nB+nC−dim SÂ, which must
be no larger than nA. Making a similar observation for the
AB �C and AC �B partitions and adding the resulting inequali-
ties gives

2�nA + nB + nC� − dim SÂ − dim SB̂ − dim SĈ � nA + nB + nC

so that

dim SÂ + dim SB̂ + dim SĈ � nA + nB + nC. �6�

In order to understand the behavior of the dimensions of the
form dim SÂ�SB̂, first let S0 be a fixed stabilizer on ABC and
T0 ,T1 also be stabilizers on ABC of the same size as S0. The
Clifford elements c0 such that T0=c0S0c0

† can be put into a
one-to-one correspondence with c1 such that T1=c1S0c1

† by
using some �fixed� c0→1 such that c0→1T0c0→1

† =T1, so that a
uniform distribution of c on the Clifford group induces a
uniform distribution over stabilizers of a fixed size for cS0c†.
Thus, letting S=cS0c† with c uniform on the Clifford group,
we have

E�#SÂ � SB̂�

= E�#
s � S�s � SÂ and s � SB̂��

= E��
s�S

1�s � TA and s � TB�

= E� �

s0�S0

1�cs0c† � TA and cs0c† � TB�

= 1 + E� �

s0�S0,s0�I

1�cs0c† � TA and cs0c† � TB�

= 1 + �

s0�S0,s0�I

E†1�cs0c† � TA and cs0c† � TB�‡

= 1 + �#S0 − 1�E�1�cs0c† � TA and cs0c† � TB�‡ ,

where we have let s0 be some fixed nontrivial element of S0

in the last equation.
A nontrivial s0 generates a stabilizer of dimension 1, so

that the argument above implies that cs0c† is distributed uni-
formly on the nontrivial Paulis, leading us to conclude that

E�#SÂ � SB̂�

= 1 + �#S − 1�P�s � TA�s � TB,s � I�P�s � TB�s � I�

= �2nA+nB+nC − 1�� 4nC − 1

4nA+nC − 1

� 4nA+nC − 1

4nA+nB+nC − 1

 + 1

� 2nA+nB+nC
1

4nA+nB
+ 1 = 1 +

1

2nA+nB−nC
,

where TA �TB� denotes the subgroup of PnA+nB
that is trivial

on A �B�.
Since #SÂ�SB̂ is at least 1 and must be a multiple of 2,

this implies that P�#SÂ�SB̂=1�
1− 1
2nA+nB−nC

, which in turn
implies

E dim SÂ � SB̂ �
nC

2nA+nB−nC
.

In a similar way we can bound E dim SÂ�SĈ and
E dim SB̂�SĈ to find that

E dim SÂ � SB̂ + E dim SÂ � SĈ + E dim SB̂ � SĈ

is no larger than
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nC

2nA+nB−nC
+

nB

2nA+nC−nB
+

nA

2nB+nC−nA
,

which can be combined with Eqs. �6�, �5�, and �3� to give

E��S� = E�dim S − dim Sloc�

�
nC

2nA+nB−nC
+

nB

2nA+nC−nB
+

nA

2nB+nC−nA
.

�
Theorem IV.5 can be combined with lemma IV.4 to obtain

the following theorem.
Theorem IV.6. Let ��ABC� be a uniformly distributed

tripartite stabilizer state with local spaces of nA=�n,
nB=�n and nC=n qubits with � ,��1, �+1��, and
�+1��. Then, the number of GHZ states that can be ex-
tracted from ��ABC� is quite small. In particular, letting
	=max��−�+1,�−�+1�,

P����ABC� � �� + � + 1�
n

2	N + �n�
� exp�− n

�2

64
� 1

9�� + � + 1��
 .

V. MIXED BIPARTITE STATES

As a rule, the entanglement properties of mixed states can
be quite difficult to understand. A mixed stabilizer state,
however, is always LU equivalent to a tensor product of EPR
pairs and a separable state, which dramatically simplifies the
picture. Much like in the pure state case, the entanglement of
a mixed stabilizer state can be characterized entirely in terms
of the structure of its stabilizer group. The characterization
we will need is given by the following theorem, which we
will immediately use to get an estimate for the expected en-
tanglement of a mixed stabilizer state.

Theorem V.1. �adapted from theorem 5 of �21��. Let � be a
mixed bipartite stabilizer state with nA qubits on Alice’s sys-
tem, nB on Bob’s, and �nA+nB−k�-dimensional stabilizer S.
The entanglement properties of � can be characterized using
S�, an extension of S which is the stabilizer of a purification
of � to a system C. In particular, � is LU equivalent to

E��� �
dim Sloc�

2
− k +

1

2
�Rank��A� − nA + Rank��B� − nB�

�7�

EPR pairs together with �possibly classically correlated� lo-
cal states, where Sloc� =S

Â
� +S

B̂
� +S

Ĉ
� .

Proof. In �21� it was shown that the number of EPR pairs
between A and B that can be extracted by LU operations on
a tripartite pure stabilizer state of full local ranks having

stabilizer S̃ is exactly 1
2 �dim S̃Ĉ+dim S̃loc−dim S̃�. The state

we are considering, with stabilizer S�, may not have full
local ranks �i.e., the rank of the reduced state on A or B may
be less than the dimension of that system� but a full rank
state with the same entanglement can be constructed by hav-

ing Alice and Bob discard any local pure states. The resulting

state has local subgroup S̃loc� with dimension dim S̃loc�

dim Sloc� − �nA+nB−Rank�A−Rank�B� so that, noting that
discarding the stabilizers of the local pure states changes the
dimension of SĈ and S by the same amount,

E��S�� = E��S̃�� =
1

2
�dim S̃

Ĉ
� + dim S̃loc� − dim S̃��

�
1

2
�dim S

Ĉ
� + dim Sloc� − dim S��

+
1

2
�Rank �A + Rank �B − nA − nB� . �8�

�
Theorem V.2. Let �Sn−k be the a rank 2k stabilizer state on

AB with stabilizer Sn−k, where A contains nA=n+� log n qu-
bits, B has nB=n qubits and k=�n with 0
��2. If S is
uniformly distributed,

�1 −
�

2

n +

�

2
log n � E�E��S�� � �1 −

�

2

n −

n�

2k −
1

n� .

�9�

Proof. We first consider the state whose stabilizer is
S0= �Z1 , . . . ,ZnA+nB−k�, where we have chosen some ordering
of the qubits on AB. This state, which we call �0, is the
reduced state on AB of the pure state on ABC with stabilizer
S0�= �Zi

AB ,ZnA+nB−k+j
AB Zj

C ,XnA+nB−k+j
AB Xj

C�, where i=1, . . . ,nA

+nB−k and j=1, . . . ,k. Letting and TA �TB� denote the
subgroup of P�nA+nB� that is trivial on A �B� and using

the observation in the proof of theorem IV.5 that dim S
Â
�

+dim S
B̂
� +dim S

Ĉ
� 
nA+nB+nC as well as the fact that

dim S
Â
� �S

B̂
�0 �which follows from the independence of


cZi
ABc† ,cZnA+nB−k+j

AB c† ,cXnA+nB−k+j
AB c†��, we find that

dim Sloc� � �nA + nB + k� − dim�S
Â
� � S

Ĉ
� � − dim�S

B̂
� � S

Ĉ
� � .

Considering first the expected number of elements of
S

Â
� �S

Ĉ
� ,

E # S
Â
� � S

Ĉ
�=�2nA+nB−k − 1�

4nB − 1

4nA+nB − 1
+ 1 � 2nB−nA−k + 1,

we find that

− E�dim S
Â
� � S

Ĉ
� � � − log E # S

Â
� � S

Ĉ
�

� − log�1 + 2nB−nA−k� � −
1

2nA+k−nB
,

and making a similar argument for S
B̂
� �S

Ĉ
� we find

E dim Sloc� � nA + nB + k −
1

2nA+k−nB
−

1

2nB+k−nA
.

Addressing the other terms in E��� by arguing
along the lines of the proof of theorem III.2, we find that
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E Rank��B�
nB− 1
2�nA−nB� and E Rank��A�
nB− 1

2nA−nB
, so that

E�E��S�� is no less than

nA + nB − k

2
−

1

2nA+k+1−nB
−

1

2nB+k+1−nA
+

1

2
�nB − nA −

2

2nA−nB



� n −
k

2
−

1

2k+1� 1

n� + n�
 −
1

n� � n −
k

2
−

n�

2k −
1

n� .

The upper bound is obtained by noting that in the expres-

sion for the EPR rate given in Eq. �8�, dim S̃
Ĉ
� −dim S̃�

=−2k, while nA+nB+k
dim S̃loc� . �
Now that we have an estimate for the expected entangle-

ment, we would like to understand the deviations from this
expected value. Once again, since the entanglement of a sta-
bilizer state is a smooth function on the Clifford group,
bounds on these deviations are essentially immediate.

Lemma V.3. As a function of c�CnA+nB
, the lower bound

in Eq. �7� for the entanglement of a rank 2k stabilizer state
�cS0c† is 5

2 -Lipschitz with respect to the metric defined in Eq.
�1�.

Proof. That dim Sloc� is 3-Lipschitz is immediate from
lemma IV.4. Since Rank �A is simply the bipartite entangle-
ment with respect to the A �BC partition, and similarly
for Rank �B, they are each 1-Lipschitz by lemma III.3. As
a result, the entire right-hand side of Eq. �7� is � 3

2 + 1
2 + 1

2
= 5

2
�-Lipschitz. �
Theorem V.4. Let �Sn−k be the a rank 2k stabilizer state on

AB with stabilizer Sn−k, where A contains nA=n+� log n qu-
bits and B has n qubits, and k=�n with 0
��2. If S is
uniformly distributed, then for n sufficiently large that n

max( 4

��1−�/2� , 1
2� log� 4

��1−�/2� �) and n
log n 
max� �−1

2� , �
��1−�/2� �,

we have

P„E��S� � �1 ± ���n − k/2�…

� 2 exp�−
n�2�1 − �/2�2

25 � 128

2n

2n + � log n

 .

Here E��S�� �1±���n− k
2

� is short hand for the union of

E��S�
 �1−���n− k

2
�� and 
E��S�� �1+���n− k

2
��.

Proof. Lemma V.3 and theorem II.1 immediately imply
that

P�E��S� 
 EE��S� − 	� � exp�−
	2

64�nA + nB�
4

25

 ,

where the fact that E��S� is 5
2 -Lipschitz rather than

1-Lipschitz leads to the extra factor of � 2
5

�2. This implies,
together with theorem V.2, that

P�E��S� 
 n −
k

2
−

n�

2k −
1

n� − n
�

2
�1 −

�

2
��

� exp�−
n�2�1 − �/2�2

25 � 128

2n

2n + � log n

 ,

which, using the conditions on n, gives us

P�E��S� 
 �1 − ���n −
k

2
��

� exp�−
n�2�1 − �/2�2

25 � 128

2n

2n + � log n

 . �10�

Considering deviations above the mean, we find

P�E��S� � n −
k

2
+

�

2
log n + n

�

2
�1 − �/2��

� exp�−
n�2�1 − �/2�2

25 � 128

2n

2n + � log n

 ,

which immediately implies, using the requirement n
log n



�

��1−�/2� , that

P�E��S� � �1 + ���n −
k

2
��

� exp�−
n�2�1 − �/2�2

25 � 128

2n

2n + � log n

 . �11�

Combining Eqs. �11� and �10� completes the proof. �

VI. DISCUSSION

We have presented a general method for bounding the
deviations of random variables which are naturally defined
on the Clifford group. As an illustration of this method, we
characterized the typical entanglement in several sorts of ran-
dom stabilizer states. We found that a random pure state has
entanglement within a fraction �1−�� of the maximum pos-
sible value with probability exponentially close to 1 in the
number of qubits being considered. Similarly, a random
mixed stabilizer state with rank 2k and local dimensions
roughly 2n has entanglement which is within a factor of
�1±�� of n− k

2 . This is maximal in some sense, since it is
exactly the entanglement of a state with the same local di-
mensions and rank which is the tensor product of a maxi-
mally mixed state and EPR pairs. Finally, we showed that the
average number of GHZ states that can be extracted via local
unitaries from a random pure multipartite state is close to
zero and that significant deviations from this mean occur
only with exponentially small probability.

These results raise several questions about high-
dimensional states. Comparing the typical entanglement of a
stabilizer state with that of a mixed state distributed accord-
ing to the unitarily invariant measure considered in �13� re-
veals qualitatively different behavior. In particular, a typical
stabilizer state of rank 2k and local dimensions roughly 2n

will have EF=ED=n− k
2 , whereas a typical unitarily invariant

state with the same rank and dimensions will have EF	n
and ED�n− k

2 and perhaps ED	0. It is essential to under-
stand what gives rise to this difference, since it is the highly
entangled nature of the subspace associated with such a ran-
domly chosen state which makes several communication
protocols possible �10,13,31�. It would also be nice to know
whether states generated by the random circuit model of
�32,33� have typical behavior more like random stabilizer
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states or Haar-distributed states. It seems clear that the be-
havior will be more like Haar-distributed states when the
number of gates in the circuit is allowed to grow exponen-
tially �32�, but it would be interesting to know what happens
for more moderately sized circuits �see also �34��.

The dearth of stabilizer states from which a significant
number of GHZ states can be LU extracted seems to be
related to the fact that random stabilizer codes often fail to
achieve the capacity of a very noisy channel �3,4,35�. The
point is that there exist stabilizer codes which allow encoded
Bell pairs to be transmitted with fidelity close to 1 in a very
noisy regime where the average fidelity achieved by a ran-
dom stabilizer code is bounded away from 1. These “nonran-
dom” codes contain states which are LU equivalent to a large
number of GHZ states, which explains why the codes are in
some sense atypical. In this case, they also have the atypical
property of allowing transmission for a range of noise pa-
rameters in which a typical code does not.

Finally, we believe theorem II.1 could be quite useful in
the analysis of stabilizer codes. At the very least, due to its
generality, theorem II.1 allows one to understand the typical
behavior of a large class of random variables on the Clifford

group without resorting to the often nasty computations of
higher moments that would otherwise be necessary—given
the expectation value, one need only compute the function’s
Lipschitz constant �which is typically quite easy� to immedi-
ately get an exponential bound on the probability of devia-
tions from the mean.
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