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Suppression of Zeno effect for distant detectors
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We describe the influence of continuous measurement in a decaying system and the role of the distance from
the detector to the initial location of the system. The detector is modeled first by a step absorbing potential. For
a close and strong detector, the decay rate of the system is reduced; weaker detectors do not modify the
exponential decay rate but suppress the long-time deviations above a coupling threshold. Nevertheless, these
perturbing effects of measurement disappear by increasing the distance between the initial state and the
detector, as well as by improving the efficiency of the detector.
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I. INTRODUCTION

The decay of unstable quantum states is an ubiquitous
process in virtually all fields of physics and energy ranges,
from particle and nuclear physics to condensed matter, or
atomic and molecular science. The exponential decay, by far
the most common type, is surrounded by deviations at short
and long times [1,2]. The short-time deviations have been
much discussed, in particular in connection with the Zeno
effect [3-5] and the anti-zeno effect [6-9]. Experimental ob-
servations of short [10,11] and long [12] time deviations are
very recent. A difficulty for the experimental verification of
long-time deviations has been the weakness of the decaying
signal [13], but also the measurement itself may be respon-
sible, because of the suppression of the initial state recon-
struction [2,14].

It was soon recognized that the measurement could per-
turb in an important way the dynamics, not only at long
times but also at short times, and that even the rate of expo-
nential decay in the intermediate regime could be affected
[2]. A related and interesting issue is the quantum zeno para-
dox: repeated instantaneous measurements over a decaying
system freeze the decay as the period tends to zero, if the
projection postulate is applied. The same conclusions hold in
some limits when “quantum measurement theory,” which in-
corporates the measuring apparatus or part of it in the theo-
retical model [15-18], is used for describing generalized
(noninstantaneous and nonideal) measurements. Several
works have analyzed the conditions for the existence of zeno
and antizeno effects in unstable systems from the point of
view of the spectral properties of the response function of the
detector [18-20]. For a detailed discussion about quantum
zeno and antizeno effects in a generalized sense (i.e., the
slow down or speed up of the decay for generalized measure-
ments including continuous ones), see a complete review by
Koshino and Shimizu [18].
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A still controversial and rather crucial question is: how is
the decay affected by the distance between detector and sys-
tem in indirect measurements [18,21-28]? Home and Whi-
taker in their conceptual analysis of the zeno effect [21],
considered that the only really paradoxical point is that the
system is predicted to have its decay affected by a detector at
a macroscopic distance. Indeed, a common sense expectation
is that separating the detector from the initial location of the
system will soften the perturbing effects of measurement,
making the zeno effect eventually irrelevant, but the results
based on some measurement models showing this fact have
been disputed [24,26,27], and the need for more work has
been stated to arrive at more definite conclusions [18].

In the present paper the decaying particle is initially lo-
calized within an interaction potential region, and the effect
of the “continuous” detection is modeled by an imaginary
absorbing potential which accounts for the passage from the
initial channel to some other channels which are not repre-
sented explicitly [29]. A physical system that may be repre-
sented in this way is an atom detected by the fluorescence
induced by an on-resonance laser beam [30]. In this case, the
wave function describes undetected atoms in the ground
state, and every detected atom (by the first spontaneous pho-
ton detection) ceases to be part of the statistical ensemble
associated with the wave function. Moreover, the rate of
norm loss becomes equal to the detection rate [32]. Two
helpful approximations for an analytical treatment are a
sharply defined beam edge, and the substitution of the actual
beam width by a semi-infinite potential [30]. The physical
validity of this approximation was studied in Ref. [31], and
requires that the penetration length of the undetected atom
amplitude be smaller than the laser beam width. This condi-
tion and the production of sharp borders are well within the
scope of current ultracold atom experiments.

We shall describe the main effects of the absorption (or, as
discussed previously, detection), in the decay process of a
quantum system. In particular, we will show that the slow
down of the decay, i.e., the generalized zeno effect, disap-
pears when the distance to the detector is increased. We shall
also analyze the suppression of the deviations from exponen-
tial decay at long times as a function of the strength and
quality of the absorber and the influence of the “observation
distance.”
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FIG. 1. Schematic representation of the model including a hard
wall at x=0, a delta function potential at x=1 and a detector for
x=X_.. The wave packet is initially confined into the inner region
[0, 1].

II. MODEL

Our model represents an atom in one dimension which is
initially located between an infinite wall at x=0 and a delta
barrier at x=1 of “strength” 7>0. In absence of the detector,
the wave function will leak out and decay exponentially ex-
cept for short and long time deviations. The dimensionless
Hamiltonian including the detector is

&
H:—F+ 78x-1)-iV.Ox-X.), x=0, (1)
X

where O is the Heaviside function, X, is the position of the
detector edge, and V,.=0 as corresponds to absorption. The
norm of a wave function put in the absorbing region, for the
atom at rest, would decay with a lifetime, or response time of
the detector, 1/(2V,). Because of the position dependence,
however, a very large V. leads to reflection without detec-
tion. Boundary effects can be to a large extent avoided, as we
shall see below, with an adequate shaping of the potential
[29].

We assume that the initial state at r=0 is the ground state
of an infinite well between x=0 and x=1, namely,

#(x,0) = \2 sin(m0)O (x)O(1 - x), )

see Fig. 1 for a schematic representation. Hence, the system
evolves with time according to the non-Hermitian Hamil-
tonian of Eq. (1), (t)=e™"y(0). The survival amplitude,
defined as A()={(y{(0)|y(t)), may be written in terms of the
eigenstates forming a biorthogonal basis [33],

N loc

A =2 Cle B+ f Flg)e @ Vodg, 3)
=1 0

where C=(|up, Cr=Ci| o), flg)=(t| ¢q><(;sq| o), and
|u;) and |ii;) are, respectively, right and left localized eigen-
states obeying

H|u)) = Effu) = k] |uy), (4)
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(@)H = EQiy| = ki,

. (5)

<141|ﬁj> = 51,_/‘, (6)

0, being the Kronecker delta and Ny, the total number of
localized, (Kronecker) normalizable states. The continuum

eigenstates appearing above, |¢,) and |@,), satisfy

H|¢q>=Eq|¢q>= (qz_ivc)|¢q>’ (7)
(bJH=EL|=(q* iV, (8)
()b, =8q-q"). 9)

Note that |¢q> and its corresponding biorthogonal partner are
not usual scattering states because the exterior region is not
free from interaction [V(x) #0 when x— ]. However, the
potential is constant there and this enables us to write the
solution in the external region in terms of a & matrix,

| C| sin kx, 0sx=<1,
¢q(x): W Aeikx+Be_ikx, 1 $x$XC, (10)
T e - 8S(q)er, x=X,,

where k=(g*>—iV,)"? is the wave number inside, ¢ the wave

number outside, and C;, A,B, and S are obtained from the
matching conditions at x=1 and x=X,. For scatteringlike so-
lutions, ¢ is positive. Note the two branch points of k in the
complex g plane. We shall take the branch cut joining these
points. Similarly, the root in g=(k*+iV,)""? is defined with a
branch cut joining the two branch points in the k plane. In
contrast to scattering-like states of the continuum, localized
states are characterized by a complex g with positive imagi-
nary part.

III. RESULTS

We shall start analyzing the effects of detection when the
detector is placed close to the unstable system, at X.=1. We
have chosen 7=35 to facilitate the calculations since small
values of 7 lead to smaller lifetimes and a badly defined
exponential regime whereas, by contrast, very large values of
7 are associated with long lifetimes and well-defined (nar-
row and isolated) resonances, but the numerical integration
of Eq. (3) becomes much more complicated. The quantity
investigated here and later for other values of X, is the sur-
vival probability S(¢)=|A()|> [36]. Experimentally, the prob-
ability Ppy; to find the particle in the initial region [0, 1]
could be more accessible, but S(¢) is much easier to compute
and the differences with Py, are generally very minor.

In Figs. 2 and 3, we have plotted the logarithm of the
survival probability versus time for different values of the
complex absorbing potential V.. For increasing V., below a
threshold, there is a continuous shift to higher values of the
transition time, f.,,,, Which marks the passage from the ex-
ponential dominated regime to the final nonexponential de-
cay. Beyond the threshold value, V"™©~0.926, the decay
does not present apparently any deviation from the exponen-
tial decay.
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FIG. 2. In[S(z)] for different absorptive step potentials, see Eq.
(1). V.=0 (thick solid line), 0.1 (dashed line), 0.3 (thin solid line),
and 0.5 (dots). X,=1 and 7=5.

A quantitative approximation to S(¢) helps to understand
these effects: Let g, be the resonance with the longest life-
time and let us assume that it is narrow and isolated. If the
rest of the resonances have already decayed, for weak
enough absorption, i.e., Nj,.=0, the integral of Eq. (3) can be
approximated, using contour deformation in the complex ¢
plane, by the residue corresponding to the first resonance

plus a saddle contribution,

—

Naio o, 1
f(O)e (11‘3/2 s

8
(11)

where &, represents the energy of the decaying particle, T’
the corresponding decaying width and f(0)=[d?f(q)/ dqz]qzo.

A(t) = -2mi ResU(q)]q:qre—if,te—rrr/z _
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FIG. 3. In[S(#)] for stronger absorptive potentials (compared to
Fig. 2): V.=0.75 (solid line, still with a visible long-time deviation),
1 (dashed line), 10 (dots), and 100 (dotted-dashed line). X,=1 and
7n=>5, as in Fig. 2.

Ve

FIG. 4. Transition time f,, versus V, for »=5 and X.=1. The
critical value V"™ is marked with a vertical dashed line.

The second term is responsible for the deviation from the
exponential decay in S(z). The difference with respect to the
nonabsorption case, V.=0, is that the deviation is not given
by a purely algebraic term: the usual algebraic dependence is
multiplied by the exponentially decaying factor exp(-V.,1).
By increasing V., the deviation term decays more and more
rapidly until, at threshold, i.e., I',=V,, the deviation decays
faster than the residue term. This threshold value corre-
sponds exactly to the passage from a resonance to a local-
ized, normalizable state with purely exponential decay.
While for V,< V"™, the dominant term at long times is the
saddle contribution [proportional to exp(=V.f)t?], in the
opposite case, V,.> Vi.hre, the decay is purely exponential, see
Fig. 3, and the dominant contribution comes from the dis-
crete part of the spectrum. This peculiar behavior can be also
observed in the divergence of f,, versus V. at Vz.hre, see Fig.
4. If the absorption is increased further, see Fig. 3, the decay
rate decreases, an evidence of a generalized zeno effect.
We shall next examine how the above perturbing effects
of measurement are affected by the distance to the absorber.
In Fig. 5 we show the dependence of In[S(r)] with X, for
V,.=100, compared to the reference case V,.=0. For X.=1,
the decay is slowed down with respect to the exponential
decay for V,.=0, as in the cases shown in Fig. 2. A small
increase of the distance to X.=2 leads, perhaps counter-
intuitively, to an even slower exponential decay, but only
after an oscillatory transient at short times. This is explained
by the approach of a second pole and their mutual interfer-
ence. By increasing X, the poles move closer and closer to
each other and a simple analysis in terms of one or few poles
becomes soon impossible. For larger values of X, the zeno
effect disappears, namely, the exponential decay rate is, at
least initially, the same as for V,.=0, and the transition time
yan SEparating the exponential decay region and the long-
time deviation increases with X, and approaches the transi-
tion time for V.=0. Beyond the time region in which the
curves with and without absorption agree, there are some
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FIG. 5. In[S(¢)] versus time for =35, V,=100, and different
values of X,: 1 (triangles), 2 (thick dashed line), 100 (dotted-dashed
line), and 200 (thin solid line). The reference curve for V,.=0 (thick
solid line) is also shown. The dots correspond to a better detector
placed at X,.=100, see Eq. (12) and related text, with E,;,=0.003
and L=100.

important oscillations in In[S(¢)], and a return to the initial
state due to the reflectivity at low energies of the sharply
edged detector model. To show the importance of the detec-
tor quality we have also used a better absorber, namely, the
potential proposed by Manolopoulos [29,34],

c(x-X,) )

3 (12)

VM(x) = —iE;,O(x - X,) 6‘(

where L is the absorption width and

4
-y (c+y)?

with a=0.112 45, b~8.287 72X 1073, and ¢ ~2.622 06. For
this new model, the survival probability curves (an example
is shown in Fig. 5, see the form of the potential in Fig. 6), fit
to the unperturbed curve for a longer time and the back-
reaction of the measurement apparatus on the system is much
reduced.

Wy)=ay-by’ +

Absence of antizeno effect

The exponential decay for the values of V. chosen in Figs.
3 and 5 is slower than for V,=0. We have carried out a more
systematic calculation, sweeping continuously over V,.: Fig.
7 shows the lifetime of the dominant exponential decay ver-
sus V. and clearly no antizeno effect is observed. This may
appear contradictory with the fact that the survival probabil-
ity for the case V.=0 decays indeed faster than purely expo-
nential decay in several time spans, see Fig. 8. Continuous
measurements are usually related to repeated instantaneous
measurements of period 6t by means of Schulman’s relation
[35]

5[=4To, (13)
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FIG. 6. Manolopoulos potential for X.=100, see Eq. (12) and
related text, with E,;,;=0.003 and L=100.

where 7, is the response time of the apparatus. Since in the
time regions of faster decay, the antizeno effect occurs with
repeated instantaneous measurements [9], this relation sug-
gests that the continuous measurement should lead to an an-
tizeno effect for some value of the interaction. That this is
not the case shows that Eq. (13) is not directly applicable in
this case. The model Hamiltonian considered by Schulman
[35] and ours have different forms and parameters, see the
Appendix, in particular there is no x, X.. or 7 dependency in
Ref. [35], where a multichannel model is considered,
whereas ours refer to a one-channel treatment and, as stated
in Ref. [35], “the forms taken by continuous observation are
many, so that specific conclusions depend on the model of
observation.”

IV. CONCLUDING REMARKS

We have studied the influence of the detector, modeled by
a “‘step” negative imaginary potential, in an unstable decay-
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FIG. 7. Monotonic increase of the lifetime versus V, for =5
and two detector distances: X,.=3 (a); X.=1 (b).
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FIG. 8. Behavior of the survival probability versus time in units
of the lifetime 7 at short times for =5 and V,=0 (dashed line). The
continuous line exhibits, for comparison, pure exponential decay.

ing system. One of the effects of absorption is the suppres-
sion of the deviations from exponential decay at long times,
but only above a critical value of the absorption potential and
if it occurs close to the system. The slow down of the decay
rate for strong absorption (zeno effect) and its dependence
with the distance to the absorber have also been examined:
the change in the decay rate due to the continuous measure-
ment is washed out by increasing the distance to the detector.
The perturbing effects of measurement are also reduced by
more efficient, reflectionless detectors.
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APPENDIX: CONTINUOUS VERSUS PULSED
OBSERVATIONS

To see possible relations and differences between Ref.
[35] and our model let us briefly review the origin of Eq.
(13) in the simplest model of Ref. [35]. Assume a Hamil-

tonian of the form
u 1(0 (1)
$7o\0 - iy

which may be interpreted as an effective Hamiltonian de-
scribing the evolution of undetected two-level atoms (with
levels |1) and |2)) in a laser field with Rabi frequency () and
Einstein coefficient vy, equal to the inverse lifetime 7, of state
[2). As in the main text all quantities are dimensionless. Be-
cause of the laser driving, the effective decay time is actually
Tec="y/Q? in the weak coupling (“driving”) limit with large
v/Q. (Note that in the strong coupling limit the effective
decay time is very different, 75-=2/1, see, e.g., Ref. [32].) A

(14)

PHYSICAL REVIEW A 74, 062102 (2006)

zeno time 7,=2/() is also introduced as the coefficient for
quadratic time dependence that arises in the short time ex-
pansion of the probability of state |1) evolved with H,
Pi=1-Fl+ ... . (15)
With the above definitions, the effective lifetime for continu-
ous observation becomes, for weak coupling, 7= 7%/ 47.
The next step is to consider a pulsed, rather than continu-
ous, measurement at time intervals ot with y=0, represented
by projections

[l — [ 1T (16)

The probability of finding state |1) at & is P,(8t)=1
—(6t/7,)?, and after successive pulses an effective exponen-
tial decay will take approximately the form exp(—#/7gp),
with 75p= 7'%/ ot being the effective lifetime for pulsed obser-
vations. Comparing with the decay of the continuous case
and setting 7= Tgp, we get Schulman’s relation

St=4r,. (17)

One may first try a rough fit of our model into the form of
the Hamiltonian (14) by identifying state |1) with the initial
state, and |2) with a coupled decay product state with lifetime
7,=1/(2V,). Presumably ) would depend on 7 in such a
way that a weak coupling corresponds now to an intense,
delta barrier, i.e., a large 7. A difficulty to establish this par-
allelism is that the distance X.—1 between the initial state
and the detector introduces a further time scale, the time
required to travel up to the detector. Limiting the analysis to
the case X.=1, in which the edge of the state and the com-
plex potential touch at x=1, is not enough for a simple trans-
lation of results: first because the assumed short time qua-
dratic dependence does not hold at very short times, since the
second moment of the energy does not exist for our
truncated-sine initial state (2); and second because a rela-
tively small value for the delta strength such as =5 is not in
a weak coupling regime, again one of the premises in Ref.
[35]. This may be clearly seen combining Figs. 7(b) and 8:
weak coupling is characterized by a linear dependence of 7
with V,, and this corresponds, approximately to V.>25 in
Fig. 7(b), but according to Fig. 8, the times required to see
antizeno are between 0.1 and 0.2 (note that 7=0.5), which,
assuming 7,=1/(2V,) and Eq. (17) gives 10<V,<20, a
range of values below the weak coupling regime.

One could of course start anew and compare continuous
(complex potential) and pulsed measurements in our model
without any reference to the above two-channel Hamiltonian.
This is done below, and the result confirms that continuous
and pulsed observations cannot be accurately related here by
Eq. (13).

We shall first define the following pulsed observation for
our delta-potential model: assume a “chopping process”
which amounts to a periodic projection of the wave function
onto the x <X, region at instants separated by a time interval
or. If we denote by ¢(x,t,_) the wave function immediately
before, and by ¢(x,?;,) the one immediately after the projec-
tion at the instant L,
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W t;,) = Y1) O (X, ~ ). (18)

A rapid cancellation of the x> X, part may also be achieved
with the “kicked” imaginary (absorbing) and time-dependent
potential

Vi=V&tF 5(1), (19)

where the subscript “k” stands for “kicked” and

©

Fs(n)= 2 dt—(2j+1)d2], (20)
j:-oc
V=—=iV.0(kx-X,), (21)
provided
V.ot 1. (22)

The general (and exact) evolution operator between interme-
diate times is obtained by repetition of the basic unit

Uk(O, 5[) — e—iHU(?te—iV(st’ (23)

where Hy=—d"/dx>+nd(x—1) is the kinetic energy operator
plus the delta barrier. The reason for having introduced ot
(and no other quantity with dimensions of time) in Eq. (19)

PHYSICAL REVIEW A 74, 062102 (2006)

should now become clear. Compare Eq. (23) with the evolu-
tion under the continuous (time independent) imaginary po-
tential (21),

U(O, &) — e—i(H0+V)5t/h — e—iHoﬁte—iV& + O(5IZ[V,H0]/ﬁ2).
(24)

The approximation based on the first term in (24) will gen-
erally fail if V.6r> 1, but this is precisely the condition im-
posed in Eq. (22). Thus for chopping intervals below 1/V,
chopping and complex potential models will generally dis-
agree, whereas for chopping intervals above 1/V, the two
complex potential models (kicked and continuous) will also
disagree. In either case the chain connecting the continuous
and pulsed observations is broken. Setting 6t~ 1/V, and in
particular 8r=2/V,, as suggested by Eq. (13), may be a rea-
sonable compromise to get a similar evolution, but clearly
one should not expect this relation to provide an accurate
connection between pulsed and continuous observations
since neither the conditions necessary for the validity of the
approximation U(0, &t) = U,(0, &) or for the rapid absorp-
tion in (22) are well satisfied. Further details are clearly out
of the scope and aim of the present paper and will be pre-
sented elsewhere.
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