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The maximum observable correlation between the two components of a bipartite quantum system is a
property of the joint density operator, and is achieved by making particular measurements on the respective
components. For pure states it corresponds to making measurements diagonal in a corresponding Schmidt
basis. More generally, it is shown that the maximum correlation may be characterized in terms of a correlation
basis for the joint density operator, which defines the corresponding �nondegenerate� optimal measurements.
The maximum coincidence rate for spin measurements on two-qubit systems is determined to be �1+s� /2,
where s is the spectral norm of the spin correlation matrix, and upper bounds are obtained for n-valued
measurements on general bipartite systems. It is shown that the maximum coincidence rate is never greater
than the computable cross norm measure of entanglement, and a much tighter upper bound is conjectured.
Connections with optimal state discrimination and entanglement bounds are briefly discussed.

DOI: 10.1103/PhysRevA.74.062308 PACS number�s�: 03.67.Mn, 03.65.Ta

I. INTRODUCTION

Suppose that two observers Alice and Bob have access to
the respective components of a bipartite quantum system. If
the observers make measurements of observables A and B,
respectively, the correlation between the measurement out-
comes will clearly depend on A and B. It is therefore of
interest to ask what choice of A and B will give the maxi-
mum possible correlation. The answer would allow bipartite
states to be ranked in terms of their joint-correlation proper-
ties. It is also relevant to the efficient generation of secure
keys in quantum cryptography where, all other things being
equal, Alice and Bob should aim to compare measurement
outcomes which are maximally correlated for a given shared
state �1,2�.

It is important to make a distinction here between trivial
and nontrivial correlations. For example, if Alice and Bob
each simply measure the unit operator, their results will of
course be perfectly �but trivially� correlated. Hence the an-
swer to the above question is only of interest if it can be
ensured that the measurement outcomes for each component
have some useful degree of randomness. This is critical, for
example, if Alice and Bob wish to generate a secure crypto-
graphic key �2�. As will be shown, a natural approach is to
require that the measured observables are “maximally infor-
mative” or “nondegenerate.” This is equivalent to requiring
the observables to be described by maximal probability op-
erator measures �POMs�, i.e., A���aj�	aj � 
, B���bk�	bk � 
. It
turns out that this requirement is in fact naturally built into
some measures of correlation �e.g., the mutual information�,
while it must be imposed explicitly for others �e.g., the co-
incidence rate�.

For the case of a pure bipartite state ���	��, there is an
intuitively obvious answer to the above question. Alice and
Bob should choose A and B such that the kets ��aj�
 and ��bj�

correspond to a Schmidt decomposition of ���, i.e., such that

��� = �
j

�pj�aj� � �bj� . �1�

Thus, each possible measurement outcome A=aj will be per-
fectly correlated with the corresponding measurement out-
come B=bj. Note for this case that 	aj �ak�=� jk= 	bj �bk�.
Hence, the optimal observables are described by orthogonal
POMs, and can be equivalently represented by the Hermitian

operators Â=� jaj �aj�	aj� and B̂=� jbj �bj�	bj� acting on the
respective Hilbert space components �3,4�.

More generally, when the bipartite state is described by
some density operator �, finding the maximal POMs A
���aj�	aj � 
, B���bk�	bk � 
 that maximize a given measure of
correlation is quite difficult. Such a pair of maximally corre-
lated observables will determine a corresponding basis set
��aj� � �bk�
 for the bipartite system. This basis set general-
izes the notion of the Schmidt basis for pure states, and may
be called a correlation basis for �. Unlike the Schmidt basis,
the correlation basis need not always be orthonormal.

Mutual information and coincidence rate, as measures of
correlation, are briefly discussed in Sec. II. Formal equations
for the correlation basis are given in Sec. III, for the case of
coincidence rate, and illustrated with examples in Sec. III C,
including connections with the problem of optimal state dis-
crimination. It is conjectured that at least one of the optimal
observables A and B can always be chosen to correspond to
an orthogonal POM. In Sec. IV, the maximum coincidence
rate for two-valued measurements on pairs of qubits is ex-
plicitly determined as a simple function of the spectral norm
of the 3�3 spin correlation matrix. This result is generalized
in Sec. V, where general upper bounds for coincidence rate
are obtained for n-valued measurements, based on a singular
value decomposition of the Fano form of the density matrix
�5,6�. These bounds are related to the computable cross norm
�7�, and are generalized in Sec. VI to connect other linear
correlation bounds �such as spin covariance� with entangle-
ment properties.
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II. MUTUAL INFORMATION VS COINCIDENCE RATE

To find the optimally correlated observables for a given
bipartite system, it is necessary to first quantify joint corre-
lation in some manner. Now, the statistics of any two observ-
ables A and B, measured on the respective components of the
system, can always be described by corresponding probabil-
ity operator measures �Aj
 and �Bk
 �i.e., sets of positive
operators which sum to the unit operator �3,4��, with the joint
probability of measurement outcomes A=aj and B=bk for a
bipartite density operator � being given by

pjk = tr��Aj � Bk� .

Any measure of correlation will be some function of the
probability distribution pjk, and two well-known examples
are discussed in the following.

First, the mutual information is defined by �8�

I�A,B��� ª �
jk

pjklog2
pjqk

pjk
, �2�

where pj and qk denote the marginal distributions for A and
B, respectively. This quantity vanishes for uncorrelated ob-
servables; is invariant under relabelings of measurement out-
comes; and has a simple physical interpretation: if A and B
are each measured for a large number of copies of �, then
I�A ,B ��� is the average amount of data gained per measure-
ment outcome of A, about the corresponding sequence of
measurement outcomes of B �as quantified by the number of
bits required to represent the data�, and vice versa �8�.

The convexity of mutual information implies that the
maximum mutual information for a given state � �also called
the accessible information� can always be achieved via ob-
servables described by maximal POMs �9�, i.e., with Aj
��aj�	aj�, Bk��bk�	bk�. Thus,

Imax��� ª max
A,B

I�A,B��� = max
A,B maximal

I�A,B��� . �3�

While it is very difficult to determine the optimal observ-
ables A and B in Eq. �3�, a useful upper bound follows from
application of the Holevo bound to the ensemble of states
induced on one component of the bipartite system by a mea-
surement on the other component �see Eqs. �12� of Ref.
�10��:

Imax��� � min�S��1�,S��2�
 . �4�

Here S�·� denotes the von Neumann entropy, and �1 and �2

are the reduced operators for the first and second components
of the bipartite system. This bound is sufficiently strong to
obtain the maximum mutual information for any mixture �
=���� ����	��� of pure states sharing a common Schmidt
basis up to trivial phase factors, i.e., with

���� = �
j

�pj
���exp�i� j

�����aj� � �bj� .

In particular, Eq. �4� is saturated by choosing A and B to be
the maximal POMs generated by this Schmidt basis, yielding

Imax�
�

������	���� = − �
j

Pjlog2Pj , �5�

where Pjª����pj
���. Note that for a pure state, ���	��, the

maximally correlated observables are therefore those corre-
sponding to a Schmidt basis for ���, justifying the intuitive
answer given in the Introduction.

Second, the coincidence rate measure of correlation is
defined by

C�A,B��� ª �
j

pjj . �6�

This quantity is simply the probability of the observers ob-
taining matched outcomes, and reaches a maximum of unity
only when the outcomes are perfectly correlated �i.e., pjk
= pj� jk�. It is also a little more tractable than mutual informa-
tion, and will therefore be the focus of this paper. Note that
coincidence rate �unlike mutual information� has no clear
meaning for continuously valued outcomes: the quantity C
=�dx pxx is not invariant under relabelings of the outcomes
�e.g., for x→�x one has C→C /��. Hence, only discretely
valued POMs will be considered in what follows.

Unlike mutual information, the coincidence rate does not
intrinsically distinguish between trivial and nontrivial corre-
lations. For example, if Alice and Bob each merely measure
the unit operator, they will obtain the maximum possible
value of coincidence rate �unity�, but the minimum possible
value of mutual information �zero�. Hence, as discussed in
the Introduction, it is only of interest to maximize coinci-
dence rate subject to some constraint that ensures a useful
degree of randomness for the individual measurement out-
comes. One reasonable constraint is the requirement that the
measured observables are maximal POMs. This constraint is
consistent with Eq. �3� for mutual information; does not al-
low the observers to remove potential information about cor-
relations by merging measurement outcomes; and automati-
cally rules out trivial correlations. The relevant problem of
interest is then the determination of observables A and B
which achieve the maximum value

Cmax��� ª max
A,B maximal

C�A,B��� = max
A,B maximal

�
j

	aj,bj���aj,bj� .

�7�

In analogy to Eq. �5� for mutual information, one finds

Cmax�
�

������	���� = �
j

Pj = 1,

for mixtures of states sharing a common Schmidt basis, in-
cluding all pure states. From Eq. �7� one also obtains the
general convexity property

Cmax��� + �1 − ��	� � �Cmax��� + �1 − ��Cmax�	� .

Hence, if two given observables A and B maximize the co-
incidence rate for some set of states SAB, then this set is
convex. Equation �7� further implies that the maximum co-
incidence rate for any member of SAB is bounded above by
the largest eigenvalue of the coincidence operator KAB
ª� j �aj�	aj � � �bj�	bj�, and hence that SAB contains a pure
state if and only if this largest eigenvalue is unity.

Finally, it may be recalled that mutual information and
coincidence rate are both not only useful measures of corre-
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lation per se, but may also be used to differentiate classical
from quantum correlations, via corresponding Bell inequali-

ties. For example, if Alice can measure either of A and Ā,

and Bob can measure either of B and B̄, and it is assumed
that the statistics of these four observables can be generated
by some classical joint probability distribution, then from
Eq. �6.5� of Ref. �11� one has

I�A,B��� + I�A,B̄��� + I�Ā,B��� − I�Ā,B̄��� � H�A� + H�B� ,

where H�·� denotes the Shannon entropy, while from Eq. �8�
of Ref. �12� one has

C�A,B��� + C�A,B̄��� + C�Ā,B��� − C�Ā,B̄��� � 2.

Each of these inequalities is violated, for example, by suit-
able spin measurements on a singlet state. The use of corre-
lation measures to characterize the minimum degree of en-
tanglement present has been recently discussed in Ref. �13�.
Connections between correlation and entanglement bounds
are obtained in Secs. V and VI below.

III. MAXIMIZING COINCIDENCE RATE

A. Conditions for extrema

The linearity of coincidence rate with respect to A and B
makes it straightforward to characterize the extremal observ-
ables, as per the following proposition. The conditions for
such observables to maximize coincidence rate are less
straightforward, however, and are left to the next section.

Proposition 1. Necessary and sufficient conditions for
maximal POMs A���aj�	aj � 
 and B���bj�	bj � 
 to attain an
extremal value of coincidence rate, for bipartite state �, are

	ak,bl���al,bl� = 	ak,bk���al,bk� ,

	ak,bl���ak,bk� = 	al,bl���al,bk� �8�

for all k� l. Moreover, these conditions are equivalent to the
existence of Hermitian operators V and W, acting on the first
and second components, respectively, satisfying

�V − 	bj���bj���aj� = 0, �W − 	aj���aj���bj� = 0 �9�

for all j. The corresponding extremal value of coincidence
rate is given by

C�A,B��� = tr1�V� = tr2�W� . �10�

Proof. Consider the variational quantity

J ª �
j

	aj,bj���aj,bj� − tr1�V�
j

�aj�	aj� − 1̂1��
− tr2�W�

j

�bj�	bj� − 1̂2�� ,

defined for arbitrary sets of kets ��aj�
 and ��bj�
 of the same
cardinality, where V and W are Hermitian operators that act
as Lagrange multipliers for enforcing the completeness con-
straints

�
j

�aj�	aj� = 1̂1, �
j

�bj�	bj� = 1̂2. �11�

Clearly, Cmax��� in Eq. �7� corresponds to the global maxi-
mum of J under these constraints. Letting J�
� denote J
evaluated under the variations �aj�→ �aj�+
 �mj�, �bj�→ �bj�
+
 �nj�, the extremal points of J correspond to the solutions
of J��0�=0, i.e.,

�
j

tr1���mj�	aj� + H.c.��	bj���bj� − V��

+ �
j

tr2���nj�	bj� + H.c.��	aj���aj� − W�� = 0.

Choosing at most one element of the ��mj� , �nj�
 to be non-
vanishing �and arbitrary� then yields Eq. �9�. Multiplying the
latter on the left by 	ak� and 	bk� further yields

	ak,bj���aj,bj� = 	ak�V�aj�, 	aj,bk���aj,bj� = 	bk�W�bj� ,

and Eq. �8� immediately follows from the requirement that V
and W are Hermitian. Multiplying on the right of Eq. �9� by
	aj� and 	bj�, and summing over j, yields

V = �
j

	bj���bj��aj�	aj�, W = �
j

	aj���aj��bj�	bj� . �12�

Taking these as defining relations conversely yields Eq. �9�
from Eq. �8�. The trace of Eq. �12� yields Eq. �10�. �

Proposition 1 has a formal connection to the well-known
problem of distinguishing between members of a given sta-
tistical ensemble. In particular, let �� j ;� j
 denote the en-
semble containing state � j with probability � j. It is known
that necessary and sufficient conditions for a POM �� j
 to
optimally discriminate between members of this ensemble
are �3�

�� − � j� j�� j = 0, �  � j� j , �13�

for all j, for some Hermitian operator �. The first of these
conditions is equivalent to Eq. �9� of Proposition 1, for the
ensembles �	 j ; pj
 and �� j ;qj
 defined by pj	 jª 	bj �� �bj�
and qj� jª 	bj �� �bj�. Further, summing this first condition
over j yields �=� jpj	 j� j, corresponding to Eq. �12�.

However, there is no simple analog of the second condi-
tion in Eq. �13�—in particular, while the conditions

V  	bj���bj�, W  	aj���aj� , �14�

would immediately imply that A optimally discriminates be-
tween members of the ensemble �	 j ; pj
, and that B opti-
mally discriminates between members of the ensemble
�� j ;qj
, these conditions are not sufficient to ensure a maxi-
mum for the coincidence rate, as will be shown by explicit
example in Sec. III C. Indeed, it is not clear that these con-
ditions are even necessary.

Finally, some general properties of extremal observables
are worth nothing. First, for pure states, the matrix coeffi-
cients in Eq. �8� vanish identically for k� l, for the case
where observables A and B correspond to the Schmidt basis
decomposition in Eq. �1�, and hence these observables are
extremal as expected. Second, Eq. �8� implies that if A and B
are extremal for two density operators � and ��, then they are
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extremal for any mixture of � and ��. Third, if � is invariant
under some local unitary transformation, i.e., �=U1
� U2�U1

†
� U2

†, then, for a given solution A and B of Eq. �8�,
there will be a second solution Ā and B̄, with �āj�=U1

† �aj�
and �b̄j�=U2

† �bj�. A similar symmetry holds when � is invari-
ant under the interchange of the two component systems.

B. Maxima and n-valued measurements

The second-order variation of the quantity J�
� appearing
in the proof of Proposition 1 immediately yields the condi-
tion J��0��0 for two extremal observables A and B to cor-
respond to a local maximum of coincidence rate. This con-
dition is required to hold only for all kets �mj� and �nj�
satisfying

�
j

��mj�	aj� + �aj�	mj�� = 0 = �
j

��nj�	bj� + �bj�	nj�� �15�

�corresponding to the completeness constraints in Eq. �11�, to
first order in 
�. However, the set of such kets is not straight-
forward to characterize explicitly, and is dependent on the
particular POMs A and B in question, making the condition
difficult to verify in practice. In contrast, an explicit and
generic condition for C�A ,B ��� to be a local maximum is
obtained in Proposition 2 below, based on the Naimark ex-
tension theorem. The restricted problem of maximizing co-
incidence rate over n-valued measurements is also discussed.

Attention will be limited to the case where � has finite
support. In particular, if H1 and H2 are defined to be the
Hilbert spaces spanned by the eigenstates of the reduced den-
sity operators �1ª tr2���, �2ª tr1���, then it is assumed that
these Hilbert spaces are finite dimensional, i.e.,

d1 ª dim�H1� � � , d2 ª dim�H2� � � . �16�

Now, consider a maximal POM A���aj�	aj � 
 on a
d-dimensional Hilbert space H, having less than or equal to n
nonzero elements �hence, from Eq. �11�, nd�. The Naimark
extension theorem then implies there is an n-dimensional
Hilbert space Hn containing H as a subspace, and a maximal
orthogonal POM X���xj�	xj � 
 on Hn �i.e., with 	xj �xk�=� jk�,
such that �aj�=E �xj�, where E denotes the d-dimensional pro-
jection operator from Hn to H �4,14�. The converse result
trivially holds: any maximal orthogonal POM on Hn, with
“eigenstates” ��xj�
, generates a maximal POM A on H with
at most n nonzero elements, defined via �aj�ªE �xj�. Since
all d-dimensional subspaces of Hn are unitarily equivalent,
this establishes the following lemma.

Lemma (Naimark extension theorem for maximal POMs).
For a d-dimensional Hilbert space H, the set of maximal
POMs on H having at most nd nonzero elements is char-
acterized by the set of maximal orthogonal POMs on any
n-dimensional Hilbert space Hn that contains H as a sub-
space.

It follows immediately, taking the limit n→�, that the
class of all maximal POMs on H can be represented by the
class of maximal orthogonal POMs on H�. Thus, the joint
measurement of any two maximal POMs A and B, on the
respective components of the tensor product H1 � H2

spanned by �, can be represented by the measurement of two
maximal orthogonal POMs X and Y on the respective com-
ponents of the tensor product H� � H�, with

�aj� = E�xj�, �bk� = F�yk�, �E � F�� = � = ��E � F� ,

�17�

where E and F denote the d1- and d2-dimensional projections
onto H1 and H2, respectively. In particular, one has

C�A,B��� � C�X,Y��� ª �
j=1

�

	xj,yj���xj,yj� . �18�

The advantage of this representation is that maximal or-
thogonal POMs on H� are connected by unitary transforma-
tions. This allows one to explicitly write down the necessary
and sufficient conditions for an extremal value of coinci-
dence rate to be a local maximum, as per the following
proposition.

Proposition 2. Two maximal orthogonal POMs X and Y
on H�, and hence the corresponding maximal POMs A and B
defined via Eq. �17�, generate a local maximum of coinci-
dence rate if and only if

	xk,yl���xl,yl� = 	xk,yk���xl,yk�,

	xk,yl���xk,yk� = 	xl,yl���xl,yk� �19�

for all k� l, and

�
j

�	xj�M�V − 	bj���bj��M�xj� + 	yj�N�W − 	aj���aj��N�yj�

+ tr���M, �xj�	xj�� � �N, �yj�	yj���
  0, �20�

for all Hermitian operators M and N on H�, where V and W
are defined as per Eq. �12�.

The proof is given in the appendix. Note that the first
condition is equivalent to Eq. �8� of Proposition 1 �and hence
to Eq. �9� also�, as an immediate consequence of Eq. �17�.
Further, the second condition is equivalent to the condition
J��0��0 discussed above, if one defines �mj�ª iEM �xj� and
�nj�ª iFN �yj� �the constraints in Eq. �15� follow from the
anti-Hermiticity of the operators iEME and iFNF�. Note that
the presence of the last term in Eq. �20� implies that the
conditions in Eq. �14� are not sufficient to ensure a local
maximum. Examples will be given in Sec. III C below.

Proposition 2 applies to observables having an arbitrary
number of possible outcomes. However, it is also of interest
to consider the case where A and B are restricted to have a
maximum of n possible outcomes, i.e., where the corre-
sponding POMs have at most n nonzero elements. The com-
pleteness constraints in Eq. �11� imply that nd1 ,d2. The
maximum of the coincidence rate over such observables, for
a given density operator �, will be denoted by Cmax

�n� ���. Not-
ing the above lemma, one has

HALL, ANDERSSON, AND BROUGHAM PHYSICAL REVIEW A 74, 062308 �2006�

062308-4



Cmax
�n� ��� = max

Xn,Yn

C�Xn,Yn��� = max
Xn,Yn

�
j,k=1

n

	xj,yj���xj,yj� ,

�21�

where the maximum is over all maximal orthogonal POMs
Xn and Yn on Hn. Clearly, Cmax

�n� ��� is a nondecreasing func-
tion of n, and converges to Cmax���, i.e., defining d
ªmax�d1 ,d2
,

Cmax
�d� ��� � Cmax

�n� ��� � Cmax
��� ��� = Cmax��� . �22�

An explicit expression for Cmax
�2� ��� is given in Sec. IV, and

general upper bounds for Cmax
�n� ��� are obtained in Sec. V.

Now, a maximal POM A with n elements may trivially be
extended to an infinite number of elements by defining �aj�
ª0 for j�n. Hence, such n-valued POMs may be thought
of as lying on the “boundary” of the set of all maximal
POMs. It would be of interest to show that Cmax

�n� ���, corre-
sponding to the maximum of coincidence rate over a re-
stricted portion of this boundary, is also �at the least� a local
maximum of coincidence rate with respect to the full set of
maximal POMs. The following corollary to Proposition 2
shows that the conditions in Eq. �14� are sufficient for this to
be the case.

Corollary. If the Hermitian operators V and W defined in
Eq. �12� satisfy V 	bj �� �bj� and W 	aj �� �aj� for all j, for
maximal POMs A�n� and B�n� achieving Cmax

�n� ���, then Cmax
�n�

���� is a local maximum of coincidence rate with respect to
the set of all maximal POMs.

Proof. By the above lemma, maximal POMs with at most
n nonzero elements can be represented by the set of maximal
orthogonal POMs on Hn. Further, since the group of unitary
transformations U�n��U�n� is compact, the global maxi-
mum of coincidence rate over such orthogonal POMs must
be actually be achievable, by two orthogonal POMs Xn and
Yn on Hn, having eigenstates �x1� , . . . , �xn� and �y1� , . . . , �yn�,
respectively. It may be shown, just as per the proof of Propo-
sition 2, that these eigenstates must satisfy Eqs. �19� and �20�
with the ranges of j ,k , l restricted to 1 ,2 , . . . ,n �and with M
and N restricted to Hn�. Further, any extension of Xn and Yn
to orthogonal POMs X and Y on H� must satisfy E �xj�=0
=F �xj� for all j�n. It follows for such X and Y that �i� Eq.
�19� is trivially satisfied �implying that the corresponding
POMs A and B are extremal�; �ii� the first and second terms
of Eq. �20� are the same as for Xn and Yn when j�n, and
nonnegative when j�n �as a consequence of the premise of
the Corollary�; and �iii� the third term in Eq. �20� is the same
as for Xn and Yn when j�n, and vanishes when j�n. Hence,
from Proposition 2, Cmax

�n� ��� is a local maximum of coinci-
dence rate with respect to POMs having an arbitrary number
of elements. �

Note from the above proof that the maximal POMs A�n�

and B�n� achieving Cmax
�n� ��� must satisfy Eq. �8�, with k and l

restricted to the range 1 ,2 , . . . ,n. It may be checked �noting
that � is Hermitian� that this places 2n�n−1� real constraints
on the elements of A�n� and B�n�, which are invariant under
the n! permutations of the elements that preserve the condi-
tion k� l. On the other hand, to specify two arbitrary maxi-

mal POMs, each having no more than n nonzero elements,
requires 2n�n−1� real parameters �corresponding to specify-
ing the unitary transformations �xj�=UX �zj�, �yj�=UY �zj� on
Hn relative to some fixed orthonormal basis ��z�
, up to arbi-
trary phases�, with �n ! �2 possible orderings of the elements
�i.e., n! orderings for each POM�. It is therefore expected, for
a generic density operator �, that there are n! pairs of ex-
tremal candidates for A�n� and B�n� �for density operators hav-
ing particular symmetries, there will be further extrema, as
per the last paragraph of Sec. III A�. However, it is conjec-
tured in the next subsection that Cmax

�n� ��� is in fact indepen-
dent of n, which is equivalent to equality throughout in Eq.
�22�. If true, this means that no more than d! candidates for
the optimal observables need be checked in the generic case.

C. Two examples and one conjecture

As a first example, we will consider the case of “trine”
measurements on a two-qubit system, for which the measure-
ment on each qubit optimally distinguishes between the
states of the ensemble prepared by the measurement on the
other qubit, and vice versa. Surprisingly, these measurements
do not generate a global �or even a local� maximum of co-
incidence rate.

In particular, let ��1� , �2�
 be a basis set for either qubit,
and consider the three-valued trine observables A�B
�� 2

3 �� j
�	� j � 
, where the normalized kets

��1� ª �1�, ��2� ª
1

2
��1� + �3�2��, ��2� ª

1

2
��1� − �3�2��

form the vertices of an equilateral triangle in the Bloch rep-
resentation. For the pure bipartite state �= ���	��, with

��� ª
1
�2

��1� � �1� + �2� � �2�� ,

it is then easily checked that

	aj���aj� =
1

3
�� j�	� j� = 	bj���bj�

on the respective components. It follows that the operators V

and W defined in Eq. �12� are each equal to 1
3 1̂, implying

from Proposition 1 that A and B generate an extremal value
of coincidence rate, given by

C�A,B��� = tr�V� = 2/3.

Further, the conditions in Eqs. �14� are trivially satisfied for
this example, implying via Eq. �13� that A optimally distin-
guishes between members of the ensemble of states ��� j�
�	� j � ; 1

3

 prepared by measurement of B, and vice versa

�see also Sec. IV.1�a� of Ref. �3��.
However, A and B above do not generate a global maxi-

mum of coincidence rate for state �, as the maximum pos-
sible value of unity may be achieved by instead choosing
POMs with elements diagonal with respect to any Schmidt
decomposition of ���. Indeed, A and B above do not even
generate a local maximum of coincidence rate—the extremal
value of 2 /3 in fact corresponds to a saddle point. To see
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this, note first that the optimal distinguishing property im-
plies that varying either A or B �while keeping the other
fixed� must decrease the coincidence rate. Hence, the ex-
tremal value of 2 /3 represents a maximum with respect to
such variations. On the other hand, consider the one-
parameter mirror-symmetric family of observables A���

�B�����f j��� �� j
����	� j

��� � 
, with 0���1, f1���=1−�,
f2,3���= �1+�� /2, and �15�

��1
���� ª �1�, ��2,3

���� = �1 + ��−1/2����1� ± �2�� .

Choosing �=1/3 corresponds to the trine observables. It is
straightforward to calculate

C�A���,B������ =
2

3
+

3

4
� −

1

3
�2

,

and hence the extremal value of 2 /3 represents a minimum
of coincidence rate with respect to the variation of � �16�.

As an example of Proposition 2, consider now a separable
state of the form

� = �
j=1

d

� j�� j�	� j� � �� j�	� j� , �23�

where the mutual orthogonality property 	� j ��k�=� jk is sat-
isfied, and each �� j� is arbitrary. Let A be the maximal or-
thogonal POM defined by �aj�ª �� j�, i.e., the optimal POM
for distinguishing members of the ensemble ��� j�	� j � ;� j
;
and let B be the maximal POM which optimally distin-
guishes between members of the pure-state ensemble ��� j�
�	� j � ;� j
 �the existence of such a maximal POM B follows
from Theorem 2 of Ref. �17��. Thus, from Eqs. �12� and �13�,

�V − � j�� j�	� j���aj� = 0 = �W − � j�� j�	� j���bj�,

V  � j�� j�	� j�, W  � j�� j�	� j� .

It is then straightforward to check that both conditions of
Proposition 2 are satisfied by any X and Y corresponding to
A and B, respectively �in particular, the third term in Eq. �20�
vanishes identically, since the orthogonality of the elements
of A implies that � and �xj�	xj� must commute�. Hence this
choice of A and B generates a local maximum of coincidence
rate. Indeed, since a measurement outcome A=aj for the first
component is perfectly correlated with preparation of state
�� j� for the second component, and since B is the best pos-
sible measurement for distinguishing between such prepared
states, the above choice of A and B is intuitively expected to
generate a global maximum of coincidence rate.

Note that if d=2 in Eq. �23�, then B is the orthogonal
POM generated by the eigenstates of �3�

� ª �1��1�	�1� − �2��2�	�2� .

The corresponding maximum value of coincidence rate fol-
lows as �cf. Eq. �2.34� in Chap. IV of Ref. �3��

C�A,B��� = 1
2�1 + tr������ = 1

2 �1 + �1 − 4�1�2�	�1��2��2�1/2� .

�24�

This result is significantly generalized in Sec. IV.

Finally, note that in the above example that A is an or-
thogonal POM, having the minimum possible number, n=d,
of nonzero elements. We conjecture that this may be an in-
stance of a general rule. As motivation, observe that if Alice
and Bob each measure observables having nd possible
outcomes, then the outcomes will typically have a greater
degree of randomness when n�d. For example, the entropy
H�A� of a maximal POM A is bounded below by

H�A� = − �
j

pjlog2pj  − log2max
j

pj  − log2max
j

	aj�aj� ,

which is nontrivial if A is nonorthogonal �i.e., if n�d�. Simi-
larly, the joint entropy of A and B is bounded below by

H�AB�  − log2max
j,k

	aj�aj�	bk�bk� .

Further, the more random a distribution is, the more spread
out it is over the set of possible outcomes. Hence, the sum
over the diagonal elements of the joint distribution pjk �i.e.,
the coincidence rate�, will typically be smaller. It follows that
choosing n�d is typically expected to have a decreasing
effect on the maximum achievable coincidence rate.

Conjecture. The global maximum of coincidence rate, for
a bipartite density operator with finite support, can always be
achieved by observables A and B having at most d
=max�d1 ,d2
 possible outcomes, where d1 and d2 are the
Hilbert space dimensions defined in Eq. �16�.

Note that the conjecture implies that at least one of A and
B corresponds to an orthogonal POM, depending on whether
d=d1 and/or d=d2. Note further that the conjecture corre-
sponds to the case of equality throughout in Eq. �22�, i.e., to
the condition

Cmax��� � Cmax
�d� ��� . �25�

This conjecture is consistent with the convexity properties
discussed in Sec. II and, if true, would greatly simplify the
numerical determination of the maximum coincidence rate,
as only POMs with d elements would need to be considered.
Partial numerical support has been found for the conjecture,
for the case of two-qubit systems. In particular, the evalua-
tion of coincidence rate for �1011 pairs of maximal POMs
having no more than three nonzero elements, for each mem-
ber of a random sample of 1200 bipartite density operators,
indicates that Cmax

�2� �Cmax
�3� .

IV. MAXIMUM SPIN CORRELATION FOR TWO QUBITS

An exact result for two-qubit systems is derived here,
which also introduces the basic method used in the following
section to derive general upper bounds for the coincidence
rate.

A system of two qubits is described by a density operator
� on H2 � H2, so that d1=d2=d=2. Consider the problem of
finding the maximal two-valued POMs A and B which maxi-
mise the coincidence rate. Such POMs are necessarily or-
thogonal, corresponding to the measurement of spin in some
direction, and hence, noting Eq. �21�, the corresponding co-
incidence rate can be written as
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Cmax
�2� ��� = max

a,b
C�	�1� · a,��2� · b��� , �26�

where a and b are unit directions. Note that Cmax
�2� ��� is in fact

equal to the global maximum of coincidence rate, Cmax���, if
the conjecture in Eq. �25� is correct.

To determine Cmax
�2� ���, let �m� denote the +1 eigenstate of

� ·m for unit direction m, so that �m�	m � = �1+� ·m� /2.
Hence, A���a�	a � , �−a�	−a � 
, B���b�	b � , �−b�	−b � 
, and the
coincidence rate follows via Eq. �6� as

C�A,B��� =
1

2
tr���1 + ��1� · a � ��2� · b�� =

1

2
�1 + aTSb� ,

where S is the 3�3 spin-correlation matrix defined by

Sjk ª 		 j
�1�

� 	k
�2�� . �27�

Note that S is real, but in general is not symmetric.
Now, the singular value decomposition theorem �18�

states that any real p�q matrix S can be put in the form

S = R1DR2
T, �28�

where R1 and R2 are real orthogonal matrices �of dimensions
p� p and q�q, respectively�, and D is a real p�q matrix of
the form

Djk = sj� jk, s1  s2  ¯  0.

The numbers sj are called the singular values of S, and are
just the square roots of the eigenvalues of each of STS and
SST, while R1 and R2 are formed by the respective eigenvec-
tors of STS and SST �18�. The largest singular value s1 is also
known as the spectral norm of S.

It follows in particular, defining u=R1
Ta and v=R2

Tb, and
using the Schwarz inequality, that for unit vectors a and b
one has

max
a,b

aTSb = max
u,v

�uTDv� = max
u,v

��
j

��sjuj���sjv j��
� max

u,v ��
j

sj�uj�2�1/2��
k

sk�vk�2�1/2

= max
u

�
j

sj�uj�2 � �max
j

sj��j

�uj�2 = s1,

with equality obtained for the choice u=v=xª �1,0 ,0�.
Thus,

Cmax
�2� ��� =

1

2
�1 + s1� , �29�

where s1 is the spectral norm of the spin-correlation matrix S
defined in Eq. �27� �hence one must have s1=1 for all pure
states�, with this maximum coincidence rate being achieved
via spin measurements in the directions

a = R1x, b = R2x .

The case of spin measurements on two qubits is thus com-
pletely solved.

As a simple example, consider the separable state

� = �1�z�	z� � �1 + �2�− z�	− z� � �2

for arbitrary qubit density operators �1 and �2. One finds that
all elements of the spin-correlation matrix vanish other than
the third row, which is given by the three-vector r with com-
ponents

rk ª �1tr��1	k
�2�� − �2tr��2	k

�2�� .

It follows that only the 33 component of SST is nonzero, and
equal to r ·r, yielding

Cmax
�2� ��� = �1 + �r��/2.

This result generalizes Eq. �24� of the previous section, and
greatly simplifies calculation of the corresponding coinci-
dence rate, as it does not require explicit diagonalization of
the operator �. Note that the coincidence rate is equal to the
average probability for optimally discriminating between
members of the ensemble �� j ;� j
 �3�.

As a second example, consider the isotropic state �19�

�w = w��−�	�−� +
1 − w

3
1̂T,

where ��−� denotes the singlet state, 1̂T=1̂− ��−�	�−� de-
notes the unit operator on the triplet subspace, and 0�w
�1. This state is rotationally-invariant, and the spin-
correlation matrix is easily calculated to be Sjk=−�4w
−1�� jk /3. It follows immediately that

Cmax
�2� ��w� =

1

2
1 +

�4w − 1�
3

� ,

with the maximum coincidence rate being achieved by the
choice a=b for 0�w�1/4, and a=−b for 1 /4�w�1.

Finally, for a general factorizable state �=�1 � �2, with
�1= �1+m ·�� /2 and �2= �1+n ·�� /2, the spin-correlation
matrix is just the outer product S=mnT, so that SST

= �n ·n�mmT, with eigenvalues �m ·m��n ·n�, 0, and 0. It fol-
lows immediately from Eq. �29� that the maximum possible
coincidence rate for two uncorrelated qubits is given by

Cmax
�2� ��1 � �2� =

1

2
�1 + �m��n�� ,

achieved by the choice of the measurement directions a=m
and b=n.

V. BOUNDS FOR COINCIDENCE RATE

A. A general upper bound

Here an upper bound is given for Cmax
�n� ��� in Eq. �21�, i.e.,

for the maximum achievable coincidence rate when Alice
and Bob are restricted to measurements of n-valued observ-
ables. This bound is tight for the case n=2, reducing to Eq.
�29� above. Conversely, taking the limit n→� gives a global
upper bound for Cmax���, which turns out to be equal to the
computable cross norm of � �7�. Note that if the conjecture in
Eq. �25� is correct, then taking n=d will give a much tighter
bound in general for Cmax���.
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First, it is well known that the traceless Hermitian opera-
tors on an n-dimensional Hilbert space Hn form a real vector
space of dimension n2−1, with inner product �M ,N�
ª tr�MN� �20�. Hence, if �Kp
 and �Lq
 denote two orthonor-
mal basis sets for this vector space, then

tr�KpKq� = �pq = tr�LpLq�, Kp = �
q

RpqLq, �30�

for some orthogonal matrix R �i.e., RRT= I�. It follows that
the trace-free part of any operator Z on Hn can be written as

Z −
tr�Z�

n
1̂ = �

p

tr�ZKp�Kp = �
q

tr�ZLq�Lq, �31�

and that any bipartite density operator � on Hn � Hn can be
expressed as

� =
1

n2 1̂ � 1̂ + �
p

upKp � 1̂ + �
q

vq1̂ � Lq + �
p,q

TpqKp � Lq,

�32�

where

up ª 	Kp � 1̂�/n, vq ª 	1̂ � Lq�/n, Tpq ª 	Kp � Lq� .

�33�

This is referred to as a Fano form for � �5,6�.
Now, using Eqs. �30�–�33�, the coincidence rate for two

maximal orthogonal POMs Xn���xj�	xj � 
 and Yn���yj�
�	yj � 
 on Hn simplifies to

C�Xn,Yn��� = 1/n + Tr�TRW� ,

where Tr denotes the matrix trace, and

Wpq ª �
j

	xj�Lp�xj�	yj�Lq�yj� . �34�

Further, Eq. �7.4.14� of Ref. �18� implies, for any two real
matrices T and W and orthogonal matrix R, that

�Tr�TRW�� � �
k

sk�T�sk�W� ,

where s1�P�s2�P�¯ denote the singular values of ma-
trix P �see Sec. IV�. Hence, noting Eq. �21�, one has

Cmax
�n� ��� � 1/n + �

k

sk�T�sk�W� . �35�

To simplify this upper bound, note first that W can be
written, in terms of the vectors

fp
�j�
ª 	xj�Lp�xj�, gp

�j�
ª 	yj�Lp�yj� ,

as the sum of outer products W=� jf
�j��g�j��T. Using Eq. �31�

one finds

f�j� · f�k� = � jk − 1/n = g�j� · g�k�,

implying that

WTW = �
j

g�j��g�j��T = �WTW�2, Tr�WTW� = n − 1.

Thus, WTW is an �n−1�-dimensional projection matrix, im-
plying that the nonzero singular values of W consist of pre-
cisely n−1 1’s. The above upper bound therefore reduces to

Cmax
�n� ��� � 1/n + �

k=1

n−1

sk�T� , �36�

where the matrix T is defined in Eq. �33�.
The bound can be further simplified, via a judicious

choice of the basis sets �Kp
 and �Lq
. In particular, recall
that � only has support on the subspace H1 � H2 of Hn � Hn
�see Sec. III B�. The first �d1�2−1 elements of �K1 ,K2 , . . . 

can therefore be chosen to form a basis set for the traceless
operators on H1, and the first �d2�2−1 elements of
�L1 ,L2 , . . . 
 can similarly be chosen to form a basis set for
the traceless operators on H2. Two further basis elements,
relabeled as K0 and L0 for convenience, will be chosen to
have the forms

K0 ª �1E − �1�1̂ − E�, L0 ª �2F − �2�1̂ − F� ,

where E and F denote the projections from Hn to H1 and H2.
The requirements tr�K0�=tr�L0�=0 and tr��K0�2�=tr��L0�2�
=1 imply that

�1 = �1/d1 − 1/n�1/2, �1 = �1d1/�n − d1� ,

�2 = �1/d2 − 1/n�1/2, �2 = �2d2/�n − d2� .

Since the remaining basis elements must be orthogonal to the
above basis elements, they cannot contribute to the Fano
form of � in Eq. �32�. Hence, using Eq. �33�, the only non-
zero rows and columns of the matrix T are given by the
�d1�2� �d2�2 submatrix

T�n�
ª 	K0 � L0� 	K0 � Lq�

	Kp � L0� 	Kp � Lq�
�

=  �1�2 �1	1̂1 � Lq�

�2	Kp � 1̂2� 	Kp � Lq�
� , �37�

where 1̂1 and 1̂2 denote the identity operators on H1 and H2,
respectively, and 1� p� �d1�2−1, 1�q� �d2�2−1. Substitu-
tion into Eq. �36� yields the main result of this section.

Theorem. The maximum coincidence rate obtainable for a
bipartite state with finite support, via maximal POMs having
no more than n nonzero elements, is bounded above by

Cmax
�n� ��� � 1/n + �

k=1

min�n−1,�2


sk�T�n�� , �38�

where �ªmin�d1 ,d2
, and the matrix T�n� is defined in Eq.
�37�.

Since local unitary transformations correspond to left and
right multiplication of T�n� by orthogonal matrices, which
leave the singular values unchanged �18�, this upper bound is
invariant under such transformations.
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For the case of two qubits, with n=d1=d2=2, one may
choose Kp=	p

�1� /�2 and Lq=	q
�1� /�2. The zeroth row and

column of T�n� vanish for this case, since �1=�2=0, leaving
a 3�3 submatrix equal to one-half of the spin-correlation
matrix S in Eq. �27�. Thus, for this case, the upper bound of
the theorem reduces to �1+s1�S�� /2, which can in fact al-
ways be achieved, as per Eq. �29� of the previous section.
However, for n�3 the upper bound in Eq. �38� cannot al-
ways be attained, essentially because the set of orthogonal
matrices R in Eq. �30� is larger than the set of unitary trans-
formations on Hn �20�.

B. Examples

Note first that taking the limit n→� in Eq. �38� yields a
global upper bound for the coincidence rate, independent of
the possible number of measurement outcomes:

Cmax��� � �
k=1

�2

sk�T���� = Tr���T����TT���� = �T����Tr.

�39�

Thus, the upper bound is just the trace norm of T���. Noting
that �1→1/�d1 and �2→1/�d2 in this limit, it follows that
the coefficients of T��� yield a Fano form for � on H1 � H2,
via

� = T00
���1̂1 � 1̂2/�d1d2 + �

p1
Tp0

���Kp � 1̂2/�d2

+ �
q1

T0q
���1̂1 � Lq/�d1 + �

p,q1
Tpq

���Kp � Lq. �40�

The trace norm of T��� may therefore be recognized as the
“computable cross norm” measure of quantum entanglement
�6,7�, i.e., the maximum possible coincidence rate Cmax��� is
bounded above by the computable cross norm.

The computable cross norm cannot be greater than unity
for any separable states �6,7�, and hence the upper bound in
Eq. �39� is always nontrivial for separable states �and for a
large proportion of entangled states�. However, a stronger
bound is postulated further below.

Second, it is of interest to consider measurements
restricted to the minimum number of possible measure-
ment outcomes, i.e., with n=d. For this case �1=�2=0, im-
plying that the only nonvanishing part of T�d� is the �d1

2−1�
� �d2

2−1� submatrix T̃pq= 	Kp � Lq� with p ,q1, yielding

Cmax
�d� ��� � 1/d + �

k=1

min�d−1,�2−1


sk�T̃� . �41�

As noted above, this bound is tight for the case d1=d2=2.
For two-qudit systems it bounds the coincidence rate for the
case of measurements described by orthogonal POMs. It may
also be noted, in analogy to the computable cross norm

above, that T̃ has similarly been used in partial characteriza-
tions of entanglement �21,22�. For example, the trace norm

of T̃ is never greater than ��1−1/d1��1−1/d2��1/2 for any
separable state �21�. These general underlying connections,
between bounds for correlations and measures of entangle-

ment, would be an interesting subject for further investiga-
tion �see also Sec. VI�.

Third, a simple yet general example of the theorem is
provided by the Werner state for two qudits �19�, which has
the Fano form �21�

�x ª
1

d2 1̂ � 1̂ +
x − 1/d

d2 − 1 �
p1

Kp � Kp,

with −1�x�1. It follows via Eqs. �32�, �33�, and �37� that
T�n� is diagonal, and so, noting that �1�2=1/d−1/n for this
case, the theorem yields

Cmax
�n� ��x� �

1

n
+ �D − 1�

�x − 1/d�
d2 − 1

+ max1

d
−

1

n
,
�x − 1/d�
d2 − 1

� ,

where Dªmin�n−1,d2
. Note that, in the limit n→�, the
right-hand side approaches the computable cross norm for
Werner states, 1 /d+ �x−1/d�, as expected �7�. It is also
straightforward to verify via direct calculation that this
bound is tight for the case n=d and x1/d, i.e.,

Cmax
�d� ��x� = 1/d + �x − 1/d�/�d + 1� �42�

for x1/d, achieved by the choice A=B. For x�1/d,

a modification of the theorem for negative definite T̃ gives
the tight upper bound Cmax

�d� ��x�=1/d+ �x−1/d � / �d2−1�,
achieved by maximal orthogonal POMs satisfying �aj�
= �bP�j�� for any permutation P of 1 ,2 , . . . ,d with P�j�� j for
all j. This example may be regarded as a generalization of
the d=2 isotropic example in Sec. IV, where one identifies x
with 1−2w.

Note finally that if the conjecture in Eq. �25� is correct,
then the bound in Eq. �41� is in fact an upper bound for
Cmax���, which is generally much tighter than the comput-
able cross norm bound in Eq. �39�. For example, consider
any state for which the reduced density operators are maxi-

mally random, i.e., where �1= 1̂1 /d1 and �2= 1̂2 /d2 �e.g., the
Werner state �x considered above�. It then follows trivially
via Eq. �37� that

�T����Tr = �d1d2�−1/2 + �T̃�Tr  1/d + �T̃�Tr.

Thus, for such states, the bound in Eq. �41� is never greater
than that in Eq. �39�, and is generally smaller whenever
d��2.

VI. CONCLUSIONS

It is well known that determining the maximum mutual
information between the components of a given bipartite sys-
tem is a difficult problem �9�. The results of this paper indi-
cate that it is similarly not a straightforward matter to maxi-
mize the coincidence rate, despite �i� its linearity with respect
to the density operator, and �ii� formal similarities with the
well-known problem of optimal state discrimination. A no-
table exception is the case of spin measurements on two-
qubit systems, which has been fully solved in Sec. IV. More
generally, one only has available the formal equations for the
correlation basis derived in Propositions 1 and 2 of Sec. III,
and the upper bounds for n-valued measurements derived in
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the theorem of Sec. V. These general results could be sub-
stantially strengthened if the conjecture of Sec. III C could
be verified. It would further be of interest to determine
whether or not the optimal discrimination conditions in Eq.
�14� must be satisfied by observables corresponding to a glo-
bal maximum of coincidence rate.

It is worth mentioning here some generalizations of the
results in Secs. IV and V, to other linear measures of corre-
lation. For example, note that the spin-correlation matrix S in

Eq. �27� is closely related to the spin covariance matrix S̄
defined by

S̄jk ª 		 j
�1�

� 	k
�2�� − 		 j

�1��		k
�2�� .

In particular, explicitly indicating dependence on the density

operator, one has S̄���=S���−S��1 � �2�. This covariance
matrix has been of recent interest in the characterization of
entanglement �13,22�. For example, the main result in Sec.
IV of Ref. �22� may be simplified to

Tr�S̄TS̄� = 4 tr��� − �1 � �2�2� � 1, �43�

for all separable two-qubit states, i.e., a separable state � can
lie at distance of at most 1 /2 from �1 � �2, as measured by
the Hilbert-Schmidt metric.

Now, the covariance of two arbitrary spin observables,
corresponding to directions a and b, may be written as

Cov�A,B��� = aTS̄b .

The methods of Sec. IV then immediately lead to the upper
bound

max
a,b

Cov�A,B��� = s1�S̄� �44�

analogous to Eq. �29�, i.e., the maximum possible spin cova-
riance for state � is given by the spectral norm of the spin
covariance matrix. Note that this bound is invariant under
local unitary transformations. It follows, for example, that
Theorem 1 of Ref. �13� may be strengthened to the
observable-independent statement that

tr��2� +
1

2
s1�S̄� � 1 �45�

for all separable states of two-qubit systems. Noting Eq.
�44�, this inequality is also valid if Cov�A ,B ��� is substituted

for s1�S̄�, for any spin observables A and B. Similarly, Eq.
�24� of Ref. �13� may be strengthened, using the methods of
Sec. IV, to the entanglement bound

EN���  max�0,log2�s1�S� + s2�S��
 �46�

for the logarithmic negativity of a two-qubit system. Thus, as
in Sec. V, correlation and entanglement bounds are seen to be
closely related.

Finally, consider some general linear measure of correla-
tion, of the form

G�A,B��� ª �
j,k

pjkgjk = �
jk

gjk	aj,bk���aj,bk� .

The coincidence rate corresponds to the choice gjk=� jk. The
related covariance measure

Ḡ�A,B��� ª G�A,B��� − G�A,B��1 � �2�

then has the desirable property of automatically vanishing
for uncorrelated states. The methods of Sec. V A may then

be applied to Ḡ, with � replaced by �−�1 � �2, to yield the
corresponding upper bound

�Ḡ�A�n�,B�n����� = �Tr�T̄RW�� � �
k

sk�T̄�sk�WG� , �47�

analogous to Eq. �35�, for maximal POMs A�n� and B�n� hav-
ing n elements each. Here

T̄pq ª 	Kp � Lq� − 	Kp�	Lq� ,

and the definition of W in Eq. �34� is generalized to

Wpq
G
ª �

j,k
gjk	xj�Lp�xj�	yk�Lq�yk� .

This bound is tight for spin measurements on two-qubit sys-
tems. For the choice gjk=� jk the bound simplifies to

�Corr�A�n�,B�n����� � �
k=1

min�n−1,�2−1


sk�T̄� �48�

for the correlation � j�pjj − pjqj� of any two n-valued maximal
POMs �see Sec. II�, generalizing Eq. �44� above. Note that
one may simplify the calculation of the above bounds by
choosing the basis elements as in Sec. V, allowing one to

replace T̄ by the submatrix corresponding to 1� p� �d1�2

−1 and 1�q� �d2�2−1.

APPENDIX: PROOF OF PROPOSITION 2

To prove Proposition 2 in Sec. III B, note first that all
infinitesimal variations of the orthogonal POMs X and Y in
Eq. �18� are generated by infinitesimal unitary transforma-
tions on H�, and hence are of the form

�xj� → exp�i
M��xj�, �yj� → exp�i
N��yj�

for arbitrary Hermitian operators M and N on H�, where 
 is
an infinitesimal real parameter. Note from Eq. �18� that these
variations are equivalent to keeping X and Y fixed and in-
stead varying the density operator, viz.,

� → �
 ª exp�− i
K�� exp�i
K� ,

with KªM � 1+1 � N. Expanding in powers of 
 gives

�
 = � − i�K,�� − �1/2�
2
†K,�K,��‡ + ¯

and hence the corresponding variation in coincidence rate is
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�C = − i
�
j

	xj,yj��K,���xj,yj�

− �1/2�
2�
j

	xj,yj��K,�K,����xj,yj� + ¯ .

Requiring the first-order variation to vanish yields

0 = tr1M�
j

�Xj,	yj���yj��� + tr2N�
j

�Y j,	xj���xj���
for arbitrary M and N, where Xj and Y j denote �xj�	xj� and
�yj�	yj�, respectively. Hence, each operator sum must vanish
identically, and Eq. �19� follows as the matrix components of
these sums, with respect to the X and Y basis sets, respec-
tively.

Requiring the second-order variation to be no greater than
zero, as is required for a local maximum, is equivalent to

�
j

�tr1��M,�M,Xj�	yj���yj�� + tr2�†N,�N,Y j�‡	xj���xj��

+ 2 tr���M,Xj�� � �N,Y j���
  0.

Now, defining the Hermitian operators

Ṽ ª �
j

	yj���yj��xj�	xj�, W̃ ª �
j

	xj���xj��yj�	yj� ,

and using Eq. �17� and � jXj =1, the summation over the first
term may be simplified to give

�
j

tr1�†M,�M,Xj�‡	yj���yj�� = �
j

tr1�MXj	yj���yj�M + H.c. − 2XjM	yj���yj�M�

= �
j

tr1�XjM�Ṽ + Ṽ†�M − 2XjM	yj���yj�M� = 2�
j

	xj�M�Ṽ − 	bj���bj��M�xj� .

The summation over the second term may be similarly sim-

plified in terms of W̃. Equation �20� then immediately fol-

lows if it can be shown that Ṽ=V and W̃=W.

To do so, note first from Eqs. �12� and �17� that ṼE=V

and W̃F=W. Together with their conjugates, these equations

imply �Ṽ ,E�=0= �W̃ ,F�, and hence that

Ṽ = V + �1 − E�Ṽ�1 − E�, W̃ = W + �1 − F�W̃�1 − F� .

Substitution into

�Ṽ − 	yj���yj���xj� = 0, �W̃ − 	xj���xj���yj� = 0

�which is equivalent to Eq. �19� precisely as per the equiva-
lence of Eqs. �8� and �9� in Proposition 1�, and using Eqs. �8�
and �17� then gives

�1 − E�Ṽ�1 − E��xj� = 0 = �1 − F�W̃�1 − F��yj�

for all j. But ��xj�
 and ��yj�
 are basis sets for H�, implying
that the operators must vanish identically, and the desired
result immediately follows.
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