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The position-representation wave function for multiphoton states and its equation of motion are introduced.
A major strength of the theory is that it describes the complete evolution �including polarization and entangle-
ment� of multiphoton states propagating through inhomogeneous media. As a demonstration of the two-photon
wave function’s use, we show how two photons in an orbital-angular-momentum entangled state decohere
upon propagation through a turbulent atmosphere.
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There are two approaches to solving problems in quantum
mechanics: quantum field theory �QFT� and wave mechanics
�WM�. In WM, the fundamental physical entities are “par-
ticles,” whose collective state is described by a wave func-
tion. To treat few-particle systems in WM, such as the he-
lium atom with two electrons, one formulates and solves the
two-electron wave equation in position space. In QFT, the
fundamental physical entities are fields, which are decom-
posable into modes, each of which can have various numbers
of excitations. It is clear that there is a one-to-one correspon-
dence between modes in QFT, and states in WM.

Each approach has its realm of preferred applicability. For
example, one does not usually treat the helium atom with
QFT, but one does use this theory when treating high-energy
electron collision experiments. Just as one most often uses
WM in atomic physics, we advocate the use of this approach
for few-photon phenomena, such as those encountered in el-
ementary quantum information schemes �quantum cryptog-
raphy, one-way quantum computing, and linear optics quan-
tum computation�. However, as far as we know, a complete
photon-wave-mechanics �PWM� theory of electromagnetism
has not been introduced. Development of the PWM descrip-
tion of multiple photons leads toward completion of the
quantum description of electromagnetism, which must in-
clude entanglement and decoherence not yet treated.

In this paper, we briefly review the one-photon wave
function in coordinate space, of which there are several pro-
posed �1–7�. Choosing one of these, we introduce a two-
photon wave function, along with its tensor equation of mo-
tion, which we call the two-photon Maxwell-Dirac equation.
Its relationships to other well-known formulations, such as
quantum electrodynamics �QED� of few-photon wave pack-
ets �8�, and vector-field classical coherence theory �9� are
then brought to light. These connections suggest that we
have chosen the most appropriate single-photon formalism
on which to base a generalization to multiple photons.
Choosing a different single-photon formalism does not give
these close relations and leads to different equations of mo-
tion, normalization conditions, and Hilbert-space scalar
products. We also demonstrate the use of the two-photon
wave function in a calculation of quantum-state disentangle-
ment for a pair of spatially entangled photons traveling
through the atmosphere. The two-photon formalism is

readily extended to multiple-photon states. The theory gives
a lucid view of the photon as a particlelike quantum object,
making a pedagogical link between standard quantum wave
mechanics and quantum field theory, which must be equiva-
lent according to current understanding.

Much of the confusion surrounding the definition of the
photon wave function in the position representation arises
from the nonlocalizability of the photon and the correspond-
ing absence of a position operator �10,11�. This is because
the photon has zero mass and is a spin-1 object, with only
two independent spin degrees of freedom. Of the coordinate-
space single-photon wave functions proposed �1–7�, we find
the most useful is the Bialynicki-Birula-Sipe formulation,
defined in terms of the localization of photon energy �2–4�

��1��x,t� = ��+1
�1��x,t�

�−1
�1��x,t�

� , �1�

rather than, for example, the Landau-Peierls nonlocal num-
ber density wave function �1�. Here, ��

�1� is a three compo-
nent, complex vector labeled by �= ±1 for positive �nega-
tive� helicity �2,3�. In vacuum, this wave function satisfies
the Dirac-like equation �2–4,12,13�

i��t�
�1� = Ĥ��1� = �c�3� � ��1�, �2�

and the zero-divergence condition � ·��1�=0. Here, �3 is a
Pauli-like matrix that changes the sign of the negative helic-
ity component in Eq. �1�. The curl and divergence operators
are understood to act on the upper and lower components of
��1� separately, � is Planck’s constant �which cancels in Eq.
�2��, and c is the speed of light in vacuum. The single-photon
Hamiltonian is �c�3��. Equation �2� and the zero-
divergence condition are formally equivalent to the classical
Maxwell equations, as can be seen by substituting

��
�1��x,t� =

D�+��x,t�
�2�0

+ i�
B�+��x,t�
�2�0

, �3�

where D�+� and B�+� are the positive-frequency parts of the
electric-displacement and magnetic-induction fields, and �0
��0� is the vacuum permittivity �permeablity�.

In a linear, isotropic medium, �0 and �0 in Eq. �3� are
replaced by spatially dependent functions ��x� and ��x�, and
the equation of motion Eq. �2� is changed by the material
interaction to �2�*Electronic address: bsmith4@uoregon.edu
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i � �t�
�1� = Ĥ��1� = � v�3�� + �L� � ��1�, �4�

where the speed of light is constructed from the local values
of permittivity and permeability in the medium, v�x�
=1/���x���x�, and the matrix L has the form

L�x� =
1 ln���x���x� + �1 ln���x�/��x�

2
. �5�

Here, 1 is the identity matrix and �1 is a Pauli-like
matrix that interchanges the two helicity components
of Eq. �1�. In a medium, the photon Hamiltonian is given by
�v�3��+�L��. The modified divergence condition in a me-
dium is ��+�L� ·��1�=0.

The integrated square modulus of the photon wave func-
tion over all space gives the expectation value of the pho-
ton’s energy

� ��1��x,t�†��1��x,t�d3x = 	E1
 . �6�

One can associate with this wave function a local probability
density 	�x , t�=��1��x , t�†��1��x , t� / 	E1
, and current density
j�x , t�=��1��x , t�†s��1��x , t� / 	E1
, that obey the continuity
equation �2,3�. Here, s is a vector composed of the three
spin-1 matrices. This probability density and current density
are defined in relation to the photon energy, not photon num-
ber.

The appropriate scalar product is best formulated in mo-
mentum space, where a local photon-number probability
density is well defined �3�. Transformed into the position
representation, the scalar product is found to be a nonlocal
integral, consistent with the absence of a local photon
particle-density amplitude �3�. The fact that photon wave
functions representing orthogonal states are not orthogonal
with respect to an integral of the form of Eq. �6� is consistent
with the well-known nonexistence of localized, orthogonal
spatiotemporal modes in QED �8�.

We now propose that the two-photon wave function
��2��x1 ,x2 , t�, which is related to the probability amplitude
for finding the energies of two photons localized at two dif-
ferent spatial positions x1 and x2, at the same time t, with the
photons in any polarization state, can be constructed from
single-photon wave functions as

��2��x1,x2,t� = �
l,m

Clm
l
�1��x1,t� � 
m

�1��x2,t� , �7�

where the coefficients Clm, symmetrize the wave function,
and � is the tensor product. The modulus squared of the
coefficients �Clm�2, gives the probability of the photons being
in the states labeled by l and m. Each tensor component is
related to the two-photon spin state’s energy probability den-
sity. The basis states 
l

�1��, are solutions of the single-photon
wave equations �Eq. �2� in free space and Eq. �4� in a linear
medium� and include spin dependence. The equation of mo-
tion for the two-photon wave function is found by adding the
Hamiltonians for the individual photons

i��t�
�2� = �v1�1

�2���1 + �1L1� � ��2�

+ �v2�2
�2���2 + �2L2� � ��2�, �8�

where �1
�2�=�3 � 1, �2

�2�=1 � �3, the curl operators are under-
stood to act on appropriate components of the tensor product,
L1�2�=L�x1�2��, and v1�2�=v�x1�2��. In free space, the Ls drop
out and the speed of light takes on its vacuum value c. We
call Eq. �8� the Maxwell-Dirac equation for a two-photon
state. The two-photon wave function also obeys the diver-
gence conditions

�� j + � jLj� · ��2� = 0, j = 1,2. �9�

Tracing over the tensor product of the two-photon wave
function and its Hermitian conjugate, and integrating over all
space gives the expectation value of the product of the two
photons’ energies

� � Tr���2�†��2��d3x1d3x2 = 	E1E2
 . �10�

If the state of the photons is not entangled, then
this equals 	E1E2
= 	E1
	E2
. One can also define
a joint probability density 	�2��x1 ,x2 , t�
=Tr���2��x1 ,x2 , t�†��2��x1 ,x2 , t�� / 	E1E2
, for finding the en-
ergy of one photon at the space-time coordinate x1, and the
other at x2, �xj = �x j , t�, j=1,2�, and current density
j�2��x1 ,x2 , t�, obeying a continuity equation.

To demonstrate the Bialynicki-Birula-Sipe single-photon
theory �2–4� is best suited to PWM, we first show there is a
direct relation between the n-photon wave function and the
n-photon detection amplitude of quantum optics �9,14–17�

AD
�n��x1,x2, . . . ,xn;t� = �vac� �

j=1

n

Ê�+��x j,t����n�� , �11�

whose modulus squared is proportional to the probability for
joint, n-event detection. If one neglects the magnetic field,
assuming the detectors respond only to the electric field, the
effective n-photon wave function is just a tensor product of n
electric-field vectors evaluated at potentially different spatial
values, exactly the same form as Eq. �11�. Then the n-photon
wave function can be identified with the spatial mode of the
electromagnetic field, showing the connection between
modes and states, and appealing to the choice of the single-
photon formalism based on energy localization.

To further strengthen the case for the energy-density
single-photon theory, we show the close connection of the
two-photon wave function and classical coherence theory.
Considering two positive-helicity photons for simplicity, the
two-photon wave function can be written as a sum of four
terms

��2��x1,x2� = � D�x1�
�2��x1�

+
iB�x1�

�2��x1��
� � D�x2�

�2��x2�
+

iB�x2�
�2��x2�� . �12�

Each term has the same form as one of the four second-order
coherence matrices of classical coherence theory �9�
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A�x1,x2� = 	F*�x1� � G�x2�
 , �13�

which give a complete description of second-order partial
coherence of an optical field �including spatial, temporal, and
polarization coherence�. Here F, G� D ,B�, and the angular
brackets imply an ensemble average over all realizations of
the fields. Evolution of these matrices is described by a set of
linear differential equations �9� that we call the first-order
Wolf equations, which are equivalent to Eqs. �8� and �9�.
This equivalence shows a deep connection between propaga-
tion of classical coherence quantities and multiphoton states.
In addition, each component of the coherence matrices obeys
the �second-order� Wolf equations �9�, a well-known set of
classical second-order differential equations recently high-
lighted for their relation to the two-photon detection ampli-
tude �18�. In much the same way that the Klein-Gordon
equation does not completely describe the evolution of elec-
tron states by neglecting spin, the same holds for the second-
order Wolf equations, which do not specify the relations be-
tween polarization components. In contrast, the Maxwell-
Dirac equation, Eq. �8�, contains all such relationships. In
this sense, our result shows the quantum origin of the clas-
sical Wolf equations �18� and illuminates their connection to
the propagation behavior of multiphoton states. Choice of a
different single-photon theory on which to base the multi-
photon theory would not lead to the above results.

To illustrate the utility of the two-photon wave function
and its relation to classical coherence theory, we consider the
propagation through a turbulent atmosphere of two quasi-
monochromatic photons, initially entangled in their spatial
degrees of freedom, as depicted in Fig. 1. We assume the
photons are emitted from a source in opposite directions oc-
cupying one of two orbital angular momentum �OAM�
states, described by the Laguerre-Gauss wave functions

p,l�r ,��=Rl

p�r�exp�il�� /�2, where r and � are cylindrical
coordinates. Here, Rl

p�r� is the radial wave function,
exp�il�� /�2 is the angular wave function, l is the OAM
quantum number, and p is the radial quantum number. We
assume that both photons, labeled A and B, have the same
polarization, radial quantum number p=0, and consider or-
bital quantum numbers of equal magnitudes �l�, separately.
We take the two-photon basis as

�AB
1 = 
p,l

A
� 
p,l

B , �AB
2 = 
p,l

A
� 
p,−l

B ,�AB
3 = 
p,−l

A

� 
p,l
B , �AB

4 = 
p,−l
A

� 
p,−l
B , �14�

where 
p,l
A�B� is evaluated at the coordinate of photon

A�B�. For concreteness, we treat the input pure state �in
�2�

= ��AB
2 +�AB

3 � /�2. The photons pass through independent,
thin, dielectric, Gaussian phase-randomizing atmospheres,
modeled by a quadratic phase structure function �19,20�.
This determines the form of the medium function L�x� in Eq.
�5�, which we solve in the paraxial approximation. The ele-
ments of the density matrix 	 at the output of the turbulence
are determined by integrating the radial power distributions
r �Rl

p=0�r��2, for each photon multiplied by the circular-
harmonic transform of the phase correlation function C�,
which describes the effect of the atmosphere on the state
�21�. In our model, the phase correlation function for each
atmosphere is

C�
A�B��r,��� = exp− 1

2 �D�
A�B��r,����� , �15�

where D�
A�B��r ,���= �2r sin���� /rA�B��2 is the quadratic

phase structure function �20� of the aberrations in atmo-
sphere A�B� and rA�B� is the transverse length scale of the
corresponding turbulence. We find a closed-form expression
for the circular harmonic transform

C̃�
A�B��r,m� = �

0

2

C�
A�B��r,��� exp�− im���d��

= exp�− 2� r

rA�B�
�2�Im�2� r

rA�B�
�2� , �16�

where m is 0 or 2l, and Im�x� is an mth-order modified Bessel
function.

Being interested only in two OAM states for each photon,

p,±l, we may treat each photon as a qubit. Other photon
states can be considered to be loss channels �22�, and we
normalize the postselected density matrix. We examine the
decay of entanglement by calculating the concurrence C�	�
�23�, from the normalized density matrix, as a function of the
ratio of the optical beam waist to the characteristic turbu-
lence length scale w /r0 �21�. Each atmosphere is assumed to
have the same coherence length r0. For a maximally en-
tangled state, C=1, and for a nonentangled state, C=0. We
assume the atmosphere is unmonitored; thus, any indepen-
dent information about its fluctuations is lost, leading to loss
of entanglement. We plot the concurrence in Fig. 2�a�, for
various initial OAM quantum numbers.

This result shows that for a beam waist much smaller than
the turbulence length, w�r0, the entanglement is more ro-
bust to the turbulent atmosphere. Physically, this reflects the
fact that the photons will experience few phase distortions
across their wave fronts. These results also indicate that en-
tangled states with larger OAM values experience less dis-
entanglement through a turbulent atmosphere. This appears
to be because scattering from one OAM state to another de-
pends only on the change in OAM, ��l �21�, which must be
supplied by the atmosphere. The atmosphere can, on aver-
age, change the OAM of the light only by a particular
amount set by the spatial fluctuations that characterize it. We
also calculate the fidelity of the output two-photon state rela-
tive to the input state, which for a pure-state input is

FIG. 1. Diagram of a thought experiment involving two pho-
tons, initially entangled in their OAM states, l= ±1, ±2, ±3, travel-
ing through independent, random phase atmospheres, labeled by A
and B.
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F�	in,	out� = 	�in�	out��in
 . �17�

This result, plotted in Fig. 2�b� for the input state given
above, indicates that states with small OAM values, and thus
small root-mean-square beam width �20�, have higher overall
transmission than do states with large OAM values. We
should stress that the overall transmission of the OAM states
depends on the beam waist w. We conclude that entangled
states with smaller waists and larger OAM quantum numbers
will be more robust to turbulence.

We have introduced the two-photon wave function based
on energy localization. This two-photon wave function obeys
the two-photon Maxwell-Dirac equation, which is equivalent
to the equations of motion of the classical second-order co-
herence matrices �9�. The connections we have found be-
tween this wave function, QED wave-packet-mode detection
amplitudes, and classical coherence theory give credence to
the choice to use the energy-localization wave function
rather than others, such as the Landau-Peierls wave function

�1�, which is a nonlocal “number-density” wave function.
The formalism provides powerful tools to analyze the behav-
ior of few-photon states, as shown by the example above,
where we calculated the disentanglement of a spatially en-
tangled two-photon state by using essentially classical field
equations. This theory is well suited to the study of realistic
implementations of linear optical quantum computing �24�,
measurement-induced nonlinearities with linear optics �25�,
and continuous-variable entanglement through quantum state
tomography �26,27�. The well-defined Lorentz transforma-
tion properties of this wave function �3� make it ideal for the
examination of relativistic quantum information with pho-
tons �28�.

Note added in proof. Recently, a closely related article
appeared on the quantum physics preprint archive �29�.
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FIG. 2. �Color online� �a� Concurrence as a
function of the ratio, w /r0, of beam waist-to-
turbulence length scale for three different magni-
tudes of input OAM. �b� Fidelity of the output
with respect to the input pure state.
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