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In recent years it has become apparent that constraints on possible quantum operations, such as those
constraints imposed by superselection rules �SSRs�, have a profound effect on quantum information theoretic
concepts like bipartite entanglement. This paper concentrates on a particular example: the constraint that
applies when the parties �Alice and Bob� cannot distinguish among certain quantum objects they have. This
arises naturally in the context of ensemble quantum information processing such as in liquid NMR. We discuss
how a SSR for the symmetric group can be applied, and show how the extractable entanglement can be
calculated analytically in certain cases, with a maximum bipartite entanglement in an ensemble of N Bell-state
pairs scaling as log�N� as N→�. We discuss the apparent disparity with the asymptotic �N→ � � recovery
of unconstrained entanglement for other sorts of superselection rules, and show that the disparity disappears
when the correct notion of applying the symmetric group SSR to multiple copies is used. Next we discuss
reference frames in the context of this SSR, showing the relation to the work of von Korff and Kempe �Phys.
Rev. Lett. 93, 260502 �2004��. The action of a reference frame can be regarded as the analog of activation in
mixed-state entanglement. We also discuss the analog of distillation: there exist states such that one copy can
act as an imperfect reference frame for another copy. Finally we present an example of a stronger operational
constraint, that operations must be noncollective as well as symmetric. Even under this stronger constraint we,
nevertheless, show that Bell nonlocality �and hence entanglement� can be demonstrated for an ensemble of N
Bell-state pairs no matter how large N is. This last work is a generalization of that of Mermin �Phys. Rev. D
22, 356 �1980��.
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I. INTRODUCTION

The entanglement of disjoint �typically spatially separate�
quantum systems is at the heart of quantum information pro-
cessing �1�. For bipartite pure states under LOCC �local op-
erations and classical communication� the quantification and
transformation of entanglement is now well understood.
However, it is also now well understood that the nonideal
situation of mixed states, which pertains in practice, is far
more complicated �or richer, to put a different spin on it� �2�.
In recent years it has also become apparent that a situation in
which only certain operations can be performed also leads to
an interesting theory of entanglement, even if the states are
pure. One approach, leading to a generalized notion of en-
tanglement, dismisses altogether with the bipartite setting
�3,4�. A less radical, and more obviously applicable, idea is
to restrict the local operations to those that are invariant un-
der a superselection rule �SSR� �5–11�. At the same time, the
nature of quantum reference frames in the bipartite setting
has also been hotly debated �see, for example, Refs.
�12–15��.

Much of the work in this area �8–15� has concentrated
upon the case of a U�1� SSR. This is the SSR that can be
motivated by considering the conservation of a locally addi-
tive scalar quantity with a discrete spectrum �12�. It can also

be applied to quantum optics experiments which lack an op-
tical phase reference �that is, which lack a shared clock of
sufficient precision� �13�. Many simplifications arise from
this SSR because U�1� is Abelian �there is only one genera-
tor, corresponding to the local operator of the conserved
quantity�. Non-Abelian Lie-group SSRs �with noncommut-
ing generators� have also been considered �5� but relatively
little attention has been paid to SSRs arising from discrete
groups. An example with obvious application to ensemble
quantum information processing is the symmetric group SN
�the group of permutations of N objects� �6�.

This paper explores issues in entanglement under opera-
tions constrained by symmetry. We use the SN-SSR formal-
ism of Ref. �6�, but also go beyond that work. This work is
important for a number of reasons. First, as noted above, the
symmetric group has been relatively neglected in studies of
entanglement constrained by a SSR. For the U�1�-SSR con-
cepts like bound entanglement �of two distinct types�, acti-
vation, and distillation have been shown to apply, in analogy
to these concepts in mixed-state entanglement. Although not
immediately obvious, we construct specific examples to
show how these concepts apply to the SN-SSR. Second, we
clarify the notion of a reference frame for the SN group,
linking in with the work of von Korff and Kempe �16�. Fi-
nally, we give an example where it is not obvious that the
symmetry constraints on the system can be formulated as a
SSR. Nevertheless, we show that, even under such con-
straints, it is possible to exhibit Bell nonlocality �17� for an
ensemble of identically prepared singlets.*Electronic address: H.Wiseman@griffith.edu.au
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II. ENTANGLEMENT AND SUPERSELECTION RULES

A. Concepts of entanglement

The term entanglement was coined by Schrödinger �18� as
the property that bipartite pure states have when they are not
product states. Schrödinger showed that for such an en-
tangled state, one party �say Bob� could, via a measurement
on his system, collapse Alice’s system with some probability
to any state vector �except those in the null space of Alice’s
reduced state matrix�. Schrödinger thought this nonlocality
was unreasonable enough to be called a “paradox” �19�. A
generation later, Bell �17� discovered that such states had an
even stronger form of nonlocality: for certain measurement
schemes, the correlations between the results of Alice and
Bob cannot be explained by any locally causal theory. This
property, which we will call Bell nonlocality, we regard as
the strongest operational notion of entanglement.

1. Separability and local preparability

When correlations in mixed states were first studied in
earnest �20�, it became clear that the question as to whether a
state was entangled was no longer straightforward. In par-
ticular, Werner showed that there were nonseparable states
such that the measurement correlations of Alice and Bob
could, nevertheless, be explained by a local theory involving
hidden variables. Nonseparable states are states that cannot
be written in the form

� = �
k

�k��k���k� � ��k���k�

	 �k

�k���k� � ��k��

	 � 
�1���1� � ��1�� � 
�2���2� � ��2�� � ¯ .

�2.1�

Here, following Ref. �7�, we have defined a notation that we
will use throughout this paper, that for an arbitrary ray �r�,
we have ��r�	 + �r��r�. Werner called nonseparable states
“EPR correlated states.” They are sometimes identified with
“entangled” states but we will call them non-locally pre-
parable states. This name captures the physical significance
of such states: they cannot be prepared by LOCC from a
product state.

2. n-distillability and bound entanglement

Since Werner, the richness of the entanglement of mixed
states has been further developed, involving concepts such as
bound entanglement, distillation, n-distillability, and activa-
tion �2�. Here, following Ref. �8�, we concentrate upon those
properties of mixed-state entanglement for which there are
obvious analogs in pure state entanglement constrained by
SSRs. First, as noted above, it is useful to define the class of
locally preparable states, which are those states that are
preparable from a product state using LOCC. Another useful
class is the class of states that are distillable �21�. States
in the distillable class are such that n copies can be converted
into nr pure maximally entangled states via LOCC for
some r�0 in the limit n→�. A pure state is either locally

preparable or distillable, depending on whether it is a prod-
uct state or not. On the other hand, there are mixed states that
are neither locally preparable nor distillable. These are the
so-called bound entangled states �22�.

For mixed states, deciding whether a state is locally
preparable is known to be an NP-hard problem computation-
ally �23�, but algorithms to do so exist �24�. It is not known
if it is even possible to determine whether a state is distill-
able. For this reason, a related, but simpler to characterize,
class has been defined: the states that are 1-distillable
�25,26�. A state � is 1-distillable if by LOCC Alice and Bob
can, with some probability, create from it a nonseparable
two-qubit state. �Note that for two qubits, there are no bound
entangled states �27�.� By extension, a state � is n-distillable
if ��n is 1-distillable. �If a state is n-distillable for some n
then it is distillable.� Thus the set of distillable states in-
cludes the 1-distillable states, and in fact it has recently been
shown that the n-distillable states are a subset of the distill-
able states ∀n.�28� Since the 1-distillable states are a subset
of distillable states, there are clearly mixed states that are
neither locally preparable nor 1-distillable. We shall refer to
these states as being 1-bound.

Note that although a nonseparable two-qubit state is al-
ways distillable, this does not mean that undistilled copies
can be used to demonstrate Bell nonlocality, as Werner
showed �20�. However, in our work pertaining to SSRs,
when we demonstrate that a state is 1-distillable, we do
this by showing that it is possible for Alice and Bob by
LOCC to create with some probability a pure entangled state,
as this is strictly stronger than the requirements for being
1-distillable. Thus for these purposes, a state that is
1-distillable allows Alice and Bob to demonstrate Bell non-
locality, which, as noted above, we regard as the strongest
notion of entanglement.

3. Closing the gap: PPT channels

Returning to the 1-bound states in general, this class can
be divided into two by considering what would happen if we
were to give Alice and Bob a PPT channel. That is, a channel
that can distribute only bipartite states for which the partial
transpose is positive. This allows Alice and Bob to perform
PPT operations as well as LOCC. A PPT operation is one
that preserves the positivity of the partial �with respect to
Alice or Bob� transpose of states �29�. With this addition,
Alice and Bob can locally prepare all states with a positive
partial transpose, which includes some states which are
1-bound �22�. We will call these the bound states that become
locally preparable. Conversely, the rest of the 1-bound
states, those that are not PPT, become 1-distillable under
LOCC plus all PPT operations �30�. Hence we call this class
�which is also nonempty �28�� become 1-distillable.

4. Activation

Physically, a PPT channel is equivalent to supplying Alice
and Bob with an infinite number of copies of every state in
the become locally preparable class. Access to these states
automatically makes them locally preparable. However, it is
not necessary to use all of these states to make 1-distillable a
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state in become 1-distillable. Rather, for every � in become
1-distillable there exists a state � in become locally prepa-
rable such that � � � is 1-distillable. This is known as acti-
vation �31�. Note the distinction from distillation, in which
for some � which is in become 1-distillable there exists an n
such that ��n is 1-distillable �28�. Note that it is trivially the
case that any state � which can become locally preparable
does so given a suitable state � which can become locally
preparable: one simply chooses �=�.

5. Measures of entanglement

Finally for this section, we define some measures of en-
tanglement. The entanglement of formation EF of a mixed
state � is the minimum ratio, in the asymptotic limit, of the
number of singlets used to the number of copies of � created
thereby, using LOCC �32�. Similarly, the distillable entangle-
ment ED is the asymptotic yield of arbitrarily pure singlets
that can be prepared by LOCC from copies of � �33�. By
definition, both of these measures are partially additive. That
is, n copies of a state � contain n times the entanglement of
a single copy; E���n�=nE���. Also by definition �31�, and
the fact that LOCC cannot increase entanglement, EF is an
upper bound on ED. In general it is a strict upper bound,
which is obvious from the existence of bound entangled
states where EF�0 when ED=0. However, for pure states
EF=ED. Since we will be concerned with states that can be
made pure by LOCC, there is no need to distinguish between
EF and ED. For a bipartite pure state ��� the entanglement
�measured in e-bits �33�� is defined as the von Neumann
entropy of either subsystem’s reduced density matrix,

E����� = − Tr��Alog2�A� = − Tr��Blog2�B� , �2.2�

where the reduced density matrices for Alice and Bob are
defined as �A=TrB������ � � and �B=TrA������ � �, respec-
tively. TrA,B signifies the partial trace operation with respect
to Alice or Bob.

B. Superselection rules

1. SSRs as an operational restriction

Originally �34�, SSRs were regarded as restrictions on the
states that a system can be in. This could be restated opera-
tionally, as a restriction on the means of preparing a system.
Since any operation could be part of a system-preparation
procedure, it is only sensible to say that a SSR is a restriction
on the operations that can be performed on a system. For an
SSR for charge �the first such SSR ever proposed� �34�, this
restriction would amount to saying that it is not possible to
create superpositions of different charge eigenstates. Alterna-
tively, all operations on the system must commute with
charge-preserving operations such as measurement of charge.
Charge-preserving operations can be built up from transfor-
mations in the Lie group U�1� generated by the charge op-
erator. This formulation allows the concept of SSRs to be
generalized to arbitrary compact Lie groups, or finite groups
�5,6�, as we now explain.

The SSR for a group G of physical transformations can be
defined operationally as follows. Consider for the moment a

single party, Alice, who possesses a quantum system, de-
scribed by a Hilbert space HA. Let the physical transforma-

tion corresponding to an element g of G be denoted T̂A�g�.
Then the G-SSR is the rule that all operations must be G-
invariant. That is, if O is the completely positive map
�→O� representing the operation, then

∀� and ∀ g � G, O�T̂A�g��T̂A
†�g�� = T̂A�g��O��T̂A

†�g� .

�2.3�

Note that “operations” includes unitaries, where O�= Û�Û†,

and also measurements, where, for example, Or�=M̂r�M̂r
†

and �rM̂r
†M̂r=1̂.

According to this definition, we would say that a SSR for

charge Q̂A, for example, would be a SSR for the group U�1�
generated by Q̂A. Such a SSR can be motivated from consid-

eration of a conservation law for global charge Q̂A. Note,
however, that we do not assume that the operational restric-
tion described by a general SSR must be derivable from a
conservation law. For the purposes of this paper, it is more
fruitful to regard a G-SSR as being due to the lack �by Alice�
of an appropriate reference frame �8,35,36�. This idea will be
explored later in the particular context of the SN-SSR.

2. SSRs and mixing

All quantum information processing ultimately ends in
measurement. If a G-SSR is in force over the entire process,
then no outcomes will be changed if the state matrix for
the quantum system � is replaced by the state matrix

T̂A�g��T̂A
†�g� for any g�G. That is, under the G-SSR the

state of the quantum system is represented by an equivalence
class of state matrices. The most mixed state matrix to which
� is physically equivalent is

GA� 	 �G�−1 �
g�G

T̂A�g��T̂A
†�g� �2.4�

for finite groups, where �G� is the group order, and

GA� 	 �
G

d��g�T̂A�g��T̂A
†�g� �2.5�

for compact Lie groups, where d��g� is the Haar measure.
We call this the G-invariant state, as

∀g � G, T̂A�g��GA��T̂A
†�g� = GA� . �2.6�

For traditional SSRs, i.e., groups with a single generator

Q̂A=�qq	̂q, the G-invariant state is simply the block-

diagonal state GA�=�q	̂q�	̂q.
This maximum-entropy member of the equivalence class

is the one containing no irrelevant information, and hence it
is the natural representation of the state of the system as a
state matrix. This state can also be given an operational
interpretation �7�. Given the D-dimensional quantum system
with state � and a heat bath at temperature T, work can
be extracted by allowing the system to come to thermal equi-
librium. The maximum amount of extractable work is
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kBT�ln D−S����, where S is the von Neumann entropy �37�.
Under the constraint of a G-SSR, the amount of extractable
work is reduced by �the positive quantity� kBT
G���, where

G���=S�GA��−S��� is precisely the amount of “irrelevant
information” in �.

It is very important to note that if Alice has two systems
with states �1 and �2, such that GA��1 � �2� equals

�G�−1 �
g�G

�T̂1�g� � T̂2�g����T̂1
†�g� � T̂2

†�g�� , �2.7�

then this state is not the same as GA�1 � GA�2, which equals

�G�−2 �
g,g��G

�T̂1�g� � T̂2�g�����T̂1
†�g� � T̂2

†�g��� . �2.8�

That is why in the above we have referred to the quantum
system, not a quantum system. If we are considering the
whole quantum system �or at least all parts to which the SSR
applies�, then the state � of the system can be replaced by
GA�. But if there are other quantum systems that may enter
into the quantum information processing at a later time, then
it is not true in general that GA� contains all of the relevant
information about that system.

3. Bipartite SSRs

In this paper we are concerned with the impact of SSRs
on entanglement, rather than extractable work �although the
latter is, in the bipartite setting, also related to entanglement
�7��. In this context we have to define the concept of local
SSRs. That is, the local operations of Alice and Bob �say�
must respect local SSRs, rather than a global SSR. This is
obviously applicable in the case when a SSR is motivated by
a conservation law for a locally additive quantity. It is also
applicable more generally if Alice and Bob each lack a ref-
erence frame. It turns out that for the purpose of nonlocal
quantum information processing, what is important is that
Alice and Bob have a shared reference frame. Furthermore,
such a reference frame need only be correlated between the
two parties. This point will be clarified by later examples.

For the concept of a local SSR or local reference frame to
make sense, the physical transformation on the joint Hilbert
space HA � HB corresponding to an element g of the group G
must have the following form:

T̂�g� = T̂A�g� � T̂B�g� . �2.9�

Now if Alice and Bob lack reference frames, then the effec-
tive state for the bipartite system is the locally G-invariant
state �6�

�GA � GB�� , �2.10�

where GA is defined as above, and GB similarly, and these act
locally according to the tensor-product structure of the joint
system. Note that this state is in general very different from
the globally G-invariant state,

G� = � �G�−1 �
g�G

�T̂A�g� � T̂B�g����T̂A
†�g� � T̂B

†�g�� .

�2.11�

Just as in the case of a single party, it is important to remem-
ber that � can be replaced by �GA � GB�� only if it is the state
of the entire quantum system shared by Alice and Bob �or at
least all parts to which the SSR applies�.

4. SSRs and Hilbert space (technicalities)

To determine the effect of SSRs on entanglement it is
necessary to understand how a SSR induces a structure on
Hilbert space. A local G-SSR for Alice splits HA into “charge
sectors” labeled by y:

HA = �
y
Hy

A, �2.12�

where each Hy
A carries inequivalent representations T̂y

A of G.
The sectors are then further decomposed into tensor
products:

Hy
A = My

A
� Qy

A. �2.13�

This is technically known as dividing the system into sub-
systems. The subsystem My

A carries an irreducible represen-
tation �irrep� t̂y

A�g� and the subsystem Qy
A carries a trivial

representation of G. That is to say,

T̂y
A�g� = t̂y

A�g� � Îy
A. �2.14�

For an Abelian SSR such as charge, the subsystems My
A are

one-dimensional, and so the additional tensor product struc-
ture within the irreps is not required. However, for a non-
Abelian SSR such as we will consider later, they are
nontrivial.

The subsystems Qy
A are clearly G-invariant. They have

been called noiseless subsystems, or decoherence-free
subsystems, relative to the decoherence map GA �38�. By
contrast, the subsystems My

A become completely mixed under
the action of GA, because t̂y

A�g� is irreducible. Thus the action
of GA on an arbitrary state matrix � is, in terms of this
decomposition,

GA� = �
y

Dy
A

� Iy
A�	̂y

A�	̂y
A� . �2.15�

Here 	̂y
A is the projection onto the charge sector y, Dy

A is the
trace-preserving map that takes every operator for the sub-
system My

A to a maximally mixed operator �i.e., proportional
to the identity operator on that space�, and Iy

A is the identity
map over operators for the subsystem Qy

A. The effect of the
local superselection rule, then, is to remove the coherence
between different local charge sectors �as in the Abelian
case� and to make the subsystems My

A completely mixed. The
same structure arises for HB and provides an analogous
decomposition of GB. For further details, see �5,6�.

C. Concepts of entanglement constrained by SSRs

In this section we summarize the results of Ref. �8�, show-
ing the analogies between mixed-state entanglement and
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pure-state entanglement constrained by a SSR. The various
concepts of entanglement explored in Sec. II A arise from
considering two parties able to perform LOCC. Adding the
constraint of a local G-SSR �that is, that the local operations
must be G-invariant� we say that the two parties can perform
G-LOCC.

1. Local preparability

The class of pure bipartite states that are locally prepa-
rable under G-LOCC will call G-SSR locally preparable.
Just as preparable under LOCC means preparable from states
that are local �separable�, so preparable under G-LOCC
means preparable from states that respect the G-SSR �i.e.,
that are locally G-invariant�. It is trivial to see that a pure
bipartite state ��� is G-SSR locally preparable if �i� the state
is a product state, and �ii� it is locally G-invariant. Note that
not all pure product states are G-SSR locally preparable; it is
a smaller class than the locally preparable states.

2. n-distillability and bound entanglement

The class of pure states that are 1-distillable under G-
LOCC, which we call G-SSR 1-distillable, is defined as
those states ��� for which the following is true: The two
parties can, by local measurements, project ��� onto a
2�2-dimensional subspace with nonzero probability, such
that the projected state is �i� locally G-invariant and �ii� non-
separable. The significance of the first condition is that the
SSR is now irrelevant, so that the usual condition �nonsepa-
rability� is all that is required for 1-distillability. It is not
difficult to see �6� that ��� is G-SSR 1-distillable if
GA � GB������ � � is 1-distillable under LOCC.

Both the class of G-SSR locally preparable and G-SSR
1-distillable states are nonempty in general �i.e., for a general
SSR�. Moreover, as with mixed-state entanglement, there is a
proper gap between these two classes. The class of states in
the gap contains both product and nonproduct pure states,
and is analogous to the class of 1-bound states in mixed-state
entanglement.

The concepts of n-distillability with the SSR constraint
�and the corresponding classes of pure states, G-SSR n-
distillable� can be defined analogously to the case of uncon-
strained entanglement. It is not difficult to illustrate the phe-
nomenon of distillation; that is, to find examples of states
that are G-SSR distillable but not G-SSR 1-distillable �5�.
Here G-SSR distillable�G-SSR �-distillable is the class of
distillable pure states under this constraint.

3. Closing the gap

Just as in mixed-state entanglement adding a PPT channel
removes the 1-bound class, so it is possible to augment G
LOCC in such a way that any pure state in the gap between
G-SSR locally preparable and G-SSR 1-distillable becomes
either locally preparable or 1-distillable. In this case the aug-
mentation is very simple: one simply lifts the restriction of
the local SSR by providing Alice and Bob with a shared
reference frame. With this additional resource, Alice and Bob
can now implement any operation in LOCC.

Augmenting G-LOCC to LOCC divides the proper gap of
pure states between G-SSR locally preparable and G-SSR
1-distillable into two classes, both of which are nonempty.
All product states that are not locally G-invariant �i.e., prod-
uct states not in G-SSR locally preparable� become locally
preparable with G-LOCC plus the shared reference frame for
G. We call this class G-SSR become locally preparable. This
result follows directly from the fact that all pure product
states are locally preparable with unrestricted LOCC. Simi-
larly all nonproduct pure states which are not in G-SSR
1-distillable become 1-distillable under G-LOCC plus the
shared reference frame for G. We thus call this class G-SSR
become 1-distillable. This result follows directly from the
fact that all pure nonproduct states are 1-distillable with
unrestricted LOCC.

4. Activation

Again, just as in the mixed-state case, it is not necessary
to completely lift the SSR constraint in order to make any
particular state ��� either G-SSR locally preparable or
G-SSR 1-distillable. Rather, all that is needed is some other
pure state ��� which is G-SSR become locally preparable.
Again, this is trivial if ��� is G-SSR become locally prepa-
rable; one simply chooses ���= ���. But the result is non-
trivial when ��� is G-SSR locally preparable, and says that a
state ��� which is G-SSR become locally preparable exists
such that ��� � ����G-SSR 1-distillable. This is analogous
to activation and is an example of a partial reference frame.

5. Measures of entanglement

As discussed in Sec. II B 2, in the unipartite setting a SSR
in general reduces the maximum work that can be extracted
from a system, and that is quantified by the G-invariant state.
Similarly, in the bipartite setting the amount of entanglement
that can be extracted from a system under G-LOCC is less
than under LOCC, and the locally G-invariant state again
quantifies this reduction. The extractable entanglement �48�
from a single copy is given by �6�

EG-SSR��� = ED��GA � GB��� . �2.16�

As noted earlier, there is no way known to compute the dis-
tillable entanglement for a general mixed state. Thus we will
restrict our attention to cases �7� where it is identical to the
entanglement of formation. Also note that if a state �mixed or
otherwise� can be used to demonstrate Bell nonlocality then
it necessarily has nonzero extractable entanglement.

III. THE SYMMETRIC GROUP SSR

A. Constraint of symmetry

The importance of symmetry as a constraint becomes ap-
parent when dealing with many identical systems, that is,
ensembles. By the term ensemble quantum information pro-
cessing we mean �i� there are N �typically �1� identical
“molecules” each consisting of M “atoms” �typically qubits�;
�ii� all operations are symmetric �i.e., affect each molecule
identically�.
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For example, in a nuclear magnetic resonance �NMR� ex-
periment �39� each molecule contains M atoms typically
having a spin-1

2 nucleus. Operations may be implemented
using radio frequency �rf� magnetic pulses and an antenna.
For the case of M =4 the qubits could be the spin-1

2 nuclei of
1H, 17O, 13C, 19F. Another example occurs in spin squeezing
experiments �40�. In this case each molecule is a single two-
level, or multilevel, atom �M =1�. Operations are imple-
mented using uniform laser fields �and detectors for them�,
and thus affect all molecules identically.

In NMR quantum information processing it is also the
case that the molecules are typically prepared in highly
mixed states, and the detection efficiency is very small.
These are practical constraints that apply to current experi-
mental techniques rather than fundamental constraints such
as those previously studied as SSRs. The consequences of
such practical constraints will be discussed later �the first of
these can be overcome at least for small molecules �41��.

There are N! possible permutations of N molecules. The
set of these permutations p �under the permutation operation�
form the symmetric group SN. The fact that symmetric opera-
tions must affect the identical molecules in the same way
leads to what is known as the SN-SSR. Another way of stat-
ing this is to say that only symmetric operations can be per-
formed on ensemble quantum information processing
systems.

Using the SSR formalism of Ref. �6�, the restriction on
operations O for ensemble quantum information processing
systems can be stated as

O�T̂�p��T̂†�p�� = T̂�p��O��T̂†�p�, ∀ p � SN, �3.1�

where p is a permutation of the N molecules and T̂�p� is the
unitary operator that implements that permutation. The N
molecules can each be thought of as subsystems of M atoms
�e.g., for M =4, the N subsystems could be made up of a 1H
atom, 17O atom, 13C atoms, and 19F atom�. Each of the atoms

within a subsystems is acted on by the same T̂�p�, because
they are attached to the same molecule.

When the SN-SSR is in effect the allowable operations on
the system are restricted to being symmetric. Under such
operations the state � is indistinguishable from the states

T̂�p��T̂†�p� for any p�SN. Thus we define the most mixed
state with which � is equivalent �the SN-invariant or
randomly permuted state� as

P� 	
1

N! �
p�SN

T̂�p��T̂†�p� . �3.2�

Under the SN-SSR it is operationally appropriate to use P� to
describe the state �.

B. Local SN-SSR

NMR quantum information processing with pure states
may allow the possibility of scalable quantum computing. In
this paper we are not concerned with this question, but rather
a question of principle: even with pure states, is there en-
tanglement between different subsystems comprising atoms

of the same species? Say we can create molecules such that
there is entanglement between two species of atom �call
them A and B� on each molecule, as in Ref. �41�. Then if we
could isolate an individual molecule, and give one of the
relevant atoms to Alice and the other to Bob, then Alice and
Bob would share entanglement. We could even “give” one
atom �A� to Alice and one �B� to Bob without splitting the
molecule, merely by saying that Alice can control an applied
magnetic field and antenna resonant with the frequency of
A’s nucleus, and Bob similarly with B’s nucleus. However,
the symmetry constraint means that Alice and Bob cannot
isolate a single molecule. So the question then becomes what
is the nature of the entanglement between Alice’s ensemble
of A atoms and Bob’s ensemble of B atoms?

Both Alice and Bob are restricted from individually ad-
dressing the N molecules in their possession, so we must
apply the SN-SSR locally. That is to say, the effective quan-
tum state is �PA � PB��. To understand this, it is helpful to
consider a simple example; say M =3 �nuclei A, A�, and B,
per molecule� and N=2 �there are two molecules, 1 and 2�.
We consider that the As and A�s belong to Alice and the Bs to
Bob. The typical situation in NMR is to assume that the two
molecules are prepared identically. However, for illustrative
purposes it will be useful to consider the following state,
where the molecules are not prepared identically:

��� = �↑A
1↑A�

1 ↑B
1��↓A

2↓A�
2 ↓B

2� . �3.3�

This is so that we can allow for �and see the effect of the
local SN-SSR on� correlations between Alice’s atoms and
Bob’s atom without considering entangled states or mixed
states. Here the states �↑ � and �↓ � are orthogonal states of the
nucleus �spin up and spin down�.

Now if Alice’s local operations �acting only on As and
A�s� cannot distinguish molecules 1 and 2, then this state is
equivalent to

T̂A�p1���� = �↓A
1↓A�

1 ↑B
1��↑A

2↑A�
2 ↓B

2� , �3.4�

where p1 is the swap permutation. Thus under the action of
PA �or PB, or PA � PB�, ��� goes to an equal mixture:

��� →
PA�PB

PA � PB��������

= � 1

2

�↑A
1↑A�

1 ↑B
1��↓A

2↓A�
2 ↓B

2�

� 1

2

�↓A
1↓A�

1 ↑B
1��↑A

2↑A�
2 ↓B

2� . �3.5�

Recall the notation � defined in Sec. II as a shorthand for
describing a projector. The two terms in the mixture are due
to the two elements in the S2 group. Thus under the SN-SSR
Alice knows that both her atoms’ spins are aligned. However,
she loses knowledge of their orientation with respect to
Bob’s atom. Similarly, applying the SN-SSR locally for Bob
causes him to lose information about the orientation of his
spin with respect to Alice’s atoms.

C. General action of P

Consider the general action of P on N copies of a
d-dimensional system. For our purposes d is the total Hilbert
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space dimension of a single molecule in the ensemble. For
example, if the molecules are made up of M qubits, then d
=2M. The general action of P can be understood by analyz-
ing the structure that it induces on the Hilbert space of the
total system, �Cd��N. When the SN-SSR applies to the system,
as is the case for an ensemble of identical particles or sub-
systems, this Hilbert space carries a reducible representation

T̂ of SN. Recall from Sec. II B 4 that this splits the Hilbert
space into “charge sectors:”

�Cd��N = �
y�Y

Cy . �3.6�

The sectors are further decomposed into irreps of SN:

Cy = My � Qy , �3.7�

where My carries an irrep T̂y of SN, Qy carries the trivial irrep

and has dimension given by the multiplicity of T̂y in T̂. The
label y can now be interpreted as a Young frame correspond-
ing to an irrep of SN. The set of Young frames Y, viewed as
Young diagrams, are those consisting of N boxes in up to d
rows of nonincreasing length. We define Dy 	dim�My�. For
further details on the representations of SN, see �42�.

1. Spin-1/2 particles

There are two cases where the structure of the Hilbert
space induced by P is particularly straightforward. The first
is when the subsystems are identical spin-1

2 particles. This
means that the ensemble is composed of d=2-dimensional
systems and the possible Young diagrams are those consist-
ing of N boxes in no more than d=2 rows. This limits the set
of possible Young frames Y to having �N /2�+1 elements,
where �N /2� is the largest integer less than or equal to N /2.
Thus we are able to label each element by a single number.
In this case, since we are dealing with spin systems, it is
sensible to set the label y for the Young frames equal to j, the
“total angular momentum” of the ensemble.

Consider the one-party case of N=2J spin-1
2 particles �i.e.,

M =1 qubit per molecule�. The Hilbert space for each of the
particles is given by the two-dimensional complex vector
space, C2. Using Eqs. �3.6� and �3.7� along with the fact that
there are �J�+1 Young frames labeled by j, the total Hilbert
space can be decomposed into

�C2��2J = �
j=J−�J�

J

M j � Q j . �3.8�

M j and Q j correspond to permutation and angular momentum

subspaces, respectively. Thus permutations of the spins T̂�p�
act only upon M j and joint operations such as rotations act
only upon Q j. The dimensions of the subspaces are

dim�M j� = dj 	 � 2J

J − j
 2j + 1

J + j + 1
, �3.9�

for the permutation subspace and

dim�Q j� = 2j + 1, �3.10�

for the angular momentum subspace.

Thus the basis for C2
�2J in terms of these subspaces can be

written as ��j ,n� � �j ,m�: j=J−�J�
J ;m=−j

j ;n=1
dj �, where n is a permu-

tation label and m is the magnetic quantum number. Now
consider the action of the permutation operator P. Physically,
this operator destroys coherence between the charge sectors
and also acts to randomly permute the particles. Mathemati-
cally this corresponds to P having the following effect on a
state matrix � for an ensemble of N=2J qubits:

P� = �
j=J−�J�

J

D j � I j�	̂ j�	̂ j� . �3.11�

Here 	̂ j is the projection onto the charge sector j, and D j is
the trace-preserving map that acts on the permutation sub-
space to completely mix over the �j ,n� basis states. I j is the
identity map over operators for the angular momentum
subspace Q j.

2. Ensemble of two molecules

The second instance where it is straightforward to study
the Hilbert space structure is when there are only two mol-
ecules in the ensemble �that is, N=2, so the S2 group ap-
plies�. In general the molecules are d-dimensional systems,
so the Hilbert space for each molecule is given by Cd. In this
case there are only two possible Young frames, correspond-
ing to the symmetric and antisymmetric representations of
S2. These are both one-dimensional representations meaning
that the total Hilbert space can be decomposed as

�Cd��2 = �
y=s,a

M1 � Qy = �
y=s,a

Qy , �3.12�

since D1=dim�M1�=1. The components of the angular mo-
mentum subspace, Qs and Qa, correspond to symmetric and
antisymmetric subspaces, respectively. Their dimensions are
given by dim�Qs�= �d2+d� /2 and dim�Qa�= �d2−d� /2.

This structure can be simply understood from the fact that
there are only two permutations in the S2 group, which can

be represented by T̂�p0�= Î, and the operator T̂�p1�= T̂ which
swaps the two molecules. The group structure of S2 ensures

that T̂2= Î, which means that T̂ can be written as T̂=	̂s−	̂a,

where the operators 	̂s and 	̂a project onto the symmetric
and antisymmetric subspaces, respectively. Also note that the

identity operator can be represented as Î=	̂s+	̂a. Hence the
action of P on the density matrix � for an N=2 ensemble
state is given by

P� =
1

2
�Î�Î + T̂�T̂†� . �3.13�

Using the expressions for Î and T̂ in terms of projection
operators gives

P� =
1

2
��	̂s + 	̂a���	̂s + 	̂a� + �	̂s − 	̂a���	̂s − 	̂a��

= 	̂s�	̂s + 	̂a�	̂a. �3.14�

This illustrates the fact that P destroys coherence between
the angular momentum charge sectors, which in this case
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means destroying coherence between the symmetric and
antisymmetric subspaces.

D. Multiple copies under the SN-SSR

We have seen in Sec. II C that pure states subject to a SSR
show remarkable similarities to mixed states. In order to ob-
tain entanglement from mixed states we often consider pre-
paring many copies of the state and performing distillation
protocols to recover maximally entangled states. Similarly
for pure states subject to a SSR, it is possible to use many
copies of the state to obtain extractable entanglement.

However, care must be taken when applying the notion of
multiple copies to ensemble states which are subject to the
SN SSR. If one were simply to double the number of mol-
ecules in the ensemble, there would be more possible ways
of permuting them and the system would in fact be con-
strained by a different SSR �i.e., S2N-SSR rather than SN-
SSR�. Applying the notion of multiple copies under the SN-
SSR means duplicating an ensemble of N molecules, each
with M atoms, by creating an ensemble of N molecules, each
with 2M atoms. This way, each molecule now contains two
copies of the original state, and Alice and Bob possess two
copies of the original ensemble. In general they can obtain C
copies of the original ensemble by increasing the number of
atoms in each of the N molecules to M�=CM. If the original
ensemble of N=2 molecules had M =2 atoms �with Alice and
Bob each “owning” one atom from each molecule in the
original ensemble�, two copies of the ensemble is given by
an ensemble of N=2 molecules with M�=4 atoms. This is
illustrated in Fig. 1. This concept will be discussed further in
the context of recovering entanglement ostensibly lost due to
the SSR.

IV. APPLICATIONS OF SN-SSR

A. Asymptotic loss of entanglement

Typically with the SN-SSR applied to many identical cop-
ies of an entangled state the amount of extractable entangle-
ment will be less than in the unconstrained case. This was
actually done first by Eisert et al. �43�. Consider an ensemble
of N=2J identically prepared molecules each consisting of
two nuclei in the following state:

��� = �↓A↓B� + ��↑A↑B� , �4.1�

where  and � can be taken to be real, so that 2+�2=1 is
the normalization condition. Using the Hilbert space decom-
position into permutation and angular momentum subspaces
from Sec. III C 1, the total state of the ensemble can be
written as

����N = �
j=J−�J�

J

�
n=1

dj

�
m=−j

j

J−m�J+m

��j,n�A�j,m�A � �j,n�B�j,m�B, �4.2�

where the condition 2+�2=1 also indicates that ����N is
normalized. From the spin representation �Eq. �4.1�� it is
easy to see that the entanglement for the ensemble is
E�����N�=N�−2ln 2−�2ln �2�=NE�����.

We now consider the amount of extractable entanglement
under the SN-SSR. To do so, we must take into account the
effect of the SSR on the ensemble state. The permutation
operator P results in a completely mixed state for both Alice
and Bob in the permutation subspace. That is,

����N →
PA�PB

�
j=J−�J�

J

�
n=1

dj IA
j

dj
�

IB
j

dj

� �� �
m=−j

j

J−m�J+m�j,m�A�j,m�B , �4.3�

where implementation of the SN-SSR has also destroyed
coherence between different j terms. Note that IA

j is the
identity operator on the Hilbert space M j for Alice, and simi-
larly IB

j for Bob. Equation �4.3� can be simplified by defining
the �normalized� angular momentum part of the state as
�� j�= �1/
dj� j��m=−j

j J−m�J+m�j ,m�A � �j ,m�B. The term

� j =�m=−j
j 2�J−m��2�J+m� /dj is the probability of obtaining the

jth angular momentum value and a particular irrep, indexed
by nA and nB. Since there are actually dj

2 irreps for each j
value, the probability of obtaining a particular j is dj

2� j. It
can be verified that � j=J−�J�

J dj
2� j =1 as required by conserva-

tion of probability. Using these definitions allows Eq. �4.3� to
be rearranged as

PA � PB���������N = �
j=J−�J�

J

dj� IA

dj
�

IB

dj
 � dj� j�� �� j�� .

�4.4�

For convenience we will omit writing the completely
mixed states on the permutation subspace, although when we
write the SN-invariant state they are assumed to be there.
Using this convention, the SN-invariant state can be written
compactly as

PA � PB���������N = �
j=J−�J�

J

dj
2� j �� �� j�� . �4.5�

Since no observed quantities can be changed by replacing
����N with the SN-invariant state, calculating the constrained
entanglement of ����N is equivalent to

FIG. 1. �Color online� Creating multiple copies of an ensemble
described by ���. N=2 and M�=4, which means that Alice and Bob
share two copies of the N=2, M =2 ensemble.
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ESN−SSR�����N� = ED�PA � PB���������N� . �4.6�

If the state of interest is composed of states that are are
locally distinguishable �for both Alice and Bob� then it is
known as a biorthogonal mixture �see Ref. �44� for more
details�. The expected entanglement of such a state is simply
a weighted sum of the entanglement present in each of the
the possible states. That is,

E��� = �1E��1� + �2E��2� + ¯ , �4.7�

where E��1,2,. . .� is the entanglement of the locally distin-
guishable states making up the mixture, and �1,2,. . . are the
corresponding probabilities of each state occurring. The
SN-invariant state is of this form, with ��� j� the possible
states and dj

2� j the corresponding probabilities. Therefore
Eq. �4.6� can be rewritten as

ESN−SSR�����N� = �
j=J−�J�

J

dj
2� jE��� j�� , �4.8�

where E��� j�� is the entanglement of the angular momentum
state �� j�. We expect the total amount of constrained en-
tanglement to be less than the E�����N�=N�−2ln 2

−�2ln �2� ebits calculated for the unconstrained system.
To demonstrate this, consider the particular case of Bell

states, where =�= 1

2

. This gives E�����N�=N, but, as
shown by Bartlett and Wiseman �6�,

ESN−SSR�����N� = �
j=J−�J�

J

dj
2� jlog2�2j + 1� . �4.9�

This expression can be simplified significantly in the
asymptotic limit �i.e., J=N /2→�� because the probability
distribution dj

2� j becomes sharply peaked at a single j value.
Thus a single term in the sum essentially determines the
value of the entanglement. It can be shown that for large
ensembles �N�1� the significant term in the sum is
specified by j�
J. This means that in the asymptotic limit
Eq. �4.9� reduces to approximately �1/2�log2N. Since this is
the maximum total entanglement, the entanglement per mol-
ecule must always →0 as N→�. Hence under the SN-SSR
for an ensemble of maximally entangled pure states we
asymptotically lose the ability to access the entanglement.

B. Asymptotic recovery of entanglement

We have just shown that under the SN-SSR we apparently
“lose” much of the entanglement in the ensemble. This might
seem contrary to the intuition obtained from the U�1� case,
for example, where in the limit of a large number of par-
ticles, the entanglement per particle is recovered asymptoti-
cally approaching the unconstrained entanglement �10�. This
discrepancy arises from taking an inappropriate form of the
asymptotic limit for the SN-SSR. As explained in Sec. III D,
having multiple copies under an SN-SSR does not mean
changing N. The asymptotic limit for the number of copies
thus should be considered with N fixed.

We begin by considering an ensemble of N=2 molecules.
As discussed in Sec. III C 2 this is a special case that

considerably simplifies the action of P. To relate to Sec.
IV A, imagine that Alice and Bob share an ensemble of two
molecules each of which is a Bell state. The difference here
is that we allow each molecule to be larger and to contain C
copies of a Bell state. That is, we allow Alice and Bob to
share C copies of the original N=2 ensemble.

For convenience we define the density matrix for C=1
copy of the ensemble of N=2 Bell states as

�AB = ���−���−���2, �4.10�

where the Bell singlet state �49� is defined as ��−�
= 1


2
��↑A↓B�− �↓A↑B��. The state �AB can also be expressed as

�AB = �
1

2
��A� + 
3�S�� , �4.11�

where we define normalized states in the antisymmetric and
symmetric subspaces in terms of the �j ,m� basis �recall Sec.
III C 1� as �A�= �j=0,m=0�A � j=0,m=0�B and �S�
= �1/
3��m=−1

1 � j=1,m�A � j=1,−m�B, respectively.
Using this representation for the state, it becomes appar-

ent that P simply destroys coherence between the symmetric
and antisymmetric subspaces which can be represented as

P�AB = �
1

4
�A� �
3

4
�S� . �4.12�

Since Alice and Bob share a biorthogonal mixture, they
can each make local measurements to distinguish between
the symmetric and antisymmetric subspaces. This is equiva-
lent to the situation considered by Eisert et al. �43�. With
probability 1 /4 they find that they have the locally antisym-
metric state and they retain no entanglement �as this is a
separable state�. However, with probability 3 /4 they obtain
the locally symmetric state, which is equivalent to a maxi-
mally entangled qutrit state. In that case they retain
3
4 log2�3��1.19 ebits of entanglement. Without the S2-SSR
constraining their two Bell states, Alice and Bob would
possess two ebits of entanglement.

One might expect that by using the concept of multiple
copies it would be possible to ameliorate the effect of the
SSR. This is indeed the case, as we now show. For the S2-
SSR to apply, Alice and Bob must share entanglement con-
tained in two molecules. In the simplest case, each molecule
is simply a Bell singlet state and the combined state is �AB, as
discussed above. To apply the concept of multiple copies,
Alice and Bob must share C copies of �AB �see Fig. 2�. With
no restrictions in place Alice and Bob would share 2C ebits
of entanglement.

The calculation of how much entanglement is retained
using multiple copies can be significantly simplified by not-
ing that in this case, each of the molecules �containing C Bell
pairs� can be considered as a maximally entangled qudit pair.
This is possible due to the global symmetry of the ensemble
state chosen. In this case, each molecule can be described as
a maximally entangled pair of qudits, with the qudits dimen-
sion given by d=2C. This simplifies calculations, as the
maximum entanglement of a pair of entangled qudits is
readily calculated to be Emax=log2d. Thus without consider-
ing the S2-SSR constraint, the total entanglement for the two
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maximally entangled qudit pairs is E=2C ebits, as already
derived.

We can express the state of C copies of �AB under the
S2-SSR explicitly as a biorthogonal mixture of a locally
symmetric and a locally antisymmetric state,

P��AB��C = �s�s + �a�a, �4.13�

where the weightings �s and �a are the probabilities of both
Alice and Bob obtaining a locally symmetric or locally anti-
symmetric state, respectively. These probabilities depend
upon the dimension of the subspace that each of the local
states occupy: �s=dim�Qs� /d2 and �a=dim�Qa� /d2 �recall
the expressions for the subspace dimensions defined in Sec.
III C 2�.

The structure of Eq. �4.13� means that it is quite straight-
forward to calculate the extractable entanglement of ��AB��C.
It is simply a weighted average of the entanglement in the
two subspaces:

E =
d2 − d

2d2 log2�d2 − d

2
 +

d2 + d

2d2 log2�d2 + d

2
 .

�4.14�

For a large number of copies �C�1� the dimension d is
large and Eq. �4.14� reduces to approximately E=2C−1.
Thus in the asymptotic limit, nearly all of the entanglement
has been recovered �only a single ebit has been lost�.

Another way to consider this problem is that Alice and
Bob share many copies of the state �AB via a channel �see
Fig. 3�. The channel is deterministic and either does nothing

or performs a swap of the molecules. If Alice and Bob were
unable to make collective measurements on their entire col-
lection of qubits then they could still make use of their cop-
ies of �AB to asymptotically retain much of their entangle-
ment. A nonoptimal procedure that they could implement
would be to use up a small number of copies to find out what
map the channel performs �either identity or swapping�.
Once they know what the channel does they can then safely
use the one ebit of entanglement in each of their remaining
Bell pairs. This method is nonoptimal because Alice and Bob
lose at least a few ebits of entanglement in characterizing the
channel �and asymptotically with collective measurements
they need lose only one ebit�.

In general for the case of the SN-SSR with N�2 it is
difficult to optimally calculate the exact asymptotic amount
of entanglement recovered. However, considering the nonop-
timal procedure just discussed it is intuitive that Alice and
Bob could recover most of their entanglement �in the
asymptotic limit� simply by using up some copies of the state
to characterize the channel. They would then retain the en-
tanglement in the remaining copies. As the size of the en-
semble �N� increases, more copies of the state will be re-
quired to satisfactorily characterize the channel and thus
more entanglement will be lost.

V. REFERENCE FRAMES

In general, a reference frame for a SSR is something that
removes its effect. For example, a perfect reference frame
completely removes the effect of, or “lifts,” the SSR. This is
the ideal case, although in practice it is possible to have
partial reference frames which only partially remove the
effect of the SSR.

Usually a reference frame is an extra system added to the
system of interest which allows access to degrees of freedom
otherwise unaccessible due to the SSR. Thus for an ensemble
of molecules, for which the SN-SSR applies, one might na-
ively expect to add an extra ensemble of molecules to act as
a reference frame. However, as discussed in Sec. III D, due
to the nature of the SN group, adding molecules would in fact
alter the SSR for the system. That is, the reference molecules
would actually be permuted with the system molecules, mak-
ing it more, not less, difficult to gain information about the
system.

Instead, the type of reference frame needed for an en-
semble system is analogous to a labeling. Classically, one
would think of physically writing a label �say a number� on
each object, to serve as a reference ordering. Physically this
corresponds not to adding molecules to the ensemble, but
adding an extra nucleus �or group of nuclei� to each
molecule in the ensemble.

To illustrate this, consider a simple example, with N=3
molecules. In this instance a pure state �where the three mol-
ecules happen to be uncorrelated, see Fig. 4� with a reference
frame is

��� = ��1,1���2,2���3,3� = ��1,�2,�3� � �1,2,3� . �5.1�

Here ��k� is the state of the M nuclei in the kth molecule �not
including the reference frame� which we have assumed to

FIG. 2. �Color online� Two copies �C=2� of �AB �which is com-
posed of two Bell states ��−��. Each molecule can be extended to
include more Bell states to increase the number of copies C of �AB.

FIG. 3. �Color online� Alice and Bob share N copies of �AB via
a channel. In case �a� the channel distributes the states in order. In
�b� the channel swaps the ordering within each pair.
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factorize. In regards to the tensor product structure it is im-
portant to remember that the second system is not in the
same state as the first �it need not even have the same Hilbert
space dimension�.

A. Quantum reference frames

In the classical example above, we placed each
N-dimensional attached label system �nucleus or group of
nuclei� in a unique product state. An obvious question is
whether or not it is possible to use label systems of smaller
dimension if we allow entanglement between the states of
the N label systems. As demonstrated by von Korff and
Kempe �16�, it is indeed possible to reduce the dimension of
the label systems by a constant factor in the limit N→�.

Recalling the structure of the Hilbert space from Sec.
III C, a state of the N label systems �0�� �Cd��N that works
as a perfect quantum reference frame would satisfy the
property that the N! states

�pn� = T̂�pn��p0� , �5.2�

for all pn�SN satisfy ��pn � pn���
2=�n,n�. This property ensures

that every different ordering is classically distinguishable
�i.e., is associated with an orthogonal quantum state�. So the
problem reduces to the following: What is the minimum d
such that such a set of orthogonal states exists?

First, we note that the space HR spanned by ��pn�,
pn�SN� is N! dimensional and that the representation T̂
when restricted to this space is isomorphic to the �left� regu-
lar representation. �The regular representation R of a group
G has G as a carrier space, and acts as R�g�g�=gg�.� It is
well known ��42�, p. 17� that the regular representation of SN

contains every irrep T̂y of SN, each with a multiplicity equal

to Dy, the dimension of T̂y. Thus for T̂ to contain the regular

representation, it must contain every irrep T̂y of SN with a
multiplicity of at least Dy. In particular, this must hold true
for the fully antisymmetric representation of SN �the irrep
labeled by a Young diagram consisting of a single column of

N boxes�, and T̂ only contains the fully antisymmetric repre-
sentation if d�N. Thus if we demand that the label systems
act as a perfect reference frame for SN, then each label
system must be at least N dimensional.

However, von Korff and Kempe �16� have shown that it is
possible to use label systems with any dimension d� �N /e� if

the requirement of a perfect reference frame is relaxed to the
less-stringent demand that, for pn�pn�, ��pn � pn���

2→0 as N
→�. �That is, that the reference frame states are distinguish-
able only in the asymptotic limit.� The basic idea is that if

d� �N /e� then, although T̂ does not contain all irreps of SN
with the required multiplicity, the sets that are missing has
measure approaching zero as N→�. We refer the reader to
�16� for details.

We now explicitly construct states of the form of Eq.
�5.2�, using the general construction of �5� that was subse-

quently applied specifically to the SN group in �16�. Let Ȳ be

the set of irreps that are contained in T̂ and have sufficient

multiplicity, i.e., that satisfy dimQy �Dy. For each y� Ȳ,
choose an arbitrary subspace Qy��Qy of dimension Dy. Let
��y , i , j� , i , j=1, . . . ,Dy� be a basis for My � Qy�, where i labels
a basis for Myand j labels a basis for Qy�. Define D=�yDy

2.
Then the state

�p0� = �
y�Ȳ

�
i=1

Dy 
Dy

D
�y,i,i� , �5.3�

can be used to define a set of states ��pn�= T̂�pn� � p0�� for
pn�SN as in Eq. �5.2�. As demonstrated in �16�, limN→�D
=N! and limN→� � �pn � pn���

2=�n,n� provided that d� �N /e�.

B. Shared reference frames

The simplest shared reference frame is for Alice and Bob
each to have a reference frame. In general, if Alice and Bob
share N tensor product states and both have a reference
frame for each state, then the total system can be described
as

��� = �
i=1

N

��AB
i ,iA,iB� . �5.4�

For example, this can be written out explicitly for the case
when two product states are shared,

��� = ��AB
1 ,1A,1B���AB

2 ,2A,2B� = ��AB��p0�A�p0�B, �5.5�

where in the second line we have written the shared states
first, followed by Alice and Bob’s reference frames. Note
that we have rewritten Alice’s reference state
� . . . ,1A , . . . �� . . . ,2A , . . . � as the fiducial reference state
�¯ � � p0�A � ¯ �B, and similarly for Bob’s.

Although these states are separable, they cannot be pre-
pared locally byPA � PB-invariant operations from a PA
� PB-invariant state. Hence they are bound entangled states
which may become locally preparable. �Recall the definitions
in Sec. II C.� Note that such states are not globally P invari-
ant. However, using the final reference frame basis above we
can write a separable P invariant reference frame:

�
pn�SN

1

N!

�pn�A�pn�B. �5.6�

This reference frame is an incoherent mixture of reference
states which is an example of a shared reference frame. The

FIG. 4. �Color online� Classical vs quantum reference frames.
The classical reference frames on the left are represented by boxes
and are uncorrelated. On the right the reference frames are quantum
systems and we allow for correlations between the label systems.
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key point is that the same permutation is applied to both
Alice and Bob’s reference states resulting in perfect correla-
tion between each of Alice and Bob’s labels. That is, this
reference frame gives no indication of labels for individual
states, but indicates that Alice and Bob’s particles are in the
same order. States of this form are mixed �separable� and
hence not part of the classification scheme of Sec. II C.

Alternatively, a pure globally P-invariant reference frame
can be constructed by considering nonseparable states:

�
pn�SN

1

N!

�pn�A�pn�B. �5.7�

This state is a coherent superposition of reference states
which are perfectly correlated between Alice and Bob. Once
again for an explicit example we consider a reference frame
for the S2 group,

���RF =
1

2

�
pn�S2

�pn�A�pn�B =
1

2

��p0�A�p0�B + �p1�A�p1�B� ,

�5.8�

where p0 is the identity permutation and p1 is the swap per-
mutation. In this case it can be shown that the partial trans-
pose of the state matrix �RF= ���RF���RF is actually equal to
�RF. Thus it is a valid state matrix which means that �RF has
a positive partial transpose �45�. This shows that for the S2
group, which is actually an Abelian group, a shared reference
state of the form of Eq. �5.8� is become 1-distillable �this is
because it contains no entanglement under the S2-SSR but
becomes 1-distillable if the SSR is lifted�.

VI. ANALOGIES WITH MIXED-STATE ENTANGLEMENT

A. Activation

Recall from Sec. II A 2 that a general state � is called
1-distillable if by LOCC Alice and Bob can, with some prob-
ability, create from it a nonseparable two-qubit state. Also
recall that there are bound entangled states that become
1-distillable when the two parties have their LOCC supple-
mented by a shared PPT channel. These states, as we have
mentioned in Sec. II A 3, are called become 1-distillable
states.

Since SN is a finite group, reference frames for the SN
group can be finite �this is quite different from the case for
Lie group SSRs such as the U�1� SSR�. Moreover, the SN

reference frames can be used without being disturbed be-
cause they form an orthonormal set. Thus under the SN-SSR
there is no distinction between activation of a bound en-
tangled state �by a bound entangled state which becomes
locally preparable� and lifting the SN SSR to make become
1-distillable states 1-distillable.

Activation of a bound entangled state can be seen in the
following example. If N=2 and M =2 �i.e., Alice and Bob
own one nucleus per molecule�, then the state


2��� = � + �A�− �B + �− �A� + �B �6.1�

is bound entangled that can become 1-distillable. Here �+ �
= �j=1,m=0� and �−�= �j=0,m=0�, so T̂�p1� � ± �= ± �± �.

From this it is easy to see that ��� is globally symmetric, but
under the local SSR,


2��� →
PA�PB

� � + �A�− �B � �− �A� + �B, �6.2�

which is clearly separable. Hence with the SSR the state has
no distillable entanglement.

It is possible to completely lift the SSR and regain one
ebit of entanglement from this state. This is achieved by
adding an extra shared state ��� to activate the bound en-
tanglement in ���. This is shown in Fig. 5. For instance, the
simplest perfect reference frame ��� would label each of Al-
ice and Bob’s nuclei, for example, ���= �1A ,2A� �1B ,2B�
= �p0�A�p0�B. Then it becomes possible for Alice to find out
which of her nuclei is correlated with which of Bob’s simply
through measurement of the shared reference state. Thus by
use of a reference frame �that is, activating the bound en-
tanglement�, it is possible to access one ebit of entanglement
from the become 1-distillable state.

B. Distillation

We now illustrate the phenomenon of distillation using
the same example state ���. That is, although without a ref-
erence frame the state 
2 ���= �+ �A �−�B+ �−�A � + �B has
ES2−SSR=0, with two copies some entanglement can be
obtained.

Recall from Sec. III D that two copies does not mean four
molecules. Since S2 is fixed, we still have N=2 molecules,
but instead of M =2 we now have M�=4, that is, Alice and
Bob each have two nuclei per molecule. This is demonstrated
in Fig. 6. The state for the two copies can be written as

�
2�����2 = � + + �A�− − �B + �− + �A� + − �B + � + − �A�− + �B

+ �− − �A� + + �B, �6.3�

which with a perfect reference frame contains two ebits of
entanglement. The effect of the SSR is to create a mixture
of the unchanged state with the state formed by applying

the swap T̂�p1� to Alice’s particles �or Bob’s�. Thus under the
S2-SSR, the state becomes

FIG. 5. �Color online� Using an extra state ��� to activate the
bound entanglement in ���. In this case ��� acts as a perfect refer-
ence frame and all the entanglement in ��� is recovered.
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�
2�����2 →
PA�PB

� �� + + �A�− − �B + �− − �A� + + �B�

� ��− + �A� + − �B + � + − �A�− + �B� . �6.4�

Now Alice and Bob share a mixture of two superpositions.
By Alice and Bob each measuring a suitable observable

�such as Ô= � �+ + �� �−−�, for example�, they can perform a
local measurement to discriminate the two superposition
states superpositions they actually �without destroying the
superposition�. Thus they have access to one ebit of con-
strained entanglement. In this case we started with two cop-
ies of ��� therefore with a perfect reference frame we would
expect to be able to recover two ebits of entanglement. How-
ever, even without an external reference frame it is possible
to access entanglement from two copies of the state. This is
because one of the states acts a reference for the other, acti-
vating its entanglement. Alternatively, one could consider
that each of the entangled states acts a as partial reference
frame for the other, allowing half of its entanglement to be
accessed. This is an example of a case where no entangle-
ment could be distilled from a single copy of the state �with
no reference frame�, but two copies of the state allows en-
tanglement to be distilled. Hence the state ��� is not
1-distillable, but it is 2-distillable. That is to say that this
state demonstrates the fact that the 1-distillable states are a
subset of the 2-distillable states for the S2-SSR.

VII. BEYOND THE SN-SSR

A. Adding a stronger constraint

So far we have considered the problem of describing en-
semble quantum information processing using the formalism
for SSRs associated with some group. The SN-SSR says that
all elements �molecules� are subject to identical operations.
This constraint has a demonstrable effect on the properties of
the system, which can, however, be removed through use of
additional resources such as reference frames. We now wish
to consider the case where a stronger constraint than a SSR
may apply to a system.

First we point out a difference between NMR experiments
and spin-squeezing experiments, for which the SN-SSR also

applies. In the latter, it is possible to perform symmetric
operations which entangle the elements �atoms�, such as
spin-squeezing unitaries �40� or quantum nondemolition
measurements of Ĵz �46�. By contrast, in NMR it is not pos-
sible to induce correlations between different molecules. The
reasons for this difference are subtle, and relate to practical
constraints due to decoherence during the readout. This con-
straint also manifests itself in very low measurement
efficiencies, but here we ignore that issue.

Consider the M =1 case for simplicity. Then all that can
be done in practice in NMR experiments is �i� rotations

exp�−i� · Ĵ�=exp�−i� ·�k=1
N �̂k /2�; �ii� destructive measure-

ment of Ĵz=�k=1
N �̂z

k /2. Here �̂k denotes I � ¯ I � �̂ � I¯
� I with �̂ in the kth position. When making a measurement

of this type �e.g., measuring Ĵz� we actually get out an overall
signal which is proportional to the sum of the spin ��̂z�
for each particle. Moreover, the final state of the ensemble is
unrelated to the measurement result, due to thermal decoher-
ence. Thus in general, the only operations possible in
NMR are to make destructive measurements of symmetric
observables that are additive over the ensemble:

Ôtotal = �
k

Ôk, �7.1�

where Ôk is the operator for the kth particle as above. We call
such operations noncollective. This terminology is appropri-
ate because the result of the measurement could be obtained
by individually measuring each element of the ensemble and
summing the results.

We can contrast such noncollective operations with a col-
lective operation like measuring �destructively or otherwise�
Ĵ2 to find out the value of the total angular momentum j for
the ensemble. This could not be done by measuring each
particle and summing the results. Previous work using the
SN -SSR assumed that such collective measurements are pos-
sible. We will now consider the case where operations need
not only be symmetric but also noncollective, as a stronger
constraint on the system.

We suspect that we cannot completely characterize these
constraints by any G-SSR. Instead we must supplement the
SN-SSR with the extra constraint that the operations also be
noncollective. This complicates matters, as we are now un-
able to write down an equivalent state which is invariant
under all the allowable operations. Despite this, we wish to
determine if any entanglement survives under this stronger
constraint.

Since we are unable to determine an operationally equiva-
lent state matrix for the constrained state we cannot calculate
the extractable entanglement directly. However, if a Bell in-
equality violation can be demonstrated then this proves that
entanglement is present in some form. So the question be-
comes, using the SN-invariant state as a description for the
system, is it possible to demonstrate Bell nonlocality using
noncollective operations?

B. Bell inequality for ensembles

For specificity, we consider the problem of demonstrating
Bell nonlocality under symmetric, noncollective measure-

FIG. 6. �Color online� With two copies of the state ��� the sec-
ond can act as a reference frame for the first allowing one ebit of
entanglement to be accessed. This is considered an imperfect refer-
ence frame for the system as we would expect two copies of ��� to
contain two ebits of entanglement.
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ments on an ensemble of N=2J Bell singlets, ���= ��−��N. As
discussed in Sec. IV A the interesting part of this state can be
written for simplicity as

P����������N� = �
j=J−�J�

J

dj
2� j�� j��� j� , �7.2�

which is an incoherent mixture of different spin �j� states.

The added constraint means that we are unable to measure Ĵ2

directly, but can only measure components of spin �such as

Ĵz�. Thus we must derive a Bell inequality that allows for
particles of different spin �i.e., different j values�.

Mermin �47� developed a Bell inequality for spin-j par-
ticles by considering a generalization of the Bohm-EPR ex-
periment. The only assumption that needs to be satisfied for
this inequality to be applicable is that the desired state ex-
hibit perfect anticorrelation in the spins of the two particles.
The inequality can be written as

��mA�â� − mB�b̂��� �
1

J
��mA�â�mB�ĉ�� + �mA�b̂�mB�ĉ��� ,

�7.3�

where mi�â� represents the spin component of the ith particle
in the â direction and J is an upper bound on the mi�â�. For
Mermin’s case one can �and Mermin does� choose J= j.
However, we require that the parameter J because we cannot
distinguish between different j values. Inequality �7.3� will
be satisfied by any theory obeying local causality. For ease of
analysis we define a quantity

MJ��� = ��mA�â� − mB�b̂��� −
1

J
��mA�â�mB�ĉ��

+ �mA�b̂�mB�ĉ��� . �7.4�

The condition for local causality to be satisfied can thus be
expressed as MJ����0.

Consider a Stern-Gerlach experiment such that the spin
can be measured along one of three axes defined by coplanar

vectors â, b̂, and ĉ. Mermin defined these axes such that the

vectors â and b̂ make the same angle � /2+� with ĉ, and the
angle �−2� with each other. Using this setup for two per-
fectly anticorrelated spin-j particles, quantum mechanics
predicts that Eq. �7.4� can be expressed as

MJ
spin−j��� = f j��� −

1

J

2j

3
�j + 1�sin� , �7.5�

where the functions f j��� are defined as

f j��� =
1

2j + 1 �
m,m�

�m − m����m�e−2i�Ŝy�m���2, �7.6�

and Ŝy is a spin matrix.
Now an ensemble of Bell singlet states is perfectly anti-

correlated in spin and thus Eq. �7.2� satisfies the necessary
assumption for inequality �7.3� to be applicable. Also, when
Mermin evaluated Eq. �7.5� he assumed measurements of
spin components, that is, noncollective measurements. Thus

it is possible to use the same method as Mermin to evaluate
the Bell inequality for an NMR ensemble, as all the relevant
constraints are accounted for. The ensemble state simply be-
haves like an incoherent mixture of different spin-j states.

Thus for an ensemble of Bell singlet states, quantum
mechanics predicts Eq. �7.4� can be written as

MJ
Ensemble��� = �

j=J−�J�

J

dj
2� jMJ

spin−j��� , �7.7�

where MJ
Ensemble����0 demonstrates Bell nonlocality.

C. Demonstrating Bell nonlocality

We are now in a position to show that Bell nonlocality
survives under stronger constraints than those imposed by a
SSR alone. To do this we must evaluate MJ

Ensemble��� and
show that it can become negative. To simplify this task it is
instructive to recall the form of Eq. �7.5�. When Mermin
evaluated these terms, he found to a good approximation
�particularly for large J� that he was able to use a quadratic
form to simplify their evaluation. Using the same approxi-
mation allows MJ

Ensemble��� to be simplified to the expression

MJ
Ensemble���� = �

j=J−�J�

J

dj
2� j�2

3
j�j + 1�sin��2 sin� −

1

J
� ,

�7.8�

where the prime indicates an approximation.
Now, the probability terms dj

2� j in Eq. �7.8� are always
positive, so the question becomes can the remaining factor
be negative? If this factor is negative for all terms in the sum,
then MJ

Ensemble���� is negative and the state exhibits Bell non-
locality. Examining the terms in the sum more closely re-
veals that there is always a linear �in sin�� term subtracted
from a quadratic �in sin�� term. Hence if � �and thus sin�� is
small enough, then the linear term will always be dominant,
resulting in a negative contribution to the sum. It is possible
to choose � to be small enough that every term in the sum
will be negative, thus MJ

Ensemble�����0 and the ensemble
state exhibits Bell nonlocality.

To put it explicitly �by solving for � in terms of J�
the ensemble state exhibits Bell nonlocality despite the
constraints when the detectors can be arranged to make
measurements defined by � where

0 � sin� � 1/2J . �7.9�

This is actually a lower bound on the range of sin� for which
a violation is possible. For small values of J ��3�, Eq. �7.7�
can be explicitly calculated �without resorting to approxima-
tions�. Even for these small values of J the exact numerical
results agree quite well �50� with the range of angles speci-
fied by Eq. �7.9� and the agreement improves with larger J.
This lends confidence that for large J the approximation
leading to Eq. �7.9� is a valid one.

Somewhat surprisingly, Eq. �7.9� gives exactly the same
angular range for which Mermin demonstrated a pair of �un-
constrained� entangled spin-J particles exhibit Bell nonlocal-
ity. One may then ask which of the two systems, an ensemble
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of Bell states or a pair of spin-J particles, violates the in-
equality more strongly. A way to measure this is to consider
the depth of the violation, that is, how negative MJ��� be-
comes. For a pair of perfectly anticorrelated spin-J particles,
the minimum value of MJ��� converges to a constant value
of −1/12 for large J. In contrast, for an ensemble of N=2J
Bell states, the minimum of MJ

Ensemble���� scales as −1/J.
That is, the violation depth tends to zero for large ensembles.
Thus a pair of spin-J particles violates this Bell inequality
more strongly than an ensemble of 2J Bell states under our
stronger constraint.

VIII. SUMMARY

In this paper we have classified groups of states based on
their mixed-state entanglement properties and related these
states to the well-known concepts of activation and distilla-
tion. We have also reviewed the analogy between mixed-
state entanglement and that of pure state entanglement
constrained by a SSR. In particular we have focused on the
symmetric group SSR. We have demonstrated that the SN-
SSR limits the amount of entanglement that can be accessed
from an ensemble of entangled states. In comparison with
U�1�-SSRs such as the particle number SSR we show how to
apply the correct notion of multiple copies of an ensemble
state to asymptotically recover the entanglement lost due to
the SSR. We have also discussed the concepts of reference
frames and given examples to illustrate the similarities

between concepts of activation, distillation, and use of refer-
ence frames �or multiple copies of states� to recover en-
tanglement. For the S2-SSR we showed that by using mul-
tiple copies of the ensemble, it is possible to only lose one
ebit of entanglement �asymptotically�.

Finally we gave an example where it does not seem pos-
sible to formulate the constraints on a system as a SSR. This
situation arises naturally in the context of a liquid NMR
ensemble. The lack of individual addressability requires that
the SN-SSR be considered. However, other technical con-
straints arise due to the large amount of thermal noise present
in NMR ensembles. This noise manifests itself in two ways:
low measurement efficiency and the fact that only noncollec-
tive measurements are possible. We addressed the latter
manifestation and went on to show that despite this stronger
constraint it is still possible in principle to demonstrate Bell
nonlocality. It may prove interesting to attempt also to
include the effect of the low efficiency constraint.

Further studies of physical constraints which cannot be
formalized as SSRs may prove a fruitful area of research, not
only for explaining experiments but also for understanding
the properties of entanglement in general.
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