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Using a recently developed procedure—multiple wave packet decomposition—here we study the phase time
formulation for tunneling or reflecting particles colliding with a potential barrier. To partially overcome the
analytical difficulties which frequently arise when the stationary phase method is employed for deriving phase
�tunneling� time expressions, we present a theoretical exercise involving a symmetrical collision between two
identical wave packets and an one-dimensional rectangular potential barrier. Summing the amplitudes of the
reflected and transmitted waves—using a method we call multiple peak decomposition—is shown to allow
reconstruction of the scattered wave packets in a way which allows the stationary phase principle to be
recovered.
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Recently, a series of experimental results �1–4�, some of
them confirming the possibility of superluminal tunneling
speeds for photons, have revived an interest in the tunneling
time analysis �5–9�. On the theoretical front, people have
tried to introduce quantities that have the dimension of time
and can somehow be associated with the passage of the par-
ticle through the barrier or, strictly speaking, with the defi-
nition of the tunneling time. These proposals have led to the
introduction of several time definitions �5,10–20�, some of
which can be organized into three groups. �i� The first group
comprises a time-dependent description in terms of wave
packets where some features of an incident packet and the
comparable features of the transmitted packet are utilized to
describe a quantifiable delay as a tunneling time �9�. �ii� In
the second group the tunneling times are computed based on
averages over a set of kinematical paths, whose distribution
is supposed to describe the particle motion inside a barrier. In
this case, Feynman paths are used like real paths to calculate
an average tunneling time with the weighting function
exp�iSx�t� /��, where S is the action associated with the path
x�t� �where x�t� represents the Feynman paths initiated from
a point on the left of the barrier and ending at another point
on the right of it �21��. The Wigner distribution paths �16�,
and the Bohm approach �22,23� are included in this group.
�iii� In the third group we notice the introduction of a new
degree of freedom, constituting a physical clock for the mea-
surements of tunneling times. This group comprises the
methods with a Larmor clock �11� or an oscillating barrier
�24�. Separately, standing on itself is the dwell time defined
by the interval during which the incident flux has to exist and
act, to provide the expected accumulated particle storage,
inside the barrier �7�.

There is no general agreement �5,8� among the above
definitions about the meaning of tunneling times �some of
the proposed tunneling times are actually traversal times,
while others seem to represent in reality only the spread of
their distributions� and about which, if any, of them is the
proper tunneling time �5�. In the context which we intend to
work on, the tunneling mechanism is embedded by theoreti-

cal constructions involving analytically continuous Gauss-
ian, or infinite-bandwidth step pulses to examine the tunnel-
ing process. Nevertheless, such holomorphic functions do
not have a well-defined front in a manner that the interpre-
tation of the wave packet speed of propagation becomes am-
biguous. Moreover, infinite-bandwidth signals cannot propa-
gate through any real physical medium �whose transfer
function is therefore finite� without pulse distortion, which
also leads to ambiguities in determining the propagation ve-
locity during the tunneling process. For instance, some of the
barrier traversal time definitions lead, under tunneling time
conditions, to very short times, which can even become
negative. It can precipitately induce an interpretation of vio-
lation of simple concepts of causality. Otherwise, negative
speeds do not seem to create problems with causality, since
they were predicted both within special relativity and within
quantum mechanics �18�. A possible explanation of the time
advancements related to the negative speeds can come, in
any case, from consideration of the very rapid spreading of
the initial and transmitted wave packets for large momentum
distribution widths. Due to the similarities between tunneling
�quantum� packets and evanescent �classical� waves, exactly
the same phenomena are to be expected in the case of clas-
sical barriers �25�. The existence of such negative times is
predicted by relativity itself based on its ordinary postulates
�5�, and they appear to have been experimentally detected in
many works �26,27�.

In this extensively explored scenario, the first group
quoted above contains the so-called phase times �28–30�
which are obtained when the stationary phase method �SPM�
�35� is employed for obtaining the times related to the mo-
tion of the wave packet spatial centroid. Generically speak-
ing, the SPM essentially enables us to parametrize some
subtleties of several quantum phenomena, such as tunneling
�2,9,16�, resonances �31–33�, incidence-reflection and
incidence-transmission interferences �34� as well as the Hart-
man effect �36� and its superluminal traversal time interpre-
tation �5,7,19�. In fact, it is the simplest and most usual ap-
proximation method for describing the group velocity of a
wave packet in a quantum scattering process represented by
the collision of a particle with a potential barrier
�5,7,12,29,36,37�.

In the following study we will concentrate on some in-*Electronic address: alexeb@ifi.unicamp.br
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compatibilities that appear when the SPM is utilized for de-
riving tunneling times. After quantifying the restrictive con-
ditions for the use of the method, at the end of our analysis,
we discuss a theoretical exercise involving a symmetrical
collision between two identical wave packets and a one-
dimensional rectangular potential barrier. We demonstrate
that by summing the amplitudes of the reflected and trans-
mitted waves in the scope of what we denominate a multiple
peak decomposition analysis �37�, we can recompose the
scattered wave packets in a way that the analytical conditions
for the SPM applicability are totally recovered.

The SPM can be successfully applied for describing the
movement of the center of a wave packet constructed in
terms of a momentum distribution g�k-k0� which has a pro-
nounced peak around k0. By assuming that the phase that
characterizes the propagation varies smoothly around the
maximum of g�k-k0�, the stationary phase condition enables
us to calculate the position of the peak of the wave packet
�highest probability region to find the propagating particle�.
With regard to the tunneling phenomenon, the method is usu-
ally applied to find the position of a wave packet that
traverses a potential barrier. For the case in which we con-
sider a rectangular potential barrier V�x�, V�x�=V0 if
x� �−L /2 ,L /2� and V�x�=0 if x� / �−L /2 ,L /2�,

V�x� =�Vo x � �− L/2,L/2� ,

0 x � �− L/2,L/2� ,
� �1�

it is well known that the transmitted wave packet solution
�x�L /2� calculated by means of the Schrödinger formalism
is given by �38�

�T�x,t� = �
0

w dk

2�
g�k − k0��T�k,L��exp	ik�x − L/2� − i

k2

2m
t

+ i��k,L�
 . �2�

In case of tunneling, the transmitted amplitude and the phase
shift are, respectively, given by

�T�k,L�� = �1 +
w4

4k2�2�k�
sinh2���k�L��−1/2

, �3�

and

��k,L� = arctan�2k2 − w2

k��k�
tanh���k�L�� , �4�

for which we have made explicit the dependence on the bar-
rier length L, and we have adopted ��k�= �w2−k2�1/2 with
w= �2mV0�1/2 and �=1. By not considering any eventual dis-
tortion that �T�k ,L�� could cause to the supposedly symmetric
function g�k-k0�, the stationary phase condition is indiscrimi-
nately applied to the phase �ii� leading to

d

dk
��k�x − L/2� −

k2

2m
t + ��k,L���

k=kmax

= 0,

⇒x − L/2 −
kmax

m
t + �d��k,L�

dk
�

k=kmax

= 0. �5�

The above result is frequently adopted for calculating the
transit time tT of a transmitted wave packet when its peak
emerges at x=L /2,

tT =
m

kmax
� d��k,��L��

dk
�

k=kmax

=
2mL

kmax�
�w4 sinh���cosh��� − �2kmax

2 − w2�kmax
2 �

4kmax
2 �w2 − kmax

2 � + w4 sinh2��� � ,

�6�

where we have defined the parameter �= �w2−kmax
2 �1/2L. The

concept of opaque limit is introduced when we assume that
kmax is independent of L and then we make � tend to � �19�.
In this case, the transit time can be rewritten

tT
OL =

2m

kmax��kmax�
. �7�

In the literature, the value of kmax is frequently approximated
by k0, the maximum of g�k-k0�, which, in fact, does not
depend on L and could lead us to the superluminal transmis-
sion time interpretation �8,19,39�. To clear up this point, we
notice that when we take the so called opaque limit in Eq.
�7�, with L going to � and w fixed as well as with w going to
� and L fixed, with k0	w in both cases, the expression �7�
leads to times corresponding to a transmission process per-
formed with velocities larger than c �19�.

Such a superluminal interpretation was extended to the
study of quantum tunneling through two successive barriers
separated by a free region �20�. In this approach, the total
traversal time should be independent of the barrier widths
and of the distance between the barriers. In a subsequent
analysis, the same technique was applied to a problem with
multiple successive barriers where the tunneling process was
designated as a highly nonlocal phenomenon �39�.

It would be perfectly acceptable to consider kmax=k0 for
the application of the stationary phase condition if the mo-
mentum distribution g�k-k0� centered at k0 was not modified
by any boundary condition. That is the case of the incident
wave packet before the collision with the potential barrier. In
this sense, and in the context of the above quoted theoretical
results, our criticism is concerned with the way of obtaining
all the above results for the transmitted wave packet. It has
not taken into account the bounds and enhancements im-
posed by the analytical form of the transmission coefficient.

To perform the correct analysis, we should calculate the
correct value of kmax to be substituted in Eq. �6� before tak-
ing the opaque limit. We are thus obliged to consider the
relevant amplitude for the transmitted wave as the product of
a symmetric momentum distribution g�k-k0�, which de-
scribes the incoming wave packet, by the modulus of the
transmission amplitude T�k ,L�, which is a crescent function
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of k. The maximum of this product representing the trans-
mission modulating function would be given by the solution
of the equation

g�k − k0��T�k,L��	g��k − k0�
g�k − k0�

+
�T�k,L���
�T�k,L�� 
 = 0. �8�

Obviously, the peak of the modified momentum distribution
is shifted to the right of k0 so that kmax has to be found in the
interval �k0 ,w�. Moreover, we can demonstrate by the nu-
merical results of Table I that kmax presents an implicit de-
pendence on L. For obtaining the Table I data we have found
the maximum of g�k-k0��T�k ,L�� by assuming a Gaussian

distribution g�k-k0�= � a2

2�
�1/4

exp�−
a2�k-k0�2

4
� almost com-

pletely comprised in the interval �0,w�.
By increasing the value of L with respect to the wave

packet width a, the value of kmax obtained from the numeri-
cal calculations to be substituted in Eq. �6� also increases up
to L reaches certain values for which the modified momen-
tum distribution becomes unavoidably distorted. In this case,
the relevant values for k are concentrated in the neighbor-
hood of the upper boundary value w. We shall show in the
following that the value of L, which sets up the distortion the
momentum distribution can be analytically obtained in terms
of a.

Now, if we take the opaque limit of � by fixing L and
increasing w, the above results immediately ruin the super-
luminal interpretation upon the result of Eq. �6�, since tT

OL

tends to � when kmax is substituted by w. Otherwise, when w
is fixed and L tends to �, the parameter � calculated at
k=w becomes indeterminate. The transit time tT still tends to
� but now it exhibits a peculiar dependence on L, which can
be easily observed by defining the auxiliary function

G��� =
sinh���cosh��� − �

sinh2���
. �9�

When �
1, the transmission time assumes infinite values

tT
� =

2mL

w�
G��� ⇒ tT

� �
2m

w�w2 − k2�1/2 → � . �10�

with an asymptotic dependence on �w2-k2�−1/2. Only when �
tends to 0 we have an explicit linear dependence on L given
by

tT
0 =

2mL

w
lim
�→0

�G���
�

� =
4mL

3w
. �11�

In addition to the above results, the transmitted wave must
be carefully studied in terms of the ratio between the barrier
extension L and the wave packet width a. For very thin bar-
riers, i.e., when L is much smaller than a, the modified trans-
mitted wave packet presents substantially the same form of
the incident one. For thicker barriers, but yet with L	a, the

peak of the Gaussian wavepacket modulated by the trans-
mission coefficient is shifted to higher energy values, i.e.,
kmax�k0 increases with L. For very thick barriers, i.e., when
L�a, we are able to observe that the form of the transmitted
wave packet is badly distorted with the greatest contribution
coming from the Fourier components corresponding to the
energy w just above the top of the barrier in a kind of filter
effect. We observe that the quoted distortion starts to
appear when the modulated momentum distribution
presents a local maximal point at k=w which occurs when
� d
dk �g�k−k0��T�k ,L����k=w�0. Since the derivative of the

Gaussian function g�k−k0� is negative at k=w, the previous
relation gives

−
g��w − k0�
g�w − k0�

	 lim
k→w

	T��k,L�
T�k,L� 
 =

wL2

4

1 +
wL2

3
�

1 +
wL2

4
� 	

wL2

3

�12�

which effectively represents the inequality

a2

2
�w − k0� 	

wL2

3
⇒ L ��3

2
a1 −

k0

w
� . �13�

Due to the filter effect, the amplitude of the transmitted
wave is essentially composed by the plane wave components
of the front tail of the incoming wave packet that reaches the
first barrier interface before the peak arrival. Meanwhile,
only whether we had cut the momentum distribution off at a
value of k smaller than w, i.e., k��1−��w, the superluminal
interpretation of the transition time �7� could be recovered.
In this case, independent of the way that � tends to �, the
value assumed by the transit time would be approximated by
tT
��2m /w�, which is a finite quantity. Such a finite value

would confirm the hypothesis of superluminality. However,
the cutoff at k��1−��w increases the amplitude of the tail of
the incident wave as we can observe in Fig. 1. It means that
the contribution of wave packet tail for the final composition
of the transmitted wave is put on the same level with the
contribution of the peak of the incident wave. Consequently,
an ambiguity in the definition of the arrival time is created.

To summarize, at this point we are particularly convinced
that the use of a step discontinuity to analyze signal trans-
missions in tunneling processes deserves a more careful
analysis than the immediate application of the stationary
phase method. The point is that we cannot find an analytic
continuation between the above-barrier case solutions and
the below-barrier case solutions. By assuming the factual
influence of the amplitude of the transmitted wave, we may
introduce an alternative analysis where we consider the pos-
sibility of using the multiple peak decomposition technique
developed for the above barrier diffusion problem �37�. By
means of such an experimentally verifiable exercise, we shall
be able to understand how the filter effect can analytically
affect the calculations of transit times in the tunnel process.

In the framework of the multiple peak decomposition
�37�, we suggest a suitable way for comprehending the
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conservation of probabilities for a very particular scattering
configuration where the asymmetric aspects discussed above
can be totally eliminated. In order to recover the scattered
momentum distribution symmetry conditions for accurately
applying the SPM, we assume a symmetrical colliding con-
figuration of two wave packets traveling in opposite
directions. By considering the same rectangular barrier
V�x�, we solve the Schrödinger equation for a plane
wave component of momentum k for two identical wave
packets symmetrically separated from the origin x=0.
At time t=−�mL� / �2k0� chosen for mathematical conve-
nience, we assume that they perform a totally symmetric
simultaneous collision with the potential barrier. The wave
packet reaching the left �right� side of the barrier is repre-
sented by

�L�R��x,t� = �
0

+�

dkg�k − k0�L�R��k,x�exp�− iEt� . �14�

Here we have assumed that the limits of the above integral
can be naturally extended from the interval �0,w� to the in-
terval �0,�� as a first approximation. Its range of validity can
be controlled by the choice of the width �k of the momen-
tum distribution g�k−k0� �with k0�0� with �k enhanced by
the barrier’s height �V0�. By assuming that L�R��k ,x� are
Schrödinger equation solutions, at the time t=−�mL� / �2k0�,
i.e., when the wave packet peaks simultaneously reach the
barrier, we can write

L�R��k,x� = �1
L�R��k,x� = exp�±ikx� + RB

L�R��k,L�exp��ikx� x 	 − L/2�x � L/2� ,

2
L�R��k,x� = �B

L�R��k�exp���x� + �B
L�R��k�exp�±�x� − L/2 	 x 	 L/2,

3
L�R��k,x� = TB

L�R��k,L�exp�±ikx� x � L/2�x 	 − L/2� .
�

where the upper �lower� sign is related to the index L�R�. By
assuming the conditions for the continuity of L,R and their
derivatives at x=−L /2 and x=L /2, after some mathematical
manipulations, we can easily obtain

RB
L,R�k,L� = exp�− ikL�� exp�i��k,L���1 − exp�2��k�L��

1 − exp�2��k�L�exp�i��k,L�� �
�15�

and

TB
L,R�k,L� = exp�− ikL�� exp���k�L��1 − exp�2i��k,L���

1 − exp�2��k�L�exp�i��k,L�� � ,

�16�

where ��k ,L� is given by the Eq. �4� and RB
L�k ,L� and

TB
R�k ,L� as well as RB

R�k ,L� and TB
L�k ,L� are intersecting each

other. By analogy with the procedure of summing amplitudes
that we have adopted in the multiple peak decomposition
scattering �37�, such a pictorial configuration obliges us to
sum the intersecting amplitude of probabilities before taking
their squared modulus in order to obtain

RB
L,R�k,L� + TB

R,L�k,L� = exp�− ikL�

�� exp���k�L� + exp�i��k,L��
1 + exp���k�L�exp�i��k,L���

= exp�− i�kL + ��k,L��� �17�

with

��k,L� = arctan� 2k��k�sinh���k�L�
w2 + �k2 − �2�k��cosh���k�L�� . �18�

From Eq. �17�, it is important to observe that, differently
from the previous standard tunneling analysis, by adding the
intersecting amplitudes at each side of the barrier, we keep
the original momentum distribution undistorted since
�RB

L,R�k ,L�+TB
R,L�k ,L�� is equal to one. At this point we re-

cover the most fundamental condition for the applicability of
the SPM. It allows us to accurately find the position of the
peak of the reconstructed wave packet composed by reflected
and transmitted superposing components. The phase time in-
terpretation can be, in this case, correctly quantified in terms
of the analysis of the new phase ��k ,L�. By applying the
stationary phase condition to the recomposed wave packets,
the maximal point of the scattered amplitudes g�k
−k0��RB

L,R�k ,L�+TB
R,L�k ,L�� are accurately given by kmax=k0

so that the traversal or reflection time or, more generically,
the scattering time, results in

tT
� =

m

k0
� d�„k,��L�…

dk
�

k=k0

=
2mL

k0�

w2 sinh��� − �k0
2

2k0
2 − w2 + w2 cosh2���

�19�

with � previously defined. It can be said metaphorically that
the identical particles represented by both incident wave
packets spend a time of the order of tT

� inside the barrier
before retracing its steps or tunneling. In fact, we cannot
differentiate the tunneling from the reflecting waves for such
a scattering configuration. The point is that we have intro-
duced the possibility of improving the efficiency of the SPM
in calculating reflecting and tunneling phase times, by study-
ing a process where the conditions for applying the method
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are totally recovered. We have demonstrated that the trans-
mitted and reflected interfering amplitudes results in a uni-
modular function which just modifies the envelop function
g�k−k0� by an additional phase. The previously pointed out
incongruities which cause the distortion of the momentum
distribution g�k−k0� are completely eliminated in this case.
At the same time, one could argue about the possibility of
extending such a result to the tunneling process established
in a standard way. We should assume that in the region inside
the potential barrier, the reflecting and transmitting ampli-
tudes should be summed before we compute the phase
changes. Obviously, it would result in the same phase time
expression as represented by �19�. In this case, the assump-
tion of there �not� existing interference between the momen-
tum amplitudes of the reflected and transmitted waves at the
discontinuity points x=−L /2 and x=L /2 is purely arbitrary.
Consequently, it is important to reinforce the argument that
such a possibility of interference leading to different phase
time results is strictly related to the idea of using �or not� the
multiple peak �de�composition in the region where the po-
tential barrier is localized. To illustrate the difference be-
tween the standard tunneling phase time tT and the alterna-
tive scattering phase time tT

� we introduce the parameter n
=kmax

2 /w2 and we define the classical traversal time �
= �mL� /kmax. Then we can obtain the rates

RT��� =
tT

�
=

2

�
� cosh���sinh��� − �n�2n − 1�

�4n�1 − n� + sinh2���� � and

RT
���� =

tT
�

�
=

2

�
� n� + sinh���

2n − 1 + cosh���� �20�

which are plotted in the Fig. 2 for some discrete values of n
varying from 0 to 1. The most common limits of the above
expressions are given by

lim
�→�

�RT
����� = lim

�→�
�RT���� = 0, �21�

and

lim
�→0

�RT���� = 1 +
1

2n
, and lim

�→0
�RT

����� = 1 +
1

n
. �22�

Both present the same asymptotic behavior, which, in a to-
tally restrictive mathematical sense of the stationary phase
analysis context, allows the possibility of a superluminal in-
terpretation for the peak of the transmitted wave packet. The
main point is that, by now, from the point of view of the
analytical limitations, the SPM can be accurately applied. At
this point it is convenient to notice that the superluminal
phenomena, observed in the experiments with tunneling pho-
tons and evanescent electromagnetic waves �1–4�, generated
a lot of discussion on relativistic causality. In fact, superlu-
minal group velocities in connection with quantum �and clas-
sical� tunnelings were predicted even on the basis of tunnel-
ing time definitions more general than the simple Wigner’s
phase time �29�. Olkhovsky et al. discuss a simple way of
understanding the problem �5�. In a causal manner, it might
consist in explaining the superluminal phenomena during
tunneling as simply due to a reshaping of the pulse, with
attenuation, as already attempted �at the classical limit� �40�.
The later parts of an incoming pulse are preferentially attenu-
ated, in such a way that the outcoming peak appears shifted
toward earlier times even if it is nothing but a portion of the
incident pulse’s forward tail �2,41�. In particular, we do not
intend to expand on the delicate question whether superlumi-
nal group velocities can sometimes imply superluminal sig-
naling. It is a controversial subject which has been exten-
sively explored in the literature about the tunneling effect
��5� and references therein�.

Turning back to the scattering time analysis, we can ob-

TABLE I. The values of k numerically obtained in correspondence with the increasing of the barrier
extension L. The values are calculated in terms of the wave packet width a for different values of the
potential barrier height expressed in terms of wa. We have fixed the incoming momentum by setting
k0a=1.

wa
L /a 1.5 2.0 4.0 6.0 8.0 10 20

0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.10 1.0235 1.0648 1.3799 1.6769 1.8547 1.9397 2.0051

0.20 1.0794 1.1825 1.6571 1.9178 2.0000 2.0204 2.0203

0.30 1.1478 1.3001 1.8430 2.0289 2.0562 2.0551 2.0342

0.40 1.2196 1.4116 1.9874 2.1025 2.0986 2.0857 2.0484

0.50 1.2921 1.5194 2.1155 2.1668 2.1399 2.1170 2.0628

0.60 1.3649 1.6266 2.2429 2.2314 2.1828 2.1495 2.0775

0.70 1.4383 1.7360 2.3819 2.3002 2.2281 2.1834 2.0925

0.80 �
a 1.8489 2.5466 2.3751 2.2761 2.2188 2.1078

0.90 � 1.9646 2.7627 2.4578 2.3272 2.2558 2.1234

1.00 � � 3.1137 2.5504 2.3818 2.2947 2.1392

aFor the values of L marked with �, we can demonstrate by means of Eqs. �12� and �13� that the modulated
momentum distribution has already been completely distorted. In this case, the maximum has no meaning in
the context of the applicability of the method of stationary phase.
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serve an analogy between our results and the results inter-
preted from the Hartman effect �HE� analysis �36�. The HE is
related to the fact that, for opaque potential barriers, the
mean tunneling time does not depend on the barrier width.
For large barriers the effective tunneling velocity can be-
come arbitrarily large so that the tunneling phase time be-
comes independent of the barrier width. It seems that the
penetration time, needed to cross a portion of a barrier, in the
case of a very long barrier starts to increase again after the
plateau corresponding to infinite speed proportionally to the
distance �42�. Our phase time dependence on the barrier
width is similar to that which leads to Hartman interpretation
as we can infer from Eqs. �21� and �22�. Only when � tends
to 0 we have an explicit linear time dependence on L,

tT
� =

2mL

w
1 +

1

n
� , �23�

which agrees with calculations based on the simple phase
time analysis where tT= 2mL

w
�1+ 1

2n
�.

Here at once it is important to emphasize that the wave
packets for which we compute the phase times illustrated in
the Fig. 2 are not constructed with the same momentum dis-
tributions. The phase ��k ,L� appears when we treat sepa-
rately the momentum amplitudes g�k−k0��T�k ,L��, and g�k
−k0��R�k ,L��, and the other one ��k ,L� appears only when
we sum the amplitudes g�k−k0��T�k ,L�+R�k ,L��=g�k−k0�
in order to obtain a symmetrical distribution. It requalifies
the SPM for accurately computing the time dependence of
the position of the peak of a wave packet. Moreover, some
authors have correctly considered for a sufficiently complete
analysis of the violations of the HE, not only the filter action
but also the spreading of the wave packets caused by the
square-law dependence of the kinetic energy on k �some-
times carrying into even negative tunneling times� �5� and,
for some particular configurations of two �and more� barriers
�43�, the influence of all possible resonances. Some addi-

tional anomalies with the HE had already been discussed in
the last review on tunneling time analysis �5�. In spite of
quoting the superluminal interpretation present in the litera-
ture from a long time ago, our discussion is concerned with
the definition of the strict mathematical conditions which
limit the applicability of the stationary phase method for
which the Hartman interpretation is valid �36�. Strictly
speaking, the discussion of superluminal phenomena is jus-
tified only for �ultra�relativistic particles �8,19�, for instance
photons, but not for the tunneling analysis in the case of the
nonrelativistic Schrödinger equation. In fact, up to now, the
most interesting experiments concerning the time analysis of
tunneling processes had been fulfilled with photons.

In more general lines, there has also been some trying of
yielding complex time delays for tunneling analysis, ulti-
mately due to a complex propagation constant. In such a
framework, the supposition of superluminal features is con-
sidered artificial since the transmitted peak is not causally
related to the corresponding incident peak. In a certain sense
it has caused some controversies with denying the physical
reality to an imaginary time �7�. In parallel to the most sen-
sible candidate for tunneling times �7,9�, a phase-space ap-
proach has been use to determine a semiclassical traversal
time �17,44,45�. This semiclassical method makes use of
complex trajectories which, in its turn, enables the definition
of real traversal times in the complexified phase space
�44,45�. It is also commonly quoted in the context of testing
different theories for temporal quantities such as arrival,
dwell, and delay times �7,9� and the asymptotic behavior at
long times �19,46�. In particular, it suggests that the idea of
complexifying time should be investigated for some other
scattering configurations, which reinforces the more general
assertion that the investigation of wave propagation across a
tunnel barrier has always been an intriguing subject which is

FIG. 1. Dependence of the wave packet shape on the cutoff
value of a momentum distribution centered around k0=0.5w with
the values of k comprised between 0 and kcutof f.

FIG. 2. �Color online� Time rates for the standard tunneling and
the scattering process. The rates R��� and R��� can be understood
as transmitted times in the units of the classical propagation time �.
Both present the same asymptotic behavior, which, in a totally re-
strictive mathematical sense, and in the stationary phase analysis
context, offers the possibility of a superluminal interpretation for
the peak of the transmitted wave packet so that the SPM can be
accurately applied.
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wide open both from a theoretical and an experimental point
of view.

As a possible solution for partially overcoming some of
the incongruities here pointed out and quantified, which ap-
pear when we compute tunneling phase times in the SPM
framework, we have claimed the relevance of the use of the
multiple peak decomposition �37� technique previously de-
veloped for the above barrier diffusion problem. Essentially,
we have introduced a way for comprehending the conserva-
tion of probabilities for a very particular tunneling configu-
ration where the asymmetry presented in the standard case
was eliminated, and the phase time could be accurately cal-
culated. We mention for a subsequent analysis the suggestive
possibility of investigating the validity of our approach when

confronted with the intriguing case of multiple opaque bar-
riers �39,47,48�, in particular, in the case of nonresonant tun-
neling. Still concerned with subsequent theoretical perspec-
tives, the symmetrical colliding configuration also offers the
possibility of exploring some problems involving soliton
structures. To conclude, all the above arguments reinforce
the necessity of searching the appropriate framework
where barrier traversal times can be computed in the most
generalized way.
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